HDL Coder™
User's Guide

<

MATLAB&SIMULINK

zzzzzz ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

HDL Coder™ User's Guide
© COPYRIGHT 2012-2020 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

Revision History

March 2012 Online only New for Version 3.0 (R2012a)
September 2012 Online only Revised for Version 3.1 (R2012b)

March 2013 Online only Revised for Version 3.2 (R2013a)
September 2013 Online only Revised for Version 3.3 (R2013b)

March 2014 Online only Revised for Version 3.4 (R2014a)
October 2014 Online only Revised for Version 3.5 (R2014b)

March 2015 Online only Revised for Version 3.6 (R2015a)
September 2015 Online only Revised for Version 3.7 (R2015b)
October 2015 Online only Rereleased for Version 3.6.1 (Release 2015aSP1)
March 2016 Online only Revised for Version 3.8 (R2016a)
September 2016 Online only Revised for Version 3.9 (R2016b)

March 2017 Online only Revised for Version 3.10 (Release 2017a)
September 2017 Online only Revised for Version 3.11 (R2017b)
March 2018 Online only Revised for Version 3.12 (Release 2018a)
September 2018 Online only Revised for Version 3.13 (Release 2018b)
March 2019 Online only Revised for Version 3.14 (Release 2019a)
September 2019 Online only Revised for Version 3.15 (Release 2019b)

March 2020 Online only Revised for Version 3.16 (Release 2020a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

HDL Code Generation from MATLAB

Functions Supported for HDL Code Generation

1]

Functions Supported for HDL Code Generation — Alphabetical List

.. 1-2
Functions Supported for HDL Code Generation — Categorical List
.. 1-8
Arithmetic Operations in MATLAB 1-8
Bitwise Operations in MATLAB i, 1-9
Complex Numbers in MATLAB e 1-9
Control Flow in MATLAB i, 1-9
Logical Operators in MATLAB, 1-10
Arraysin MATLAB 1-10
Relational Operators in MATLAB 1-10
Fixed-Point Designeruuuiiiiinnn. 1-10

MATLAB Algorithm Design

2|

Supported MATLAB Data Types, Operators, and Control Flow

Statements 2-2
Supported Data Typeso o it 2-2
Supported Operators 2-3
Control Flow Statements, 2-5

Persistent Variables and Persistent Array Variables 2-7
Persistent Variables 2-7
Persistent Array Variables 2-7

Complex Data Type Support 2-9
Declaring Complex Signals 2-9
Conversion Between Complex and Real Signals 2-10
Support for Vectors of Complex Numbers 2-10

HDL Code Generation for System Objects 2-12
Why Use System Objects? 2-12
Predefined System Objects 2-12
User-Defined System Objects 2-12

iii

iv

Limitations of HDL Code Generation for System Objects 2-12

System object Examples for HDL Code Generation 2-13
Predefined System Objects Supported for HDL Code Generation .. 2-14
Predefined System Objects in MATLAB Code 2-14
Predefined System Objects in the MATLAB System Block 2-15
Load constants froma MAT-File 2-16
Generate Code for User-Defined System Objects 2-17
How To Create A User-Defined System object 2-17
User-Defined System object Example 2-17
Map Matricesto ROM 2-19
Fixed-Point Bitwise Functions 2-20
Fixed-Point Run-Time Library Functions 2-25
Fixed-Point Function Limitations 2-27
Model State with Persistent Variables and System Objects 2-29
Bitwise Operations in MATLAB for HDL Code Generation 2-32
Bit Shiftting and Rotation 2-32
Bit Slicing and Bit Concatenation 2-34
Guidelines for Writing MATLAB Code to Generate Efficient HDL
Code e 2-36
MATLAB Design Requirements for HDL Code Generation 2-36
Guidelines for Writing MATLABcode 2-36
For-Loop Best Practices for HDL Code Generation 2-38
Monotonically Increasing Loop Counters 2-38
Persistent VariablesinLoops 2-38
Persistent Arraysin Loops i i 2-39
MATLAB Test Bench Requirements and Best Practices for HDL Code
Generation 2-40
What Isa MATLAB Test Bench? 2-40
MATLAB Test Bench Requirements 2-40
MATLAB Test Bench Best Practices 2-40

MATLAB Best Practices and Design Patterns for HDL Code

Generation

Model a Counter for HDL Code Generation 3-2
MATLAB CoUunter v e e e e e e 3-2
MATLAB Code forthe Counter 3-2

Best Practices in this Example 3-3

Contents

4

Model a State Machine for HDL Code Generation 3-4
MATLAB State Machines 3-4
MATLAB Code for the Mealy State Machine 3-4
MATLAB Code for the Moore State Machine 3-5
Best Practicest 3-7

Generate Hardware Instances For Local Functions 3-8
MATLAB Local Functions, 3-8
MATLAB Code for mlhdlc two counters.m 3-8

Implement RAM Using MATLIABCode 3-10
Implementation of RAM 3-10
Implement RAM Using a Persistent Array or System object Properties

... 3-10
Implement RAM Using hdLRAM 3-11
Fixed-Point Conversion

Specify Type Proposal Options 4-2

Log Data for Histogram 4-5

View and Modify Variable Information 4-7
View Variable Information 4-7
Modify Variable Information 4-7
Revert Changesc. i, 4-8
Promote Sim Min and Sim Max Values 4-8

Automated Fixed-Point Conversion 4-9
License Requirements 0., 4-9
Automated Fixed-Point Conversion Capabilities 4-9
Code COVEIagE . v o v et ettt e e et et e e 4-10
Proposing Data Types 4-12
Locking Proposed Data TYPes vvvvvvveneeeeeee e 4-13
Viewing Functions 4-14
Viewing Variables 4-14
Histogram e 4-19
Function Replacements0oiiiiinnn... 4-20
Validating Typesot e 4-21
Testing NUMETICSot e e 4-21
Detecting Overflows i 4-21

Custom Plot Functions 4-23

Visualize Differences Between Floating-Point and Fixed-Point

Results e 4-24

Inspecting Data Using the Simulation Data Inspector 4-29
What Is the Simulation Data Inspector? 4-29
Import Logged Data i, 4-29
Export Logged Data iy 4-29

vi

Contents

S|

Group Signalst e 4-29
Run Options i e e 4-29
Create Report 4-30
Comparison Optionscv ittt 4-30
Enabling Plotting Using the Simulation Data Inspector 4-30
Save and Load Simulation Data Inspector Sessions 4-30
Enable Plotting Using the Simulation Data Inspector 4-31
Fromthe Ul 4-31
From the Command Line 4-31
Replacing Functions Using Lookup Table Approximations 4-32
Replace a Custom Function with a Lookup Table 4-33
Using the HDL Coder App ... oo v vt e e 4-33
From the Command Line 4-36
Replace the exp Function with a Lookup Table 4-39
Fromthe Ul e 4-39
From the Command Line 4-42
Data Type Issues in Generated Code 4-45
Enable the Highlight Optionina Project 4-45
Enable the Highlight Option at the Command Line 4-45
Stowaway Doubles 4-45
Stowaway Singles 4-45
Expensive Fixed-Point Operations 4-45
Code Generation
Create and Set Up Your Project 5-2
CreateaNew Project i, 5-2
Open an Existing Project 5-3
Add Filestothe Project 5-3
Specify Properties of Entry-Point Function Inputs 5-4
When to Specify Input Properties 5-4
Why You Must Specify Input Properties 5-4
Propertiesto Specify 5-4
Rules for Specifying Properties of Primary Inputs 5-5
Methods for Defining Properties of Primary Inputs 5-5
Basic HDL Code Generation and FPGA Synthesis from MATLAB by
Using the Workflow Advisor 5-7
HDL Code Generation from System Objects 5-14
Code Generation Reports 5-18
Report Generation 5-18
Report Location iy 5-18
Errors and Warningsiitin i 5-19

Filesand Functions i 5-19

MATLAB SOUTCE . . .ottt e e e 5-19
MATLAB Variables i 5-20
Additional Reports 5-21
Report Limitations i 5-21
Generate Instantiable Code for Functions 5-22
How to Generate Instantiable Code for Functions 5-22
Generate Code Inline for Specific Functions 5-22
Limitations for Instantiable Code Generation for Functions 5-22
Integrate Custom HDL Code Into MATLAB Design 5-23
Define the hdl.BlackBox System object 5-23
Use System object In MATLAB Design Function 5-24
Generate HDL Codet 5-25
Limitations for hdl.BlackBox 5-27
Enable MATLAB Function Block Generation 5-28
Requirements for MATLAB Function Block Generation 5-28
Enable MATLAB Function Block Generation 5-28
Restrictions for MATLAB Function Block Generation 5-28
Results of MATLAB Function Block Generation 5-28
System Design with HDL Code Generation from MATLAB and
Simulink 5-29
Specify the Clock Enable Rate 5-32
Why Specify the Clock Enable Rate? 5-32
How to Specify the Clock EnableRate 5-32
Specify Test Bench Clock Enable Toggle Rate 5-34
When to Specify Test Bench Clock Enable Toggle Rate 5-34
How to Specify Test Bench Clock Enable Toggle Rate 5-34
Generate an HDL Coding Standard Report from MATLAB 5-36
Using the HDL Workflow Advisor, 5-36
Using the Command Line 5-38
Generate an HDL Lint Tool Script 5-39
How To Generate an HDL Lint Tool Script 5-39
Generate Board-Independent IP Core from MATLAB Algorithm ... 5-41
Requirements and Limitations for IP Core Generation 5-41
Generate Board-IndependentIPCore 5-41
Minimize Clock Enables 5-43
Usingthe GUL e 5-43
Using the Command Line 5-43
Limitations 5-44

viii

Verification

6/

7

8|

Contents

Verify Code with HDL Test Bench 6-2
Test Bench Generation 6-5
How Test Bench Generation Works 6-5
TestBench Data Files 6-3
Test Bench Data Type Limitations 6-5
Use Constants Instead of File I/O 6-3
Deployment
Generate Synthesis Scripts 7-2
Optimization
RAM Mapping for MATLABCodec.coiinnnnn 8-2
Map Persistent Arrays and dsp.DelaytoRAM 8-3
How To Enable RAM Mappingiiiinnnnnn... 8-3
RAM Mapping Requirements for Persistent Arrays and System object
Properties 8-4
RAM Mapping Requirements for dsp.Delay System Objects 8-5
RAM Mapping Comparison for MATLAB Code 8-6
Pipelining MATLAB Code i, 8-7
Port Registers 8-7
Input and Output Pipeline Registers 8-7
Operation Pipelining o i 8-7
Pipeline MATLAB Expressionsc0vovuuu.. 8-8
How To Pipeline a MATLAB Expression 8-8
Limitations of Pipelining for MATLAB Expressions 8-8
Distributed Pipelining 8-10
What is Distributed Pipelining? 8-10
Benefits and Costs of Distributed Pipelining 8-10
Selected Bibliography 8-10
Optimize MATLAB LOOPS 8-11
Loop Streaming ittt 8-11
Loop Unrollingn i 8-11
How to Optimize MATLAB LOODPS oo it i 8-11
Limitations for MATLAB Loop Optimization 8-12

Constant Multiplier Optimization
What is Constant Multiplier Optimization?
Specify Constant Multiplier Optimization

HDL Workflow Advisor Reference

9

HDL Workflow Advisor
OVeIVIBW . ot

MATLAB to HDL Code and Synthesis
MATLAB to HDL Code Conversionc.ouiueuun.nn.
Code Generation: Target Tab
Code Generation: Coding StyleTab
Code Generation: Clocksand PortsTab
Code Generation: Test BenchTab
Code Generation: OptimizationsTab
Simulation and Verification
Synthesis and Analysis i

HDL Code Generation from Simulink

Model Design for HDL Code Generation

10|

Signal and Data Type Support
Buses
Enumerations
MatliCeS . . vt it e
Unsupported Signal and Data Types

Use Simulink Templates for HDL Code Generation
Create Model Using HDL Coder Model Template
HDL Coder Model Templates,

Generate DUT Ports for Tunable Parameters
Prerequisites e
Create and Add Tunable Parameter That Maps to DUT Ports
Generated Code e
Limitations i e
Use Tunable Parameterin OtherBlocks

Generate Parameterized Code for Referenced Models
Parameterize Referenced Model for HDL Code Generation
Restrictions e

10-2
10-2
10-3
10-3
10-6

10-7
10-7
10-7

10-17
10-17
10-17
10-18
10-18
10-19

10-20

10-20
10-20

ix

X

Contents

Generating HDL Code for Subsystems with Array of Buses 10-21

How HDL Coder Generates Code for Array of Buses 10-21
Array of Buses Limitations 10-23
Generate HDL Code for Blocks Inside For Each Subsystem 10-24
Model and Debug Test Point Signals with HDL Coder™ 10-28
Allocate Sufficient Delays for Floating-Point Operations 10-36
Problem 10-36
CaUSE . o 10-36
Solution e 10-37
Optimize Generated HDL Code for Multirate Designs with Large Rate
Differentials 10-41
ISSUE . oot 10-41
Description e 10-41
Recommendations 10-43
Getting Started with HDL Coder Native Floating-Point Support . 10-49
Numeric Considerations and IEEE-754 Standard Compliance 10-49
Data Type Considerations 10-50
Numeric Considerations with Native Floating-Point 10-52
Round to Nearest Rounding Mode 10-52
Denormal Numbers 10-52
Exception Handling 10-53
Relative Accuracy and ULP Considerations 10-53
ULP Considerations of Native Floating-Point Operators 10-56
Adherence of Native Floating Point Operators to IEEE-754 Standard
.. 10-56
ULP Values of Floating Point Operators 10-56
Considerationsc.oiiii 10-57
Latency Values of Floating Point Operators 10-59
Math Operations 10-59
Trigonometric and Exponential Operations 10-60
Comparisons and Conversionsouvueuuno... 10-61
Latency Considerations with Native Floating Point 10-63

Generate Target-Independent HDL Code with Native Floating-Point

.. 10-70
How HDL Coder Generates Target-Independent HDL Code 10-70
Enable Native Floating Point and Generate Code 10-71
View Code Generation Report 10-72
Analyze Results i 10-73
Limitation 10-75

Verify the Generated Code from Native Floating-Point 10-76
Specify the Tolerance Strategy 10-76
Verify the Generated Code with HDL Test Bench 10-77
Verify the Generated Code with Cosimulation 10-77
Limitation 10-79

Simulink Blocks Supported with Native Floating-Point 10-80

HDL Floating Point Operations Library 10-80
Supported Simulink Blocks in Math Operations Library 10-80
Supported Simulink Blocks in Other Libraries 10-81
Simulink Block Restrictions 10-82
Supported Data Typesand Scope 10-83
Supported Data Types 10-83
Unsupported Data Types 10-84
Scope for Variables 10-84
Import Verilog Code and Generate Simulink Model 10-85
HDLImport e e e 10-85
HDL Import Requirements 10-85
HowtoImport HDL Code 10-85
Model Locationt 10-86
Errors and Warningsttt 10-86
Limitations of Verilog HDL Import 10-86
Supported Verilog Constructs for HDL Import 10-88
Module Definition and Instantiations 10-88
Data Typesand Vectorscouiiiiiinnnnunnn.. 10-89
Identifiers and Comments, 10-89
Assignments 10-90
OPeTatorS . .t vt e e 10-90
Conditional and Looping Statements 10-91
Procedural Blocksand Events 10-91
Other Constructs 10-91
Verilog Dataflow Modeling with HDL Import 10-93
Supported Verilog Dataflow Patterns 10-93
Unsupported Verilog Dataflow Patterns 10-95

Simulate and Generate HDL Code for the Float Typecast Block 10-104

Code Generation Options in the HDL Coder Dialog Boxes

11|

Set HDL Code Generation Options 11-2
HDL Code Generation Options in the Configuration Parameters Dialog

BOX . 11-2

HDL Code Tab in Simulink Toolstrip 11-3

HDL Code Options in the Block Context Menu 11-4

The HDL Block Properties Dialog Boxcoouuun. 11-5

xi

xii

HDL Code Generation Pane: General

12

HDL Code Generation Top-Level Pane Overview 12-2
Buttons in the HDL Code Generation Top-Level Pane 12-2
Target 12-3
Generate HDLfor i 12-3
Language 12-3
Folder 12-4
Restore Model Defaults 12-5
Run Compatibility Checker 12-5
Generate 12-5

13|

Target Overview i 13-2
Tooland Device i, 13-3
Synthesis Tool i 13-3
Family 13-4
DEVICE . .t e 13-5
Package e 13-5
Speed ... e 13-6
Target Frequency i 13-8
Settings o e 13-8
Command-Line Information 13-9
SEe AlSO 13-9

HDL Code Generation Pane: Optimization

14

Optimization Overview 14-2
Balancedelays 14-3
Settings 14-3
Command-Line Information 14-3
SEE AISO . .t e 14-4
RAMMappIng e e 14-5
Map pipeline delaysto RAM 14-5
RAM mapping threshold (bits) 14-6
Transform non zero initial valuedelay 14-7
Setlings . ..o 14-7
Command-Line Information 14-7

Contents

S AlSO . .t e 14-7

Multiplier partitioning threshold 14-8
Settings o e 14-8
Command-Line Information 14-8
SEe AlSO 14-8

Distributed Pipelining 14-9
Hierarchical distributed pipelining 14-9
Distributed pipelining priority 14-10

Clock Rate Pipelining 14-12
Clock-rate pipelining 14-12
Allow clock-rate pipelining of DUT output ports 14-13

Adaptive pipelining 14-15
Settingso 14-15
DEePENdENCY . . .ottt e 14-15
Command-Line Information 14-15
SEE AISO ...t 14-16

Preserve designdelays 14-17
Settings e 14-17
Command-Line Information 14-17
SEE AISO ...t 14-17

Resource Sharing of Adders and Multipliers 14-18
Share Adderso i 14-18
Adder sharing minimum bitwidth 14-19
Share Multipliers 14-20
Multiplier sharing minimum bitwidth 14-21
Multiplier promotion threshold 14-22

Resource Sharing of Multiply-Add and Other Blocks 14-24
Share Multiply-Add blocks 14-24
Multiply-Add block sharing minimum bitwidth 14-25
Share Atomic subsystems 14-26
Share MATLAB Functionblocks 14-27

Share Floating-Point IPs 14-28
Settings 14-28
DePendenCYo i ittt 14-28
Command-Line Information 14-28
SEE AISO ..ot e 14-29

Multicycle Path Constraints 14-30
Enable based constraints 14-30
Register-to-register pathinfo 14-31

xiii

xiv

HDL Code Generation Pane: Floating Point

15|

Floating Point Overview 15-2
Floating Point IP Library 15-3
Setlings . ..o 15-3
Command-Line Information 15-3
See AlsO 15-3
Native Floating Point 15-4
Latency Strategy 15-4
Handle Denormalst 15-5
Mantissa Multiplier Strategy 15-6
FPGA Floating-Point Libraries 15-8
Initialize IP Pipelines ToZero, 15-8
Latency Strategy i 15-9
Objective . .. oo e 15-9
IPSettings e 15-10

HDL Code Generation Pane: Global Settings

16

Contents

Global Settings Overview 16-3
Clock Settings and Timing Controller Postfix 16-4
Clockinput port e 16-4
Clockinputs i e 16-5
Clockedge e e 16-5
Clocked process postfix i 16-6
Timing controller postfix i 16-7
Reset Settings 16-8
Resettype i 16-8
Resetassertedlevel 16-9
Resetinputport 16-10
Clock Enable Settings 16-12
Clock enable inputport 16-12
Enableprefix 16-13
Oversampling factor 16-15
Settings 16-15
DEePENdENCY . . .ottt e e 16-15
Command-Line Information 16-15
SEE AISO ...t 16-16
Commentinheader 16-17
Settings 16-17
Command-Line Information 16-17

S AlSO .. i

Language-Specific File Extensions
Verilog file extension i
VHDL fileextensioncoviiiiinnnnnnnnnn...

Language-Specific Identifiers
Entity conflict postfix
Package postfix
Reserved word postfix
Modulename prefix

Split entity and architecture
Splitentity filepostfix
Splitarch filepostfix
Split entity and architecture L.

Complex Signals Postfix
Complexreal part postfix
Complex imaginary part postfix

VHDL Architecture and LibraryName
VHDL architecturename
VHDL librarynamec.ouuiiie e,

Pipeline postfix
Setlings
Command-Line Information

Generate VHDL code for model references into a single library . .
Settings e
DePeNdencyttt
Command-Line Information

Generate Statement Labels
Block generatelabel
Output generatelabel,
Instance generatelabel

Vector and Component Instances Labels
Vector prefix o
Instance postfix
Instance prefix

Mapfilepostfix
Settings
Command-Line Information

Input and Output Port Data Types
Inputdatatype
Outputdatatypec i,

Clock Enable outputport
Settings e
Command-Line Information

xvi

Contents

S AlSO .. i

Minimize Clock Enables and Reset Signals
Minimize clock enables
Minimize globalresets

Use trigger signalasclock
Settings
Command-Line Information

Enable HDL DUT port generation for test points
Settings oo
Command-Line Information
SEE AISO ...t

RTL Annotations
Use Verilog “timescale directives
Verilog timescale specification
Inline VHDL configuration
Concatenate type safezeros
Generate obfuscated HDLcode
Emit time/date stampinheader
Include requirements in block comments

RTL Customizations for Constants and MATLAB Function Blocks
' Inline MATLAB Function block code
Represent constant values by aggregates

RTL Customizations for RAMs
Initialize all RAM blocks i
RAM Architecture i

No-reset registers initialization
Settings e
Usage Notes i e e
Command-Line Information
SEe AlSO

RTL Style
Use “rising edge/falling edge” style for registers
Minimize intermediate signals
Scalarize vectorports
Unroll for Generate Loopsin VHDLcode
Generate parameterized HDL code from masked subsystem
Enumerated Type Encoding Scheme

Timing Controller Settings
Optimize timing controller
Timing controller architecture

File Comment Customization
Custom File Header Comment
Custom File Footer Comment

Choose Coding Standard and Report Options 16-67

HDLcoding standard i iiinnn... 16-67
Reportoptions 16-68
Basic Coding Practices 16-69
Check for duplicate names 16-69
Check for HDL keywords in design names 16-70
Check module, instance, entity name length 16-70
Check signal, port, and parameter name length 16-72
RTL Description Rules for clock enables and resets 16-74
Check for clock enable signals 16-74
Detect usage of reset signals 16-75
Detect usage of asynchronous reset signals 16-76
RTL Description Rules for Conditionals 16-77
Check for conditional statements in processes 16-77
Check if-else statement chainlength 16-78
Check if-else statement nestingdepth 16-79
Other RTL DescriptionRules 16-80
Minimize use of variables 16-80
Check for initial statements that set RAM initial values 16-81
Check multiplierwidth 16-81
RTLDesignRules 16-83
Check for non-integer constants 16-83
Checklinelength 16-84
Model Generation for HDLCode 16-85
Generatedmodel 16-85
Validationmodel 16-86
Naming Options 16-88
Prefix for generated modelname 16-88
Suffix for validation model name 16-88
Layout Options i, 16-90
Auto block placement 16-90
Autosignalrouting i 16-90
Inter-block horizontal scaling 16-91
Inter-block vertical scaling 16-91
Diagnostics for Optimizations 16-93
Highlight feedback loops inhibiting delay balancing and optimizations
.. 16-93
Highlight blocks inhibiting clock-rate pipelining 16-94
Highlight blocks inhibiting distributed pipelining 16-95
Diagnostics for Reals and Black Box Interfaces 16-96
Check for name conflicts in black box interfaces 16-96
Check for presence of reals in generated HDL code 16-97
Code Generation OQutput 16-98
Generate HDLcode, 16-98

xvii

HDL Code Generation Pane: Report

17|

Report Overview 17-2
See AlSO ... e 17-2
Generate traceabilityreport 17-3
Setlings . ..o o 17-3
DePeNdenCYottt e 17-3
Command-Line Information 17-3
See AlSO . .. e 17-4
Traceability style 17-5
Setlings o e 17-5
DEePENdENCY . . .ottt e e 17-5
Command-Line Information 17-5
See AISO . .. e 17-6
Generate model Webview 17-7
Settings o e 17-7
Dependenciesttt 17-7
Command-Line Information 17-7
SEE AISO . .. e 17-7
Generate resource utilizationreport 17-9
Settings e 17-9
Command-Line Information 17-9
SEE AISO . .. e 17-9
Generate high-level timing critical pathreport 17-10
Settings 17-10
Command-Line Information 17-10
See AlSO ... e 17-10
Generate optimizationreport 17-12
Settings 17-12
Command-Line Information 17-12
See AlSO . .. e 17-12

18|

Test Bench Overview 0 .. 18-2
Generate Test Bench Button 18-2
Test Bench Generation Qutput 18-3
HDLtestbench 18-3
Cosimulationmodel 18-3
SystemVerilog DPI testbench 18-4
Simulation tool 18-5
HDL code COVETAgEo ottt et e ettt e e 18-6

xviii Contents

Test Bench name, data file, and reference Postfix 18-7

Testbenchname postfix 18-7
Test bench reference postfix 18-7
Test bench data file name postfix 18-8
ClockInputSignals 18-9
Forceclocko 18-9
Clock hightime (nS) i 18-9
Clocklow time (NS)o ittt e 18-10
Setupand Hold Time 18-11
Hold time (NS)ot e e e 18-11
Setuptime (ns) i 18-11
Clock Enable and Reset Input Signals 18-13
Forceclockenable 18-13
Clock enable delay (in clock cycles) 18-13
Forcereset e 18-14
Reset length (in clockcycles) 18-15
Test Bench Stimulus and Qutput 18-16
Hold input data between samples 18-16
Initialize test benchinputs 18-16
Ignore output data checking (number of samples) 18-17
Use file I/O to read/write test benchdata 18-18
Multi-filetestbench 18-20
Descripliont e e 18-20
Settings e 18-20
DEePENdENCY . ..ottt e 18-20
Command-Line Information 18-20
SeE AISO . .. e 18-21
Floating Point Tolerance 18-22
Floating point tolerance checkbasedon 18-22
Tolerance Value 18-22
Simulation librarypath 18-24
Settings e 18-24
DEePENdencYttt e 18-24
Command-Line Information 18-24
SEE AISO . .o 18-24

19|

EDA Tool Scripts Overview 19-2
Generate EDA scripts 19-3
Settings 19-3
Command-Line Information 19-3
SEE AISO ..ot e 19-3

Xix

XX

Contents

Compilation Script 19-4
Compile file postfix 19-4
Compile initialization 19-4
Compile command for VHDL 19-5
Compile command for Verilog 19-5
Compile termination 19-6

Simulation Script 19-7
Simulation file postfix 19-7
Simulation initialization 19-7
Simulation command 19-8
Simulation waveform viewing command 19-8
Simulation termination 19-8
Simulatorflags 19-9

Synthesis Script 19-10
Choose synthesistool 19-10
Synthesis filepostfix 19-11
Synthesis initialization 19-12
Synthesiscommand 19-13
Synthesis termination 19-13
Additional files to add to synthesis project 19-14

Lint Script e 19-15
Choose HDL linttool 19-15
Lint initialization 19-15
Lintcommandc0 it 19-16
Lint termination 19-16

Modeling Guidelines

HDL Modeling Guidelines Severity Levels 20-2

Model Design and Compatibility Guidelines - By Numbered List

... 20-3
Guidelines 1.1: Basic Settings 20-3
Guidelines 1.2: DUT Subsystem and Hierarchical Modeling 20-4
Guidelines 1.3: Guidelines for Vectors and Buses 20-4
Guidelines 1.4: Guidelines for Clock Bundle Signals 20-5
Guidelines 1.5: Modeling Guidelines for Native Floating Point 20-5
Guidelines for Supported Blocks and Data Types - By Numbered List
... 20-6
Guidelines 2.1: Blocks in HDL RAMs and HDL Operations Library
... 20-6
Guidelines 2.2: Blocks in Logic and Bit Operations Library 20-6
Guidelines 2.3: Lookup Table Blocks 20-6
Guidelines 2.4: Ports and Subsystems 20-7
Guideline 2.5: Rate Change and Constant Blocks 20-7
Guideline 2.6: Delay Blockso 20-7

Guideline 2.7: Blocks for Multiplication and Accumulation Operations

... 20-8
Guideline 2.8: MATLAB Function Blocks 20-8
Guideline 2.9: Stateflow Charts 20-8
Guidelines 2.10: Data Typeso oo it 20-9

Guidelines for Speed and Area Optimizations - By Numbered List
.. 20-10
Guidelines 3.1: Resource Sharing 20-10
Guidelines 3.2: Clock Rate Pipelining and Distributed Pipelining . 20-11
Basic Guidelines for Modeling HDL Algorithm in Simulink 20-12
Use HDL-Supported Blocks 20-12
Partition Model into DUT and TestBench 20-13
Avoid Using Double-Byte Characters 20-14
Document Model Features and Attributes 20-15

Guidelines for Model Setup and Checking Model Compatibility .. 20-18

Customize hdlsetup Function Based on Target Application 20-18
Check Subsystem for HDL Compatibility 20-19
Run Model Checks for HDL Coder 20-19
Modeling with Simulink, Stateflow, and MATLAB Function Blocks
.. 20-22
Guideline ID 20-22
Severity 20-22
Description e 20-22
Terminate Unconnected Block Outputs and Usage of Commenting
Blocks e 20-25
Terminate Unconnected Block Outputs 20-25
Using Comment Out and Comment Through of Blocks 20-26
Identify and Programmatically Change and Display HDL Block
Parameters 20-30
Adjust Sizes of Constant and Gain Blocks for Identifying Parameters
.. 20-30
Display Parameters that Affect HDL Code Generation 20-30
Change Block Parameters by Using find system and set param . . 20-34
DUT Subsystem Guidelines 20-35
DUT Subsystem Considerations 20-35
Convert DUT Subsystem to Model Reference for Testbenches with
Continuous Blocks 20-36
Insert Handwritten Code into Simulink Modeling Environment ... 20-37
Hierarchical Modeling Guidelines 20-39
Avoid Constant Block Connections to Subsystem Port Boundaries
.. 20-39
Generate Parameterized HDL Code for Constant and Gain Blocks
.. 20-40
Design Considerations for Matrices and Vectors 20-43
Modeling Requirements for Matrices 20-43

xxi

xxii

Contents

Avoid Generating Ascending Bit Order in HDL Code From Vector

Signals o e 20-45
Use Bus Signals to Improve Readability of Model and Generate HDL
Code 20-48
Guidelines for Clock and Reset Signals 20-54
Use Global Oversampling to Create Frequency-Divided Clock 20-54
Create Multirate Model with Integer Clock Multiples by Clock Division
.. 20-54
Use Dual Rate Dual Port RAM for Noninteger Multiple Sample Times
.. 20-56
Asynchronous Clock Modeling in HDL Coder 20-57
Use Global Reset Type Setting Based on Target Hardware 20-59
Modeling with Native Floating Point 20-61
Guideline ID 20-61
Severity 20-61
Description e 20-61
Design Considerations for RAM Blocks and Blocks in HDL
Operations Library 20-64
RAM Block Access Considerations 20-64
Serial to Parallel Conversion vuo.. 20-66
Usage of Blocks in Logic and Bit Operations Library 20-68
Logical and Arithmetic Bit Shift Operations 20-68
Usage of Logical Operator, Bitwise Operator, and Bit Reduce Blocks
.. 20-70
Use Boolean Output for Compare to Constant and Relational Operator
BloCKS 20-72
Generate FPGA Block RAM from Lookup Tables 20-73
Usage of Different Subsystem Types 20-77
Virtual Subsystem: Use as Top-Level DUT 20-77
Atomic Subsystem: Generate Reusable HDL Files 20-77
Variant Subsystem: Using Variant Subsystems for HDL Code
Generationc..ii it e 20-78
Model References: Build Model Design Using Smaller Partitions .. 20-79
Block Settings of Enabled and Triggered Subsystems 20-80
Usage of Rate Change and Constant Blocks 20-82
Usage of Rate Conversion Blocks 20-82
Use Discrete and Finite Sample Time for Constant Block 20-83
Guidelines for Using Delays and Goto and From Blocks for HDL Code
Generation 20-85
Appropriate Usage of Delay Blocks as Registers 20-85
Required HDL Settings for Goto and From Blocks 20-85
Modeling Efficient Multiplication and Division Operations for FPGA
Targeting 20-87
Designing Multipliers and Adders for Efficient Mapping to DSP Blocks
on FPGA . .. 20-87

Use ShiftAdd Architecture of Divide Block for Fixed-Point Types .. 20-91

Using Persistent Variables and fi Objects Inside MATLAB Function

Blocks for HDL Code Generation 20-92
Update Persistent Variables at End of MATLAB Function 20-92
Avoid Algebraic Loop Errors from Persistent Variables inside MATLAB

Function Blocks, 20-93
Use hdlfimath Setting and Specify fi Objects inside MATLAB Function
Block ... 20-95
Guidelines for HDL Code Generation Using Stateflow Charts 20-98
Choose State Machine Type based on HDL Implementation
Requirements i 20-98
Specify Block Configuration Settings of Stateflow Chart 20-98
Insert Unconditional Transition State for Else Statement in HDL Code
.. 20-99
Avoid Absolute Time for Temporal Logic 20-102
Simulink Data Type Considerations 20-104
Use Boolean for Logical Data and Ufix1 for Numerical Data 20-104
Specify Data Type of Gain Blocks 20-104
Enumerated Data Type Restrictions 20-105
Resource Sharing Settings for Various Blocks 20-106
Resource Sharing of Add Blocks 20-106
Resource Sharing of Gain Blocks 20-107
Resource Sharing of Product Blocks 20-108
Resource Sharing of Multiply-Add Blocks 20-108
Resource Sharing of Subsystems and Floating-Point IPs 20-110
General Considerations for Sharing of Subsystems 20-110
Use MATLAB Datapath Architecture for Sharing with MATLAB
FunctionBlocks 20-111
Sharing of Atomic Subsystems 20-111
Resource Sharing of Floating-PointIPs 20-113
Distributed Pipelining and Clock-Rate Pipelining Guidelines ... 20-115
Clock-Rate Pipelining Guidelines 20-115
Recommended Distributed Pipelining Settings 20-115
Insert Distributed Pipeline Registers for Blocks with Vector Data

Typelnputs e 20-118
Guideline ID 20-118
SeveTity ... e 20-118
Descripliont e 20-118

Supported Blocks Library and Block Properties

View HDL-Specific Block Documentation 21-2

xxiii

xxiv

Contents

HDL Block Properties: General
OVEIVIEW . ottt e e e
AdaptivePipelining
BalanceDelayscoi i
ClockRatePipelining
CodingStyle oo
ConstMultiplierOptimization
ConstrainedOutputPipeline
DistributedPipelining
DotProductStrategyo
DSPStyle . .o e
FlattenHierarchy
InputPipeline
InstantiateFunctions
InstantiateStages
LoopOptimization
LUTRegisterResetType,
MapPersistentVarsToORAM
OutputPipeline i .
RAMDITECEIVE . . .ot
ResetType i
SerialPartition
SharingFactor e
SoftReset
StreamingFactor e
UseMatrixTypesInHDL
UsePipelines e
UseRAM
VariablesToPipeline

HDL Block Properties: Native Floating Point
OVEIVIEW . ottt e e
CheckResetToZero
DivisionAlgorithm
HandleDenormals
InputRangeReduction
LatencyStrategyc i
NFPCustomLatency
MantissaMultiplyStrategy
MaxIterationst e

HDL Filter Block Properties
AdderTreePipeline
AddPipelineRegisters
ChannelSharing i
CoeffMultipliers i e
DALUTPartitiont e e
DARAIX &« . oo oo oottt e e e e e e e
FoldingFactor i
MultiplierInputPipeline
MultiplierOutputPipeline
NumMultipliers
ReuseAccum
SerialPartition

HDL Filter Architectures 21-44

Fully Parallel Architecture 21-44
Serial Architectures 21-45
Frame-Based Architecture 21-46
Distributed Arithmetic for HDL Filters 21-49
Requirements and Considerations for Generating Distributed

ArithmeticCode i 21-49
Further References 21-50
Set and View HDL Model and Block Parameters 21-51
Set HDL Block Parameters 21-51

Set HDL Block Parameters for Multiple Blocks Programmatically
.. 21-51
View All HDL Block Parameters 21-53
View Non-Default HDL Block Parameters 21-53
View HDL Model Parameters 21-53
Pass through, No HDL, and Cascade Implementations 21-55
Pass-through and No HDL Implementations 21-55
Cascade Architecture Best Practices 21-55
Build a ROM Block with Simulink Blocks 21-56
Wireless Communications Design for FPGAs and ASICs 21-57
From Mathematical Algorithm to Hardware Implementation 21-57
HDL-Optimized Blocks 21-59
Reference Applications 21-59
Generate HDL Code and Prototype on FPGA 21-60

Generating HDL Code for Multirate Models

22

Code Generation from Multirate Models 22-2
Clock Enable Generation for a Multirate DUT 22-2
Timing Controller for Multirate Models 22-4
Generate Reset for Timing Controller 22-5
Requirements for Timing Controller Reset Port Generation 22-5
How To Generate Reset for Timing Controller 22-5
Limitations for Timing Controller Reset Port Generation 22-5
Multirate Model Requirements for HDL Code Generation 22-6
Model Configuration Parameters 22-6
Sample Rate 22-6
Blocks To Use For Rate Transitions 22-6
Generate a Global Oversampling Clock 22-8
Why Use a Global Oversampling Clock? 22-8
Requirements for the Oversampling Factor 22-8
Specifying the Oversampling Factor From the GUT 22-8

xxvi

Contents

Specifying the Oversampling Factor From the Command Line 22-9

Resolving Oversampling Rate Conflicts 22-10
Using Triggered Subsystems for HDL Code Generation 22-13
Best Practices 22-13
Using the Signal Builder Blockoy 22-13
Using Trigger AsClock i 22-13
Requirements 22-14
Specify Trigger AsClock 22-14
Limitations 22-14
Generate Multicycle Path Information Files 22-16
OVEIVIEWo 22-16
Format and Content of a Multicycle Path Information File 22-17
File Naming and Location Conventions 22-20
Generating Multicycle Path Information Files Using the GUI 22-20
Generating Multicycle Path Information Files Using the Command Line
.. 22-20
Limitations e 22-21

23

24

Locate Numeric Differences After Speed Optimization 23-2
Optimization
Automatic Iterative Optimization 24-2
How Automatic Iterative Optimization Works 24-2
Automatic Iterative Optimization OQutput 24-2
Automatic Iterative Optimization Report 24-3
Requirements for Automatic Iterative Optimization 24-3
Limitations of Automatic Iterative Optimization 24-3
Generated Model and Validation Model 24-5
Generated Model i 24-5
Validation Model i 24-6
Simplify Constant Operations and Reduce Design Complexity in HDL
Coder™ .. e 24-8
Optimization with Constrained Overclocking 24-13
Why Constrain Overclocking? 24-13
Optimizations that Overclock Resources 24-13
How to Use Constrained Overclocking 24-13
Constrained Overclocking Limitations 24-14
Resolve Numerical Mismatch with Delay Balancing 24-15

Streaming 24-20

What Is Streaming? 24-20
Specify Streaming 24-20
How to Determine Streaming Factor and Sample Time 24-21
Determine Blocks That Support Streaming 24-21
Requirements for Streaming Subsystems 24-21
Streaming Report 24-22
Resource Sharing 24-23
How Resource Sharing Works 24-23
Benefits and Costs of Resource Sharing 24-23
Shareable Resources in Different Blocks 24-24
Specify Resource Sharing 24-24
Limitations for Resource Sharing 24-24
Block Requirements for Resource Sharing 24-24
Resource Sharing Report 24-25
DelayBalancing 24-27
Why Use Delay Balancing? 24-27
Specify Delay Balancing i, 24-27
Delay Balancing Limitations 24-28
Delay Balancing Report 24-30
Find Feedback Loops 24-32
Specify Highlighting of Feedback Loops 24-32
Remove Highlighting 24-32
Limitations e 24-32
Hierarchy Flattening 24-34
What [s Hierarchy Flattening? 24-34
When to Flatten Hierarchy 24-34
Considerations 24-34
How to Flatten Hierarchy 24-34
Limitations for Hierarchy Flattening 24-35
RAM Mapping for Simulink Models 24-36
RAM Mapping With the MATLAB Function Block 24-37
Distributed Pipelining 24-42
What Is Distributed Pipelining? 24-42
Benefits and Costs of Distributed Pipelining 24-43
Requirements for Distributed Pipelining 24-143
Specify Distributed Pipelining 24-44
Limitations of Distributed Pipelining 24-44
Distributed Pipelining Report 24-45
Selected Bibliography 24-45
Hierarchical Distributed Pipelining 24-47
What Is Hierarchical Distributed Pipelining? 24-47
How Hierarchical Distributed Pipelining Works 24-47
Benefits of Hierarchical Distributed Pipelining 24-48
Specify Hierarchical Distributed Pipelining 24-49
Limitations of Hierarchical Distributed Pipelining 24-49
Hierarchical Distributed Pipelining Report 24-49

xxvii

Selected Bibliography 24-49

Constrained Output Pipelining 24-50
What Is Constrained Output Pipelining? 24-50
When to Use Constrained Output Pipelining 24-50
Requirements for Constrained Output Pipelining 24-50
Specify Constrained Output Pipelining 24-50
Limitations of Constrained Output Pipelining 24-51

Clock-Rate Pipelining 24-52
Rationale for Clock-Rate Pipelining 24-52
How Clock-Rate PipeliningWorks 24-52
Clock-Rate Pipelining and Hierarchy Flattening 24-53
Clock-Rate Pipelining for DUT Output Ports 24-53
Best Practices for Clock-Rate Pipelining 24-54
Specify Clock-Rate Pipelining 24-54
Limitations for Clock-Rate Pipelining 24-54

Adaptive Pipelining 24-56
Requirements 24-56
Specify Adaptive Pipelining 24-56
Supported Blocks 24-57
Pipeline Insertion for Lookup Tables 24-57
Pipeline Insertion for Rate Transition and Downsample Blocks ... 24-58
Pipeline Insertion for Product and Gain Blocks 24-58
Pipeline Insertion for Multiply-Add and Multiply-Accumulate Blocks

.. 24-59
Pipeline Insertion for MATLAB Function Blocks 24-61
Adaptive Pipelining Report, 24-62

Critical Path Estimation Without Running Synthesis 24-63
How Critical Path Estimation Works 24-63
How to Use Critical Path Estimation 24-64
Characterized Blocks 24-66
Caveats . .o 24-69

HDL Optimizations Across MATLAB Function Block Boundary Using

MATLAB Datapath Architecture 24-72

Subsystem Optimizations for Filters 24-82
Sharing e 24-82
Streaming 24-82
Pipelining 24-82
Area Reduction of Filter Subsystem 24-83
Area Reduction of Multichannel Filter Subsystem 24-85

Remove Redundant Logic and Optimize Unconnected Ports in Design
.. 24-91

xxviii Contents

Code Generation Reports, HDL Compatibility Checker,
Block Support Library, and Code Annotation

25

Create and Use Code Generation Reports 25-2
Report Generation 25-2
Code Generation Report 25-2
SUMMATY 25-2
Code Interface Report 25-2
Timing and Area Report i 25-2
Optimization Report 25-3

Navigate Between Simulink Model and HDL Code by Using

Traceability 25-4
How Traceability Works 25-4
Generate Traceability Report 25-5
Report Location i, 25-5
View the Traceability Report 25-6
Code-to-Model Navigation 25-6
Model-to-Code Navigation 25-8
Traceability Report Limitations 25-9

Web View of Model in Code Generation Report 25-10
About Model Web View i 25-10
Generate HTML Code Generation Report with Model Web View . . 25-10
Model Web View Limitations 25-11

Generate Code with Annotations or Comments 25-13
Simulink Annotations 25-13
Signal Descriptions i . 25-13
Text Comments i 25-13
Requirements Comments and Hyperlinks 25-13

Check Your Model for HDL Compatibility 25-16

Show Blocks Supported for HDL Code Generation 25-18
Show Supported Blocks in Library Browser 25-18
Reset Library Browser to Show All Blocks 25-19
Generate a Supported Blocks Report 25-20

Trace Code Using the Mapping File 25-22

Add or Remove the HDL Configuration Component 25-25
What Is the HDL Configuration Component? 25-25
Adding the HDL Coder Configuration Component To a Model 25-25

Removing the HDL Coder Configuration Component From a Model
.. 25-25

xxix

XXX

Contents

HDL Coding Standards

26

HDL Coding Standard Report 26-2
Rule Summary i i 26-2
Rule Hierarchy 26-2
Rule and Report Customization 26-3
How to Fix Warnings and Errors 26-3

HDL Coding Standards 26-4

Generate an HDL Coding Standard Report from Simulink 26-5
Using the HDL Workflow Advisor 26-5
Using the Command Line 26-7

Basic Coding Practices 26-9
1.A General Naming Conventions 26-10
1.B General Guidelines for Clocks and Resets 26-15
1.C Guidelines for Initial Reset 26-15
1.D Guidelines for Clocks 26-16
1.F Guidelines for Hierarchical Design 26-17

RTL Description Techniques 26-18
2.A Guidelines for Combinational Logic 26-18
2.B Guidelines for “Always” Constructs of Combinational Logic ... 26-23
2.C Guidelines for Flip-Flop Inference 26-25
2.D Guidelines for Latch Description 26-28
2.E Guidelines for Tristate Buffer 26-29
2.F Guidelines for Always/Process Construct with Circuit Structure

intoAccount 26-30
2.G Guidelines for “IF” Statement Description 26-30
2.H Guidelines for “CASE” Statement Description 26-32
2.I Guidelines for “FOR” Statement Description 26-35
2.] Guidelines for Operator Description 26-36
2.K Guidelines for Finite State Machine Description 26-39

RTL Design Methodology Guidelines 26-41
3.A Guidelines for Creating Function Libraries 26-41
3.B Guidelines for Using Function Libraries 26-42
3.C Guidelines for Test Facilitation Design 26-43

Generate an HDL Lint Tool Script 26-45
How to Generate an HDL Lint Tool Script 26-45

Interfacing Subsystems and Models to HDL Code

27

Model Referencing for HDL Code Generation 27-2
Benefits of Model Referencing for Code Generation 27-2
How To Generate Code for a Referenced Model 27-2
Generate Code for Model Arguments 27-3

Generate Commentst 27-3

Limitationso e 27-3
Generate Black Box Interface for Subsystem 27-4
What Is a Black Box Interface? 27-4
Requirements i e 27-4
Generate a Black Box Interface for a Subsystem 27-4
Generate Code for a Black Box Subsystem Implementation 27-6
Generate Black Box Interface for Referenced Model 27-8
When to Generate a Black Box Interface 27-8
How to Generate a Black Box Interface 27-8
Caveats and Limitations 27-8
Integrate Custom HDL Code Using DocBlock 27-10
When To Use DocBlock to Integrate Custom Code 27-10
How To Use DocBlock to Integrate Custom Code 27-10
Restrictions i 27-10
Example 27-11
Customize Black Box or HDL Cosimulation Interface 27-12
Interface Parameters 27-12
Specify Bidirectional Ports 27-15
Requirements i 27-15
How To Specify a Bidirectional Port 27-15
Limitations e 27-15
Generate Reusable Code for Atomic Subsystems 27-17
Requirements for Generating Reusable Code for Atomic Subsystems
.. 27-17
Generate Reusable Code for Atomic Subsystems 27-17
Generate Reusable Code for Atomic Subsystems with Tunable Mask
Parameters 27-19
Create a Xilinx System Generator Subsystem 27-24
Why Use Xilinx System Generator Subsystems? 27-24
Requirements for Xilinx System Generator Subsystems 27-24
How to Create a Xilinx System Generator Subsystem 27-25
Limitations for Code Generation from Xilinx System Generator
Subsystems 27-25
Create an Altera DSP Builder Subsystem 27-26
Why Use Altera DSP Builder Subsystems? 27-26
Requirements for Altera DSP Builder Subsystems 27-26
How to Create an Altera DSP Builder Subsystem 27-26
Determine Clocking Requirements for Altera DSP Builder Subsystems
.. 27-27
Limitations for Code Generation from Altera DSP Builder Subsystems
.. 27-27
Choose a Test Bench for Generated HDL Code 27-28
Generate a Cosimulation Model 27-30
Requirements 27-30

xxxi

xxxii

Contents

What Is A Cosimulation Model? 27-30

Generating a Cosimulation Model fromthe GUI 27-31
Structure of the Generated Model 27-34
Launching a Cosimulation 27-39
The Cosimulation Script File 27-41
Complex and Vector Signals in the Generated Cosimulation Model
.. 27-43
Generating a Cosimulation Model from the Command Line 27-44
Naming Conventions for Generated Cosimulation Models and Scripts
.. 27-44
Limitations for Cosimulation Model Generation 27-45
Pass-Through and No-Op Implementations 27-46
Synchronous Subsystem Behavior with the State Control Block . 27-47
What Is a State Control Block? 27-47
State Control Block Modes 27-47
Synchronous Badge for Subsystems by Using Synchronous Mode
.. 27-48
Generate HDL Code with the State Control Block 27-49
Enable and Reset Hardware Simulation Behavior 27-51

Stateflow HDL Code Generation Support

28

Introduction to Stateflow HDL Code Generation 28-2
OVETVIBW . . ottt e e e e e 28-2
CommENtS ..ot 28-2
Tunable Parameters 28-2
Example o e 28-2
Restrictions 28-3

Hardware Realization of Stateflow Semantics 28-6

Generate HDL for Mealy and Moore Finite State Machines 28-7
OVeIVIEW . it e e e e 28-7
Generating HDL Code for a Moore Finite State Machine 28-7
Generating HDL for a Mealy Finite State Machine 28-10

Design Patterns Using Advanced Chart Features 28-14
Temporal Logic 28-14
Graphical Function 28-16
Hierarchy and Parallelism 28-17
StatelessCharts 28-17
Truth Tables 28-18

Initialize Persistent Variables in MATLAB Functions 28-22
MATLAB Function Block With No Direct Feedthrough 28-22
State Control Block in Synchronous Mode 28-24
Stateflow Chart Implementing Moore Semantics 28-25

Generating HDL Code with the MATLAB Function Block

29

HDL Applications for the MATLAB Function Block 29-2
Structure of Generated HDLCode 29-2
HDL Applications i, 29-2
Viterbi Decoder with the MATLAB Function Block 29-4
Code Generation from a MATLAB Function Block 29-5
Counter Model Using the MATLAB Function block 29-5
Setting Up 29-7
Creating the Model and Configuring General Model Settings 29-7
Adding a MATLAB Function Block to the Model 29-8
Set Fixed-Point Options for the MATLAB Function Block 29-8
Programming the MATLAB Function Block 29-10
Constructing and Connecting the DUT eML Block Subsystem . . . 29-11
Compiling the Model and Displaying Port Data Types 29-13
Simulating the eml hdl incrementer tut Model 29-13
Generating HDL Code 29-14
Generate Instantiable Code for Functions 29-17
How To Generate Instantiable Code for Functions 29-17
Generate Code Inline for Specific Functions 29-17
Limitations for Instantiable Code Generation for Functions 29-17
MATLAB Function Block Design Patterns for HDL 29-19
The eml hdl design patterns Library 29-19
Efficient Fixed-Point Algorithms 29-21
Model State Using Persistent Variables 29-23
Creating Intellectual Property with the MATLAB Function Block .. 29-24
Nontunable Parameter Arguments 29-24
Modeling Control Logic and Simple Finite State Machines 29-24
Modeling Counters it 29-26
Modeling Hardware Elements vuun. 29-26
Design Guidelines for the MATLAB Function Block 29-28
Use Compiled External Functions With MATLAB Function Blocks
.. 29-28
Build the MATLAB Function Block Code First 29-28
Use the hdlfimath Utility for Optimized FIMATH Settings 29-28
Use Optimal Fixed-Point Option Settings 29-29
Set the Output Data Type of MATLAB Function Blocks Explicitly . 29-29
Using Tunable Parameters 29-29
Run HDL Model Check for MATLAB Function Blocks 29-29
Use MATLAB Datapath Architecture for Enhanced HDL Optimizations
.. 29-29
Distributed Pipeline Insertion for MATLAB Function Blocks 29-31

xxxiii

xXxxiv

Generating Scripts for HDL Simulators and Synthesis

30

Tools

Generate Scripts for Compilation, Simulation, and Synthesis 30-2
Structure of Generated Script Files 30-3
Properties for Controlling Script Generation 30-4
Enabling and Disabling Script Generation 30-4
Customizing Script Names 30-4
Customizing Script Code 30-4
Examples 30-6
Configure Compilation, Simulation, Synthesis, and Lint Scripts . . 30-7
Compilation Script Optionso 30-8
Simulation Script Options 30-9
Synthesis Script Options 30-11

Add Synthesis Attributes, .. 30-14
Configure Synthesis Project Using Tcl Script 30-15

Using the HDL Workflow Advisor

31

Contents

Getting Started with the HDL Workflow Advisor 31-2
Open the HDL Workflow Advisor, 31-2
Run Tasks in the HDL Workflow Advisor 31-3
Fix HDL Workflow Advisor Warnings or Failures 31-4
Save and Restore the HDL Workflow Advisor State 31-4
View and Save HDL Workflow Advisor Reports 31-5
Generate Test Bench and Enable Code Coverage Using the HDL
Workflow Advisor 31-8
Generate HDL Code for FPGA Floating-Point Target Libraries ... 31-11
Setup for FPGA Floating-Point Library Mapping 31-11
Map to an FPGA Floating-Point Library 31-11
View Code Generation Reports of Floating-Point Library Mapping
.. 31-13
Analyze Results of Floating-Point Library Mapping 31-15
Customize Floating-Point IP Configuration 31-18
Customize the IP Latency with Target Frequency 31-19
Customize the IP Latency with Latency Strategy 31-22
HDL Coder Support for FPGA Floating-Point Library Mapping ... 31-26
Supported Blocks That Map to FPGA Floating-Point TargetIP 31-26
Supported Blocks That Do Not Need to Map to FPGA Floating-Point
Target IP 31-28

Limitations for FPGA Floating-Point Library Mapping 31-29

Synthesis Objective to Tcl Command Mapping 31-30
Altera QuartusII 31-30
Xilinx Vivado 2014.4 31-30
Xilinx ISE 14.7 with PlanAhead 31-31

Run HDL Workflowwitha Script 31-32
Export an HDL Workflow Script 31-33
Specify Verbosity of Workflow Script 31-33
Enable or Disable Tasks in HDL Workflow Script 31-33
Run a Single Workflow Task 31-33
Import an HDL Workflow Script 31-34
Generic ASIC/FPGA Workflow Script Example 31-34
FPGA-in-the-Loop Script Example 31-35
FPGA Turnkey Workflow Script Example 31-37
IP Core Generation Workflow Script Example 31-39
Simulink Real-Time FPGA I/O Workflow Example 31-41

Simscape to HDL Workflow

32

Generate HDL Code for Simscape Models 32-2
Partition Simscape Models Containing a Large Network into Multiple
Smaller Networks 32-13
Generate HDL Code for Simscape Models with Multiple Networks
.. 32-21
Deploy Simscape™ Plant Models to Speedgoat FPGA 1/O Modules
.. 32-30
Troubleshoot Conversion of Simscape DC Motor Control to HDL-
Compatible Simulink Model 32-40
Troubleshoot Conversion of Simscape Permanent Magnet
Synchronous Motor to HDL-Compatible Simulink Model 32-48
Validate HDL Implementation Model to Simscape Algorithm 32-65
Bridge Rectifier Model 32-65
Increase Validation Logic Tolerance 32-67
Increase Number of Solver Iterations 32-67
Use Larger Floating-Point Precision 32-68
Improve Sampling Rate of HDL Implementation Model Generated
from Simscape Algorithm 32-71
Sampling Frequencyciiiiiiiinennnnn. 32-71
Boost Converter Model 32-71
Reducing Number of Solver Iterations 32-73
Using Oversampling Factor and Latency Strategy 32-73

Simscape HDL Workflow Advisor Tasks

33

Simscape HDL Workflow Advisor Tasks 33-2
Simscape HDL Workflow Advisorfolder 33-2
Code generation compatibility folder 33-2
Check solver configurationtask 33-2
Check switched lineartask 33-3
State-space conversionfolder 33-3
Extract Equations 33-4
Discretize Equations 33-4
Implementation model generation folder 33-4
Generate implementation model task 33-5

Simscape HDL Workflow Advisor Tips and Guidelines 33-6
Estimating Resource Consumption Using Algebraic and Differential

Variables 33-6
Setting Simulation Stop Time for Extracting Equations 33-7
Changing Sample Time for Discretizing Equations 33-8
Using Number of Solver Iterations 33-9
Floating-Point Precision and Numerical Accuracy 33-10

Model Protection in HDL Coder

34

Create Protected Models to Conceal Contents and Generate HDL

Code e 34-2
How Model Protection Works 34-2

How to Create a Protected Model 34-2
General Protected Model Requirements and Limitations 34-3
Protected Model Restrictions for HDL Code Generation 34-3
Prepare the Parent Model 34-4
Protect the Referenced Model 34-5
Protected Model Report 34-6
Generate HDL Code for Models Referencing Protected Model 34-8
Test Protected Models 34-9
Package and Share Protected Models 34-11
Harness Model 34-11
MAT-File with Base Workspace Definitions 34-11
Simulink Data Dictionary 34-11
Protected Model File Contents 34-12
Obfuscate Generated HDL Code from Simulink Models 34-14
How to Generate Obfuscated HDL Code 34-14
Generated HDL Code with Obfuscation 34-14
Code Obfuscation Report 34-15
HDL Model Parameters Incompatible with Code Obfuscation 34-15
Code Obfuscation Considerations and Restrictions 34-16

XXXVi Contents

HDL Test Bench

35

Test Bench Generation 35-2
How Test Bench Generation Works 35-2
Test Bench DataFiles 35-2
Test Bench Data Type Limitations 35-2
Use Constants Instead of File I/O 35-2
Test Bench Block Restrictions 35-4

36

FPGA Board Customization 36-2
Feature Description 36-2
Custom Board Managementcouuiiiunnnennnn. 36-2
FPGA Board Requirements 36-2

Create Custom FPGA Board Definition 36-6

Create Xilinx KC705 Evaluation Board Definition File 36-7
OVEIVIBW . ittt e e e 36-7
What You Need to Know Before Starting 36-7
Start New FPGA Board Wizard 36-7
Provide Basic Board Information 36-8
Specify FPGA Interface Information 36-9
Enter FPGAPin Numbers i, 36-10
Run Optional Validation Tests 36-12
Save Board Definition File 36-13
Use New FPGABoard 36-14

FPGABoard Manageruiiiiinneenunnnn... 36-18
Introduction 36-18
Filter ... e 36-19
SearCh . . . 36-19
FIL Enabled/Turnkey Enabled 36-20
Create Custom Board 36-20
Add Boardfrom File 36-20
GetMoreBoards 36-20
View/Edit 36-20
Remove e 36-20
Clomne . .. 36-20
Validate e 36-20

New FPGA Board Wizard 36-21
Basic Information 36-22
Interfaces 36-22
FILI/O . 36-25
Turnkey I/O 36-27
Validation e 36-30

xxxvii

xxxviii

Contents

37

Finish 36-31
FPGA Board Editor 36-32
GeneralTab 36-32
Interface Tab 36-34
HDL Workflow Advisor Tasks

HDL Workflow Advisor Tasks 37-2
HDL Workflow Advisor Tasks Overview 37-3
Set Target Overviewt 37-4
Set Target Device and Synthesis Tool 37-4
Set Target Reference Design 37-5
Set Target Interface 37-5
Set Target Frequency, 37-6
Set Target Interface i 37-6
Set Target Interface 37-7
Prepare Model For HDL Code Generation Overview 37-8
Check Global Settings i, 37-8
Check Algebraic Loops oot 37-9
Check Block Compatibility 37-9
Check Sample Times 37-10
Check FPGA-In-The-Loop Compatibility 37-10
HDL Code Generation Overviewcovviiuunnn... 37-10
Set Code Generation Options Overview 37-11
Set BasicOptions i, 37-11
Set Report Options 37-11
Set Advanced Optionso iy 37-11
Set Optimization Options 37-12
Set Testbench Options 37-12
Generate RTLCode 37-12
Generate RTL Code and Testbench 37-12
Verify with HDL Cosimulation 37-13
Generate RTL CodeandIPCore, 37-13
FPGA Synthesis and Analysis Overview 37-14
Create Project e 37-14
Perform Synthesis and P/R Overview 37-15
Perform Logic Synthesis 37-15
Perform Mappingcc i i 37-16
Perform Placeand Route 37-16
Run Synthesis 37-17
Run Implementation 37-17
Annotate Model with SynthesisResult 37-17
Download to Target Overviewcciiiveirnnn.. 37-18
Generate Programming File 37-18
Program Target Device 37-19
Generate Simulink Real-Time Interface 37-19
Save and Restore HDL Workflow Advisor State 37-19
FPGA-In-The-Loop Implementation 37-19
Set FPGA-In-The-Loop Options 37-19
Build FPGA-In-The-Loopo it . 37-20
Check USRP® Compatibility 37-20

Generate FPGA Implementation 37-20

Check SDR Compatibility 37-20
SDR FPGA Implementation 37-21
Set SDROPLIONSot 37-21
Build SDR 37-22
Embedded System Integration 37-22
Create Project 37-22
Generate Software Interface Model 37-23
Build FPGA Bitstream i, 37-23
Program Target Device 37-23

HDL Code Advisor

38

HDL Coder Checks in Model Advisor / HDL Code Advisor Overview

... 38-3
Model configuration checks overview 38-4
Check for safe model parameters 38-5

Description 38-5
Results and Recommended Actions 38-6
SEE AISO ...t e 38-6
Check for global reset setting for Xilinx and Altera devices 38-7
Description e e 38-7
Results and Recommended Actions 38-7
SEE AISO ...t e 38-7
Check inline configurations setting 38-8
Description i e 38-8
Results and Recommended Actions 38-8
Check algebraicloops 38-9
DesCriptionottt 38-9
Results and Recommended Actionscovuuunnnn. 38-9
SEE AISO . ..t e 38-9
Check for visualization settings 38-10
Descripliont 38-10
Results and Recommended Actionsccvuuunan. 38-10
SEe AlSO 38-10
Check delay balancing setting 38-11
Descriptiont 38-11
Results and Recommended Actions 38-11
SEE AISO .. it 38-11
Check for ports and subsystems overview 38-12
Check for invalid top level subsystem 38-13
Description e 38-13

xXxxix

Results and Recommended Actions 38-13

Check initial conditions of enabled and triggered subsystems ... 38-14

Descriplion it e 38-14
Results and Recommended Actions 38-14
SEe AlSO 38-14
Check for blocks and block settings overview 38-15
Check for infinite and continuous sample time sources 38-16
Description e 38-16
Results and Recommended Actions 38-16
SEE AISO ...t 38-16
Check for unsupported blocks 38-17
Description e 38-17
Results and Recommended Actions 38-17
Check for large matrix operations 38-18
DesCriplioncv i e e 38-18
Results and Recommended Actions 38-18
S AISO . .. e 38-18
Check for MATLAB Function block settings 38-19
Descripliont e 38-19
Results and Recommended Actions 38-19
SEe AlSO 38-19
Check for Stateflow chart settings 38-20
Descriplion it e 38-20
Results and Recommended Actions 38-20
SEe AlSO 38-20
Check for obsolete Unit Delay Enabled/Resettable Blocks 38-21
Descriptiont e 38-21
Results and Recommended Actions 38-21
Check for unsupported storage class for signal objects 38-22
Description e e 38-22
Results and Recommended Actions 38-22
Native Floating Point Checks Overview 38-23
Check for single datatypes inthe model 38-24
Descriplionot e e 38-24
Results and Recommended Actions 38-24
SeE AISO . .. e 38-24
Check for double datatypes in the model with Native Floating Point
.. 38-25
Descriplion e 38-25
Results and Recommended Actions 38-25
SEe AlSO 38-25

x1 Contents

Check for Data Type Conversion blocks with incompatible settings

.. 38-26
Descripliont e e e 38-26
Results and Recommended Actions 38-26
SEE AISO ... 38-26

Check for HDL Reciprocal blockusage 38-27
Descripliont e 38-27
Results and Recommended Actions 38-27
SEE AISO . .ot 38-27

Check for Relational Operator blockusage 38-28
Descriptiont e 38-28
Results and Recommended Actions 38-28
See AlSO ... e 38-28

Check for unsupported blocks with Native Floating Point 38-29
Description e 38-29
Results and Recommended Actions 38-29
See AlSO . .. e 38-29

Check for blocks with nonzero output latency 38-30
Description 38-30
Results and Recommended Actions 38-30
See AlSO . .. e 38-30

Check blocks with nonzeroulperror 38-31
DesCriplioncv it e e e 38-31
Results and Recommended Actions 38-31
SeE AISO . .. e 38-31

Industry standard checks overview 38-32

Check VHDL file extension 38-33
Descriplionttt e 38-33
Results and Recommended Actions 38-33
SEE AISO . ..t 38-33

Check naming conventions 38-34
Descriptiont e 38-34
Results and Recommended Actions 38-34
See AlSO ... e 38-34

Check top-level subsystem/portnames 38-35
Description e 38-35
Results and Recommended Actions 38-35
See AlSO . .. e 38-35

Check module/entitynames 38-36
Description 38-36
Results and Recommended Actions 38-36
See AlSO . .. e 38-36

Check signal and portnames 38-37
DesCriplioncv it e e 38-37

xli

xlii

Results and Recommended Actions 38-37

S AlSO .. i 38-37
Check package filenmames 38-38
Descripliont e 38-38
Results and Recommended Actions 38-38
S AISO ..t 38-38
Check generics 38-39
Descriptiont e 38-39
Results and Recommended Actions 38-39
See AlSO . . o e 38-39
Check clock, reset, and enable signals 38-40
Description e 38-40
Results and Recommended Actions 38-40
See AlSO . .o e 38-40
Check architecture name 38-41
Description e 38-41
Results and Recommended Actions 38-41
See AlSO . .t e 38-41
Check entity and architecture 38-42
DesCriplioncv i e 38-42
Results and Recommended Actions 38-42
See AlSO . .t e 38-42
Check clocksettings 38-43
Descriplion e 38-43
Results and Recommended Actions 38-43
S AlSO . . i 38-43

Using the HDL Code Advisor

39

Getting Started with the HDL Code Advisor 39-2
Open the HDL Code Advisorot 39-2
Run Checks In the HDL Code Advisor 39-3
Fix HDL Code Advisor Warnings or Failures 39-3
View and Save HDL Code Advisor Reports 39-4
Run Model Advisor Checks for HDL Coder 39-6
Open the Model Advisor Checks 39-6
Run Checks in the Model Advisor 39-6
Run Checks In Background 39-7
Display Check Results in the Model Advisor Report 39-7
Fix Warningsor Failures 39-8
Save and Restore Model Advisor State 39-9
HDL Code Advisor Checks 39-11
Model configurationchecks 39-12

Contents

Checks for ports and subsystems 39-12

Checks for blocks and block settings 39-12
Native Floating Point checks 39-13
industry standard checks 39-14

Hardware-Software Codesign

Hardware-Software Co-Design Basics

40

Speedgoat FPGA Support with HDL Workflow Advisor 40-2
Introduction 40-2
Speedgoat FPGA 10 Module Support 40-2
WOTKEIOW . ..o 40-3

Custom IP Core Generation 40-4
Custom IP Core Architectures 40-4
Target Platform Interfaces 40-4
Processor/FPGA Synchronization 40-5
Custom IP Core Generated Files 40-5

Custom IPCore Report v, 40-6
Summary e 40-6
Target Interface Configuration 40-6
Register Address Mappingc.. ... 40-7
IPCore UserGuidecoviii.. 40-8
IPCore File List 40-11

Generate Board-Independent HDL IP Core from Simulink Model

.. 40-12
Generate Board-IndependentIPCore 40-12
IP Core without AXI4 Slave Interfaces 40-14
Requirements and Limitations for IP Core Generation 40-15

Processor and FPGA Synchronization 40-16
Free RunningMode 40-16
Coprocessing - BlockingMode 40-16
Coprocessing - Nonblocking With Delay Mode 40-17

Synchronization of Global Reset Signal to IP Core Clock Domain

.. 40-18

IP Caching for Faster Reference Design Synthesis 40-22
Requirements for Using IP Caching 40-22
WhatIsanIPCache? 40-22
How IP CachingWorks 40-23
EnableIPCaching 40-23
IP Caching in HDL Coder Reference Designs 40-24
IP Caching in Custom Reference Designs 40-25

xliii

xliv

Contents

Resolve Timing Failures in IP Core Generation and Simulink Real-

Time FPGA I/O Workflows 40-27
Step 1: Identify the Timing Failure 40-27
Step 2: Find the Critical Path 40-30
Step 3: Resolve Timing Failures 40-34
Define Multiple AXI Master Interfaces in Reference Designs to
access DUT AX14 Slave Interface 40-38
Vivado-Based Reference Designs 40-38
Qsys-Based Reference Designs 40-40
Meet Timing Requirements Using Enable-Based Multicycle Path
Constraints e 40-42
How Enable-Based Multicycle Path Constraints Work 40-42
Specify Enable-Based Constraints 40-43
Benefits of Using Enable-Based Constraints 40-44
Modeling Guidelines i 40-45
Multicycle Path Constraints for Various Synthesis Tools 40-45
Caveats and Limitations 40-46
Program Target FPGA Boards or SoC Devices 40-48
How to Program Target Device 40-48
Programming Methods 40-49

Target SoC Platforms and Speedgoat Boards

41

Hardware-Software Co-Design Workflow for SoC Platforms 41-2
Model Design for AXI4 Slave Interface Generation 41-8
Considerations 41-8
Map Scalar Ports to AXI4 Slave Interface 41-8
Map Vector Ports to AXI4 Slave Interface 41-9
Read Back Value of AXI4 Slave Interfaces 41-10
Optimize AXI4 Slave Read Back Logic 41-13
Model Design for AXI4-Stream Interface Generation 41-14
Simplified Streaming Protocol 41-14
Map Scalar Ports To AXI4-Stream Interface 41-15
Map Vector Ports To AXI4-Stream Interface 41-18
Model Designs with Multiple Streaming Channels 41-19
Model Designs with Multiple Sample Rates 41-19
Restrictions 41-19
Generate HDL IP Core with Multiple AXI4-Stream and AXI14 Master
Interfaces 41-21
Why Use Multiple AXI4 Interfaces 41-21
Specify Multiple AX14 Interfaces in Generic IP Core Generation
Workflow . .. 41-21
Specify Multiple AXI4 Interfaces in Custom Reference Designs ... 41-22
Ready Signal Mapping for Multiple Streaming Interfaces 41-24
Restrictions i 41-24

Running Audio Filter with Multiple AXI4-Stream Channels on

ZedBoard 41-26
Multirate IP Core Generation 41-39
Board and Reference Design Registration System 41-43

Board, IP Core, and Reference Design Definitions 41-43
Board Registration Files, 41-43
Reference Design Registration Files 41-44
Predefined Board and Reference Design Examples 41-45
Registera CustomBoard 41-46
DefineaBoard 41-46
CreateaBoard Plugin 41-47
Define a Board Registration Function 41-47
Register a Custom Reference Design 41-49
Define a Reference Designciiiiin... 41-49
Create a Reference Design Plugin 41-50
Define a Reference Design Registration Function 41-50

Define Custom Parameters and Callback Functions for Custom
Reference Design 41-52
Define Custom Parameters and Register Callback Function Handle

.. 41-52
Define Custom Callback Functions 41-56
Customize Reference Design Dynamically Based on Reference
Design Parameters, 41-58
Why Customize the Reference Design 41-58
How Reference Design Customization Works 41-58
Customizable Reference Design Parameters 41-59
Example: Create Master Only or Slave Only or Both Slave and Master
Reference Designst 41-60
Define and Add IP Repository to Custom Reference Design 41-63
Create an IP Repository Folder Structure 41-63
Define IP List Functiony 41-64
Add IP List Function to Reference Design Project 41-65
FPGA Programming and Configuration 41-66
Model Design for AXI4-Stream Video Interface Generation 41-75
Streaming Pixel Protocol 41-75
Protocol Signals and Timing Diagrams 41-75
Model Data and Control Bus Signals 41-77
Map DUT Ports to Multiple Channels 41-81
Model Designs with Multiple Sample Rates 41-81
Video Porch Insertion Logic 41-81
Default Video System Reference Design 41-82
Restrictions 41-83
Model Design for AXI4 Master Interface Generation 41-84
Simplified AXI4 Master Protocol - Write Channel 41-84
Simplified AXI4 Master Protocol - Read Channel 41-86

xlv

xlvi

Contents

Base Address Register Calculation
Modeling for AXI4 Master Interfaces

Map Vector Ports to AX14 Master Interfaces
Model Designs with Multiple Sample Rates

Reference Designs for IP Core Integration
Restrictions

IP Core Generation Workflow for Standalone FPGA Devices

Targeting FPGA Reference Designs with AX14 Interface .

Targeting FPGA Reference Designs Without AXI4 Interface

Board Support

IP Core Generation Workflow for Speedgoat I/O Modules

41-87
41-87
41-90
41-92
41-93
41-94

41-95
41-96
41-97
41-97

HDL Code Generation from MATLAB

47

Functions Supported for HDL Code
Generation

* “Functions Supported for HDL Code Generation — Alphabetical List” on page 1-2
* “Functions Supported for HDL Code Generation — Categorical List” on page 1-8

1 Functions Supported for HDL Code Generation

Functions Supported for HDL Code Generation — Alphabetical
List

You can generate efficient HDL code for a subset of MATLAB built-in functions and toolbox functions
that you call from MATLAB code. These functions appear in alphabetical order in the following table.

To find supported functions by MATLAB category or toolbox, see “Functions Supported for HDL Code
Generation — Categorical List” on page 1-8.

Name Product Remarks and Limitations

abs Fixed-Point Designer™ Double and complex data types not
supported.

add Fixed-Point Designer —

all MATLAB Double data type not supported.

and MATLAB —

any MATLAB Double data type not supported.

bitand MATLAB —

bitand Fixed-Point Designer —

bitandreduce Fixed-Point Designer —

bitcmp MATLAB —

bitcmp Fixed-Point Designer —

bitconcat Fixed-Point Designer —

bitget MATLAB —

bitget Fixed-Point Designer —

bitor MATLAB —

bitor Fixed-Point Designer —

bitorreduce Fixed-Point Designer —

bitreplicate Fixed-Point Designer —

bitrol Fixed-Point Designer —

bitror Fixed-Point Designer —

bitset MATLAB —

bitset Fixed-Point Designer —

bitshift MATLAB For efficient HDL code generation,
use the Fixed-Point Designer
functions bits11, bitsrl, or
bitsra instead of bitshift.

bitshift Fixed-Point Designer —

bitsliceget Fixed-Point Designer —

bitsll Fixed-Point Designer —

bitsra Fixed-Point Designer —

bitsrl Fixed-Point Designer —

1-2

Functions Supported for HDL Code Generation — Alphabetical List

Name Product Remarks and Limitations

bitxor MATLAB —

bitxor Fixed-Point Designer —

bitxorreduce Fixed-Point Designer —

ceil Fixed-Point Designer —

complex MATLAB —

complex Fixed-Point Designer —

conj Fixed-Point Designer —

convergent Fixed-Point Designer —

ctranspose MATLAB —

ctranspose Fixed-Point Designer —

divide Fixed-Point Designer * For HDL Code generation, the
divisor must be a constant and a
power of two.

* Non-fi inputs must be constant;
that is, their values must be
known at compile time so that
they can be cast to fi objects.

* Complex and imaginary divisors
are not supported.

* Code generation in MATLAB
does not support the syntax
T.divide(a,b).

end Fixed-Point Designer —
eps Fixed-Point Designer * Supported for scalar fixed-point
signals only.

* Supported for scalar, vector, and
matrix, fi single and fi double
signals.

eq MATLAB —
eq Fixed-Point Designer —
fi Fixed-Point Designer —
fimath Fixed-Point Designer —
fix Fixed-Point Designer —
floor Fixed-Point Designer —

1-3

1 Functions Supported for HDL Code Generation

Name Product Remarks and Limitations

for MATLAB Do not use for loops without static
bounds.
Do not use the & and | operators
within conditions of a for
statement. Instead, use the && and
| | operators.
HDL Coder does not support
nonscalar expressions in the
conditions of for statements.
Instead, use the all or any
functions to collapse logical vectors
into scalars.

ge MATLAB —

ge Fixed-Point Designer —

getlsb Fixed-Point Designer —

getmsb Fixed-Point Designer —

gt MATLAB —

gt Fixed-Point Designer —

horzcat Fixed-Point Designer —

if MATLAB Do not use the & and | operators
within conditions of an if
statement. Instead, use the && and
| | operators.
HDL Coder does not support
nonscalar expressions in the
conditions of if statements.
Instead, use the all or any
functions to collapse logical vectors
into scalars.

imag MATLAB —

int8, intl16, int32

Fixed-Point Designer

iscolumn

MATLAB

isempty MATLAB —
isequal Fixed-Point Designer —
isfi Fixed-Point Designer —
isfimath Fixed-Point Designer —
isfimathlocal Fixed-Point Designer —
isfinite MATLAB —
isinf MATLAB —
isnan MATLAB —

1-4

Functions Supported for HDL Code Generation — Alphabetical List

Name Product Remarks and Limitations

isnumeric MATLAB —

isnumerictype Fixed-Point Designer —

isreal MATLAB —

isrow MATLAB —

isscalar MATLAB —

issigned Fixed-Point Designer —

isvector MATLAB —

le MATLAB —

le Fixed-Point Designer —

length MATLAB —

logical MATLAB —

lowerbound Fixed-Point Designer —

lsb Fixed-Point Designer —

1t MATLAB —

1t Fixed-Point Designer —

max Fixed-Point Designer —

min Fixed-Point Designer —

minus Fixed-Point Designer —

mpower MATLAB Both inputs must be scalar, and the
exponent input, k, must be an
integer.

mpower Fixed-Point Designer Both inputs must be scalar, and the
exponent input, k, must be a
constant integer.

mtimes (A,B) MATLAB —

mtimes Fixed-Point Designer —

ndims MATLAB —

ne MATLAB —

ne Fixed-Point Designer —

nearest Fixed-Point Designer —

not MATLAB —

numerictype Fixed-Point Designer —

ones MATLAB Dimensions must be real,
nonnegative integers.

or MATLAB —

plus MATLAB Inputs cannot be data type

logical.

1-5

1 Functions Supported for HDL Code Generation

Name Product Remarks and Limitations

plus Fixed-Point Designer Inputs cannot be data type
logical.

power MATLAB Both inputs must be scalar, and the
exponent input, k, must be an
integer.

power Fixed-Point Designer Both inputs must be scalar, and the
exponent input, k, must be a
constant integer.

range Fixed-Point Designer —

real MATLAB —

realmax Fixed-Point Designer —

realmin Fixed-Point Designer —

reinterpretcast Fixed-Point Designer —

repmat MATLAB —

rescale Fixed-Point Designer —

reshape MATLAB —

round Fixed-Point Designer —

sfi Fixed-Point Designer —

sign Fixed-Point Designer —

size MATLAB —

sqrt Fixed-Point Designer —

sub Fixed-Point Designer —

subsasgn Fixed-Point Designer Supported data types for HDL code
generation are listed in “Supported
MATLAB Data Types, Operators,
and Control Flow Statements” on
page 2-2.

subsref Fixed-Point Designer Supported data types for HDL code
generation are listed in “Supported
MATLAB Data Types, Operators,
and Control Flow Statements” on
page 2-2.

sum Fixed-Point Designer —

1-6

Functions Supported for HDL Code Generation — Alphabetical List

Name

Product

Remarks and Limitations

switch

MATILAB

The conditional expression in a
switch or case statement must
use only:

* uint8, uintl6, uint32, ints§,
int16, or int32 data types

¢ Scalar data

If multiple case statements make
assignments to the same variable,
the numeric type and fimath
specification for that variable must
be the same in every case
statement.

times

MATLAB

Inputs cannot be data type
logical.

times

Fixed-Point Designer

Inputs cannot be data type
logical.

transpose

MATLAB

transpose

MATILAB

ufi

Fixed-Point Designer

uint8, uintl6, uint32

Fixed-Point Designer

uminus

Fixed-Point Designer

uplus MATLAB Inputs cannot be data type
logical.

upperbound Fixed-Point Designer —

vertcat Fixed-Point Designer —

Xxor MATLAB —

zZeros MATLAB Dimensions must be real,

nonnegative integers.

1-7

1 Functions Supported for HDL Code Generation

Functions Supported for HDL Code Generation — Categorical
List

In this section...
“Arithmetic Operations in MATLAB” on page 1-8
“Bitwise Operations in MATLAB” on page 1-9

“Complex Numbers in MATLAB” on page 1-9
“Control Flow in MATLAB” on page 1-9

“Logical Operators in MATLAB” on page 1-10
“Arrays in MATLAB” on page 1-10

“Relational Operators in MATLAB” on page 1-10
“ Fixed-Point Designer ” on page 1-10

In this section...

“Arithmetic Operations in MATLAB” on page 1-8
“Bitwise Operations in MATLAB” on page 1-9
“Complex Numbers in MATLAB” on page 1-9
“Control Flow in MATLAB” on page 1-9

“Logical Operators in MATLAB” on page 1-10
“Arrays in MATLAB” on page 1-10

“Relational Operators in MATLAB” on page 1-10
“ Fixed-Point Designer ” on page 1-10

You can generate efficient HDL code for a subset of MATLAB built-in functions and toolbox functions
that you call from MATLAB code. These functions are listed by MATLAB category or toolbox category
in the following tables.

For an alphabetical list of supported functions, see “Functions Supported for HDL Code Generation —
Alphabetical List” on page 1-2.

Arithmetic Operations in MATLAB

Name Remarks and Limitations

ctranspose(A) —

mpower(A,B) A and B must be scalar, and B must be an integer.
mtimes(A,B) —

plus(A,B) Neither A nor B can be data type Logical.

power (A,B) A and B must be scalar, and B must be an integer.
times(A,B) Neither A nor B can be data type logical.
transpose(A) —

1-8

Functions Supported for HDL Code Generation — Categorical List

Bitwise Operations in MATLAB

Name Remarks and Limitations

bitand —

bitcmp —

bitget _

bitor _

bitset —

bitshift For efficient HDL code generation, use the Fixed-Point Designer functions
bitsll, bitsrl, or bitsra instead of bitshift.

bitxor =

Complex Numbers in MATLAB

Name Remarks and Limitations

complex —

imag —

real —

Control Flow in MATLAB

Name Remarks and Limitations

for Do not use for loops without static bounds.
Do not use the & and | operators within conditions of a for statement.
Instead, use the && and | | operators.
HDL Coder does not support nonscalar expressions in the conditions of
for statements. Instead, use the all or any functions to collapse logical
vectors into scalars.

if Do not use the & and | operators within conditions of an if statement.
Instead, use the && and | | operators.
HDL Coder does not support nonscalar expressions in the conditions of if
statements. Instead, use the all or any functions to collapse logical
vectors into scalars.

switch The conditional expression in a switch or case statement must use only:

* uint8, uintl6, uint32, int8, int16, or int32 data types
* Scalar data
If multiple case statements make assignments to the same variable, the

numeric type and fimath specification for that variable must be the same
in every case statement.

1-9

1 Functions Supported for HDL Code Generation

Logical Operators in MATLAB

Name Remarks and Limitations

and —

not =

or —

xor —
Arrays in MATLAB

Name Remarks and Limitations

ones Dimensions must be real, nonnegative integers.

zeros Dimensions must be real, nonnegative integers.
Relational Operators in MATLAB

Name Remarks and Limitations

eq —

ge —

gt —

le —

1t —

ne —
Fixed-Point Designer
HDL code generation support for fixed-point run-time library functions from the Fixed-Point Designer
is summarized in the following table. See “Fixed-Point Function Limitations” on page 2-27 for
general limitations of fixed-point run-time library functions for code generation.

Function Remarks and Limitations

abs Double and complex data types not supported.

add —

bitand —

bitandreduce =

bitcmp —

bitconcat —

bitget —

bitor —

bitorreduce —

bitreplicate —

1-10

Functions Supported for HDL Code Generation — Categorical List

Function

Remarks and Limitations

bitrol

bitror

bitset

bitshift

bitsliceget

bitsll

bitsra

bitsrl

bitxor

bitxorreduce

ceil

complex

conj

convergent

ctranspose

divide

* For HDL Code generation, the divisor must be a constant and a power
of two.

* Non-fi inputs must be constant; that is, their values must be known at
compile time so that they can be cast to fi objects.

* Complex and imaginary divisors are not supported.

* Code generation in MATLAB does not support the syntax
T.divide(a,b).

eps

» Supported for scalar fixed-point signals only.

* Supported for scalar, vector, and matrix, fi single and fi double
signals.

€q

fi

fimath

fix

floor

ge

getlsb

getmsb

gt

horzcat

int8, int16, int32

isequal

isfi

1-11

1 Functions Supported for HDL Code Generation

Function

Remarks and Limitations

isfimath

isfimathlocal

isnumerictype

issigned

le

lowerbound

1sb

1t

max

min

minus

mpower

Both inputs must be scalar, and the exponent input, k, must be a constant
integer.

mtimes

nearest

numerictype

ones

Dimensions must be real, nonnegative integers.

plus

Inputs cannot be data type logical.

power

Both inputs must be scalar, and the exponent input, k, must be a constant
integer.

range

realmax

realmin

reinterpretcast

rescale

round

sfi

sign

sqrt

sub

subsasgn

Supported data types for HDL code generation are listed in “Supported
MATLAB Data Types, Operators, and Control Flow Statements” on page 2-
2

subsref

Supported data types for HDL code generation are listed in “Supported
MATLAB Data Types, Operators, and Control Flow Statements” on page 2-
2

sum

times

Inputs cannot be data type logical.

1-12

Functions Supported for HDL Code Generation — Categorical List

ufi —
uint8, uintl6, uint32 —
uminus —

upperbound —

vertcat —

1-13

MATLAB Algorithm Design

* “Supported MATLAB Data Types, Operators, and Control Flow Statements” on page 2-2
* “Persistent Variables and Persistent Array Variables” on page 2-7

* “Complex Data Type Support” on page 2-9

+ “HDL Code Generation for System Objects” on page 2-12

* “Predefined System Objects Supported for HDL Code Generation” on page 2-14

* “Load constants from a MAT-File” on page 2-16

* “Generate Code for User-Defined System Objects” on page 2-17

* “Map Matrices to ROM” on page 2-19

* “Fixed-Point Bitwise Functions” on page 2-20

* “Fixed-Point Run-Time Library Functions” on page 2-25

* “Model State with Persistent Variables and System Objects” on page 2-29

» “Bitwise Operations in MATLAB for HDL Code Generation” on page 2-32

* “Guidelines for Writing MATLAB Code to Generate Efficient HDL Code” on page 2-36

* “For-Loop Best Practices for HDL Code Generation” on page 2-38

* “MATLAB Test Bench Requirements and Best Practices for HDL Code Generation” on page 2-40

2 MATLAB Algorithm Design

Supported MATLAB Data Types, Operators, and Control Flow
Statements

2-2

In this section...

“Supported Data Types” on page 2-2
“Supported Operators” on page 2-3
“Control Flow Statements” on page 2-5

When you generate HDL code from your MATLAB algorithm, use the data types, operators, and
control flow statements that HDL Coder supports.

Supported Data Types

HDL Coder does not support cell arrays and Inf data types. This table shows the supported subset of

MATLAB data types.

row {1, N}
column {N, 1}

Types Supported Data Types Restrictions
Integer * uint8, uintl16, uint32, In Simulink®, MATLAB Function block ports
uinte4 must use numeric types sfix64 or ufix64 for
. int8, int16, int32, int64 |64-bit data.
Real * double HDL code generated with double or single
. single data.types .in your MATLAB code_can be used
for simulation, but is not synthesizable. You
can generate synthesizable code when you use
these data types in your Simulink model. For
more information, see:
e “Simulink Blocks Supported with Native
Floating-Point” on page 10-80
* “Generate Target-Independent HDL Code
with Native Floating-Point” on page 10-70
* “Signal and Data Type Support” on page
10-2
Character char -
Logical logical -
Fixed point * Scaled (binary point only) Fixed-point numbers with slope (not equal to
fixed-point numbers 1.0) and bias (not equal to 0.0) are not
« Custom integers (zero binary |SuPPorted.
ey Maximum word size for fixed-point numbers is
128 bits.
Vectors e unordered {N} The maximum number of vector elements

allowed is 27 32.

Before a variable is subscripted, it must be
fully defined.

Supported MATLAB Data Types, Operators, and Control Flow Statements

Types

Supported Data Types

Restrictions

Matrices

{N, M}

Matrices are supported in the body of the
design algorithm, but are not supported as
inputs to the top-level design function.

Do not use matrices in the testbench.

Structures

struct

Arrays of structures are not supported.

For the FPGA Turnkey and IP Core Generation
workflows, structures are supported in the
body of the design algorithm, but are not
supported as inputs to the top-level design
function.

Enumerations

enumeration

Enumeration values must be monotonically
increasing.

If your target language is Verilog®, all
enumeration member names must be unique
within the design.

Enumerations at the top-level DUT ports are
not supported with the following workflows or
verification methods:

e [P Core Generation workflow

* FPGA Turnkey workflow

¢ FPGA-in-the-Loop

¢ HDL Cosimulation

Global variables are not supported for HDL code generation.

Supported Operators

Note HDL code generated for large vector and matrix inputs to arithmetic operations can result in
inefficient code. The code for these operators is not automatically pipelined.

2-3

2 MATLAB Algorithm Design

2-4

Arithmetic Operators

Operation Operator Syntax Equivalent Function [Restrictions

Binary addition A+B plus(A,B) Neither A nor B can be
data type logical.

Matrix multiplication A*B mtimes (A,B) HDL code generated for

matrix arithmetic
operations is not
pipelined, and can
result in inefficient
code.

Arraywise multiplication

A.*B

times (A, B)

Neither A nor B can be
data type logical.

Matrix power A™B mpower (A,B) A and B must be scalar,
and B must be an
integer.

HDL code generated for
matrix arithmetic
operations is not
pipelined, and can
result in inefficient
code.

Arraywise power A.”B power (A,B) A and B must be scalar,
and B must be an
integer.

Complex transpose A' ctranspose(A) -

Matrix transpose A transpose(A)

Matrix concat [A B] None -

Matrix index A(r c) None Before you use a
variable, you must fully
define it.

Logical Operators

Operation Operator Syntax M Function Notes

Equivalent

Logical And A&B and (A, B) -

Logical Or A|B or(A,B) -

Logical Xor A xor B xor(A,B) -

Logical And (short A&SB N/A Use short circuiting

circuiting) logical operators within
conditionals.

Logical Or (short A||B N/A Use short circuiting

circuiting) logical operators within
conditionals.

Element complement ~A not(A) -

Supported MATLAB Data Types, Operators, and Control Flow Statements

Relational Operators

Relation Operator Syntax Equivalent Function
Less than A<B 1t (A,B)
Less than or equal to A<=B le(A,B)
Greater than or equal to A>=B ge(A,B)
Greater than A>B gt(A,B)
Equal ==B eq(A,B)
Not equal A~=B ne(A,B)

Control Flow Statements

HDL Coder supports the following control flow statements and constructs with restrictions.

Control Flow Statement |Restrictions

for Do not use for loops without static bounds.

Do not use the & and | operators within conditions of a for statement.
Instead, use the &5 and | | operators.

HDL Coder does not support nonscalar expressions in the conditions of
for statements. Instead, use the all or any functions to collapse logical
vectors into scalars.

if Do not use the & and | operators within conditions of an if statement.
Instead, use the && and | | operators.

HDL Coder does not support nonscalar expressions in the conditions of
if statements. Instead, use the all or any functions to collapse logical
vectors into scalars.

switch The conditional expression in a switch or case statement must use
only:

* uint8, uintl6, uint32, int8, int16, or int32 data types

* Scalar data

If multiple case statements make assignments to the same variable, the
numeric type and fimath specification for that variable must be the
same in every case statement.

The following control flow statements are not supported:

* while

* break

* continue
* return

* parfor

Avoid using the following vector functions, as they may generate loops containing break statements:

2-5

2 MATLAB Algorithm Design

+ isequal
e bitrevorder

2-6

Persistent Variables and Persistent Array Variables

Persistent Variables and Persistent Array Variables

Persistent Variables

Persistent variables enable you to model registers. If you need to preserve state between invocations
of your MATLAB algorithm, use persistent variables.

Before you use a persistent variable, you must initialize it with a statement specifying its size and
type. You can initialize a persistent variable with either a constant value or a variable, as in the
following examples:

% Initialize with a constant

persistent p;

if isempty(p)
p=i(0,0,8,0);

end

% Initialize with a variable
initval = fi(0,0,8,0);

persistent p;
if isempty(p)

p = initval;
end

Use a logical expression that evaluates to a constant to test whether a persistent variable has been
initialized, as in the preceding examples. Using a logical expression that evaluates to a constant
ensures that the generated HDL code for the test is executed only once, as part of the reset process.

You can initialize multiple variables within a single logical expression, as in the following example:

% Initialize with wvariables
initvall = fi(0,0,8,0);
initval2 = fi(0,0,7,0);

persistent p;
if isempty(p)
X = initvall;
y = initval2;
end

Note If persistent variables are not initialized as described above, extra sentinel variables can
appear in the generated code. These sentinel variables can translate to inefficient hardware.

Persistent Array Variables
Persistent array variables enable you to model RAM.
By default, the HDL Coder software optimizes the area of your design by mapping persistent array

variables to RAM. If persistent array variables are not mapped to RAM, they map to registers. RAM
mapping can therefore reduce the area of your design in the target hardware.

2-7

2 MATLAB Algorithm Design

To learn how persistent array variables map to RAM, see “Map Persistent Arrays and dsp.Delay to
RAM” on page 8-3.

2-8

Complex Data Type Support

Complex Data Type Support

In this section...

“Declaring Complex Signals” on page 2-9
“Conversion Between Complex and Real Signals” on page 2-10
“Support for Vectors of Complex Numbers” on page 2-10

Declaring Complex Signals

The following MATLAB code declares several local complex variables. x and y are declared by
complex constant assignment; z is created using the using the complex() function.

function [x,y,z] = fcn

o°
nmuno

N < X

reate 8 bit complex constants
uint8(1 + 2i);
uint8(3 + 4j);
uint8(complex(5, 6));

The following code example shows VHDL® code generated from the previous MATLAB code.

ENTITY complex decl IS

PORT

(

clk

clk _enable :
reset : IN
X_re : OUT
Xx_im : OUT
y re : OUT
y im : OUT
z re : OUT
z im : OUT

END complex decl;

IN std logic;

IN std logic;
std logic;

std logic vector(7
std logic vector(7
std logic vector(7
std logic vector(7
std logic vector(7
std logic vector(7

DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO

ARCHITECTURE fsm SFHDL OF complex_decl IS

BEGIN
x_re
x_im
y_re
y im
z re
z im

<=
<=
<=
<=
<=
<=

std logic vector(to unsigned(1,
std logic vector(to unsigned(2,
std logic vector(to _unsigned(3,
std logic vector(to_unsigned(4,
std logic vector(to _unsigned(5,
std logic vector(to unsigned(6,
END fsm_SFHDL;

0);
0);
0);

0);
0));

As shown in the example, complex inputs, outputs and local variables declared in MATLAB code
expand into real and imaginary signals. The naming conventions for these derived signals are:

* Real components have the same name as the original complex signal, suffixed with the default
string ' _re' (for example, x_re). To specify a different suffix, set the Complex real part postfix
option (or the corresponding ComplexRealPostfix CLI property).

* Imaginary components have the same name as the original complex signal, suffixed with the string
(for example, x _im). To specify a different suffix, set the Complex imaginary part postfix
option (or the corresponding ComplexImagPostfix CLI property).

_im!

A complex variable declared in MATLAB code remains complex during the entire length of the
program.

2-9

2 MATLAB Algorithm Design

2-10

Conversion Between Complex and Real Signals

The MATLAB code provides access to the fields of a complex signal via the real () and imag()
functions, as shown in the following code.

function [Re_part, Im_part]= fcn(c)
% Output real and imaginary parts of complex input signal

real(c);
imag(c);

HDL Coder supports these constructs, accessing the corresponding real and imaginary signal
components in generated HDL code. In the following Verilog code example, the MATLAB complex
signal variable c is flattened into the signals ¢ _re and c¢_im. Each of these signals is assigned to the
output variables Re_part and Im part, respectively.

module Complex_To Real Imag (clk, clk enable, reset, c_re, c_im, Re_part, Im_part);

input clk;

input clk_enable;
input reset;

input [3:0] c_re;
input [3:0] c_im;
output [3:0] Re_part;
output [3:0] Im_part;

// Output real and imaginary parts of complex input signal

assign Re_part = c_re;
assign Im_part = c_im;

Support for Vectors of Complex Numbers

You can generate HDL code for vectors of complex numbers. Like scalar complex numbers, vectors of
complex numbers are flattened down to vectors of real and imaginary parts in generated HDL code.

For example in the following script t is a complex vector variable of base type ufix4 and size [1,2].

function y = fcn(ul, u2)

t
y

[ul u2];
t+1;

In the generated HDL code the variable t is broken down into real and imaginary parts with the same
two-element array. .

VARIABLE t re : vector of unsigned4(0 TO 3);
VARIABLE t im : vector of unsigned4(0 TO 3);

The real and imaginary parts of the complex number have the same vector of type ufix4, as shown
in the following code.

TYPE vector_of_unsigned4 IS ARRAY (NATURAL RANGE <>) OF unsigned(3 DOWNTO 0);
Complex vector-based operations (+,-,* etc.,) are similarly broken down to vectors of real and

imaginary parts. Operations are performed independently on the elements of such vectors, following
MATLAB semantics for vectors of complex numbers.

In both VHDL and Verilog code generated from MATLAB code, complex vector ports are always
flattened. If complex vector variables appear on inputs and outputs, real and imaginary vector
components are further flattened to scalars.

In the following code, ul and u2 are scalar complex numbers and Y is a vector of complex numbers.

function y = fcn(ul, u2)

Complex Data Type Support

t
y

[ul u2];
t+1;

This generates the following port declarations in a VHDL entity definition.

ENTITY _MATLAB Function IS
PORT (
clk : IN std logic;
clk_enable : IN std_logic;
reset : IN std logic;
ul re : IN vector_of std logic vector4(0 TO 1);
ul_im : IN vector of std logic_vector4(0 TO 1);
u2_re : IN vector_of std logic vector4(0 TO 1);
u2_im : IN vector of std logic_vector4(0 TO 1);
y _re : OUT vector_of std logic_vector32(0 TO 3);
y_im : OUT vector of std logic vector32(0 TO 3));
END _MATLAB_Function;

2-11

2 MATLAB Algorithm Design

HDL Code Generation for System Objects

2-12

In this section...

“Why Use System Objects?” on page 2-12

“Predefined System Objects” on page 2-12

“User-Defined System Objects” on page 2-12

“Limitations of HDL Code Generation for System Objects” on page 2-12
“System object Examples for HDL Code Generation” on page 2-13

HDL Coder supports both predefined and user-defined System objects for code generation.

Why Use System Objects?

System objects provide a design advantage because:

* You can save time during design and testing by using existing System object components.

* You can design and qualify custom System objects for reuse in multiple designs.

* You can define your algorithm in a System object once, and reuse multiple instances of it in a
single MATLAB design.

This idiom cannot be used with MATLAB functions that have state. For example, if the algorithm
has state and requires the use of persistent variables, that function cannot be instantiated
multiple times in a design. Instead, you would need to copy and rename the function for each
instance.

* HDL code that you generate from System objects is modular and more readable.

Predefined System Objects

Predefined System objects that are available with MATLAB, DSP System Toolbox™, and
Communications Toolbox™ are supported for HDL code generation. For a list, see “Predefined System
Objects Supported for HDL Code Generation” on page 2-14.

User-Defined System Objects

You can create user-defined System objects for HDL code generation. For an example, see “Generate
Code for User-Defined System Objects” on page 2-17.

Limitations of HDL Code Generation for System Objects

The following limitations apply to HDL code generation for all System objects:

* Your design can call the step method only once per System object.

* step must not be inside a nested conditional statement, such as a nested loop, if statement, or
switch statement.

* step must not be inside a conditional statement that contains a matrix indexing operation.
* A System object must be declared persistent if it has state.

HDL Code Generation for System Objects

A System object has state when it has a tunable private or public property, or a property with the
DiscreteState attribute.

* You can use the dsp.Delay System object only in feed-forward delay modeling.

* UseMatrixTypesInHDL attribute must be set to ‘off’, if you have a System object in your
MATLAB code.

* Enumerations are not supported.
* Global variables are not supported.

Supported Methods
For predefined System Objects, step is the only method supported for HDL code generation.

For user-defined System Objects, either the step method, or the output and update methods, are
supported for HDL code generation.

Additional Restrictions for Predefined System Objects

Predefined System objects are not supported for HDL code generation from within a MATLAB System
block.

Additional Restrictions for User-Defined System Objects

In addition to the limitations for all System objects, the following restrictions apply to user-defined
System objects for HDL code generation:

* Inthe setupImpl and resetImpl methods, if you assign values to properties or variables, the
values must be constants.

* Ifyour design uses the output and update methods, it can call each method only once per
System object.

» [Initial and reset values for properties must be compile-time constant.
» User-defined System objects must not be public properties.
* A step method with multiple outputs cannot be called within a conditional statement.

System object Examples for HDL Code Generation

To learn how to use System objects for HDL code generation, view the MATLAB designs in the
following examples:

* “HDL Code Generation from System Objects” on page 5-14

* “Model State with Persistent Variables and System Objects” on page 2-29

* “Generate Code for User-Defined System Objects” on page 2-17

* “Integrate Custom HDL Code Into MATLAB Design” on page 5-23

2-13

2 MATLAB Algorithm Design

Predefined System Objects Supported for HDL Code
Generation

2-14

In this section...

“Predefined System Objects in MATLAB Code” on page 2-14
“Predefined System Objects in the MATLAB System Block” on page 2-15

Predefined System Objects in MATLAB Code

HDL Coder supports the following MATLAB System objects for HDL code generation:

* hdl.RAM
* hdl.BlackBox

HDL Coder supports the following Communications Toolbox System objects for HDL code generation:

* comm.BPSKModulator, comm.BPSKDemodulator

* comm.PSKModulator, comm.PSKDemodulator

* comm.QPSKModulator, comm.QPSKDemodulator

* comm.ConvolutionalInterleaver, comm.ConvolutionalDeinterleaver
 comm.ViterbiDecoder

e comm.HDLCRCDetector, comm.HDLCRCGenerator

e comm.HDLRSDecoder, comm.HDLRSEncoder

HDL Coder supports the following DSP System Toolbox System objects for HDL code generation:

* dsp.Delay

* dsp.BiquadFilter

* dsp.DCBlocker

* dsp.HDLComplexToMagnitudeAngle
* dsp.HDLFIRRateConverter

* dsp.HDLFFT, dsp.HDLIFFT

* dsp.HDLChannelizer

* dsp.HDLNCO

* dsp.FIRFilter

* dsp.HDLFIRFilter

HDL Coder supports the following Vision HDL Toolbox™ System objects for HDL code generation:

* visionhdl.BilateralFilter

* visionhdl.BirdsEyeView

* visionhdl.ChromaResampler

* visionhdl.ColorSpaceConverter
* visionhdl.DemosaicInterpolator

Predefined System Objects Supported for HDL Code Generation

visionhdl.
visionhdl.
visionhdl.
visionhdl.
visionhdl.
visionhdl.
visionhdl.
visionhdl.
visionhdl.
visionhdl.
visionhdl.
visionhdl.
visionhdl.
visionhdl.
visionhdl.
visionhdl.
visionhdl.
visionhdl.

EdgeDetector
GammaCorrector
LookupTable
Histogram
ImageStatistics
ROISelector
LineBuffer
PixelStreamAligner
ImageFilter
MedianFilter
Closing

Dilation

Erosion

Opening
GrayscaleClosing
GrayscaleDilation
GrayscaleErosion
GrayscaleOpening

Predefined System Objects in the MATLAB System Block

A subset of these predefined System objects are supported for code generation when you use them in
a MATLAB System block. To learn more, see “HDL Code Generation” (Simulink) on the MATLAB

System page.

2-15

2 MATLAB Algorithm Design

Load constants from a MAT-File

You can load compile-time constants from a MAT-file with the coder. load function in your MATLAB
design.

For example, you can create a MAT-file, sinvals.mat, that contains fixed-point values of sin by
entering the following commands in MATLAB:

sinvals = sin(fi(-pi:0.1:pi, 1, 16,15));
save sinvals.mat sinvals;

You can then generate HDL code from the following MATLAB code, which loads the constants from
sinvals.mat into a persistent variable, pConstStruct, and assigns the values to a variable that is
not persistent, sv.

persistent pConstStruct;
if isempty(pConstStruct)
pConstStruct = coder.load('sinvals.mat');
end
sv = pConstStruct.sinvals;

2-16

Generate Code for User-Defined System Objects

Generate Code for User-Defined System Objects

In this section...

“How To Create A User-Defined System object” on page 2-17
“User-Defined System object Example” on page 2-17

How To Create A User-Defined System object

To create a user-defined System object and generate code:

Create a class that subclasses from matlab.System.
Define one of the following sets of methods:

* setupImpl and stepImpl
o setupImpl, outputImpl, and updateImpl

To use the outputImpl and updateImpl methods, your System object must also inherit from
the matlab.system.mixin.Nondirect class.

Optionally, if your System object has private state properties, define the resetImpl method to
initialize them to zero.

Write a top-level design function that creates an instance of your System object and calls the
step method, or the output and update methods.

Note The resetImpl method runs automatically during System object initialization. For HDL
code generation, you cannot call the public reset method.

Write a test bench function that exercises the top-level design function.
Generate HDL code.

User-Defined System object Example

This example shows how to generate HDL code for a user-defined System object that implements the
setupImpl and stepImpl methods.

1

In a writable folder, create a System object, CounterSys0bj, which subclasses from
matlab.System. Save the code as CounterSysObj.m.

classdef CounterSysObj < matlab.System

properties (Nontunable)
Threshold = int32(1)
end
properties (Access=private)
State
Count
end
methods
function obj = CounterSysObj(varargin)
setProperties(obj,nargin,varargin{:});
end

2-17

2 MATLAB Algorithm Design

2-18

end

methods (Access=protected)
function setupImpl(obj, ~)
% Initialize states
obj.Count = int32(0);
obj.State = int32(0);
end
function y = stepImpl(obj, u)
if obj.Threshold > u(1)
obj.Count(:) = obj.Count + int32(1); % Increment count
end
y = obj.State;
obj.State = obj.Count;

elay output
ut new value in state

o O

[)
“©
[)

“©

end
end
end

The stepImpl method implements the System object functionality. The setupImpl method
defines the initial values for the persistent variables in the System object.

Write a function that uses this System object and save it as myDesign.m. This function is your
DUT.

function y = myDesign(u)

persistent obj
if isempty(obj)

obj = CounterSysObj('Threshold',5);
end

y = step(obj, u);

end
Write a test bench that calls the DUT function and save it as myDesign tb.m.

clear myDesign
for 1ii=1:10
y = myDesign(int32(ii));
end
Generate HDL code for the DUT function as you would for any other MATLAB code, but skip
fixed-point conversion.

See Also

More About

“HDL Code Generation for System Objects” on page 2-12

Map Matrices to ROM

Map Matrices to ROM

To map a matrix constant to ROM:

* Read one matrix element at a time.
* The matrix size must be greater than or equal to the RAM Mapping Threshold value.
To learn how to set the RAM mapping threshold in Simulink, see the RAM mapping threshold

(bits) section in “RAM Mapping” on page 14-5. To learn how to set the RAM mapping threshold
in MATLAB, see “How To Enable RAM Mapping” on page 8-3.

* Read accesses to the matrix must not be within a feedback loop.

If your MATLAB code meets these requirements, HDL Coder inserts a no-reset register at the output
of the matrix in the generated code. Many synthesis tools infer a ROM from this code pattern.

2-19

2 MATLAB Algorithm Design

Fixed-Point Bitwise Functions

The following table summarizes bitwise functions in MATLAB and Fixed-Point Designer that are
supported for HDL code generation. The following conventions are used in the table:
* a,b: Denote fixed-point integer operands.

* idx: Denotes an index to a bit within an operand. Indexes can be scalar or vector, depending on
the function.

MATLAB code uses 1-based indexing conventions. In generated HDL code, such indexes are
converted to zero-based indexing conventions.

* 1lidx, ridx: denote indexes to the left and right boundaries delimiting bit fields. Indexes can be
scalar or vector, depending on the function.

* val: Denotes a Boolean value.

Note Indexes, operands, and values passed as arguments bitwise functions can be scalar or vector,
depending on the function. For information on the individual functions, see “Bitwise Operations”
(Fixed-Point Designer).

MATLAB Syntax Description See Also
bitand(a, b) Bitwise AND bitand
bitandreduce(a, lidx, |Bitwise AND of a field of consecutive bits within a. |[bitandreduce
ridx) The field is delimited by lidx , ridx.

Output data type: ufix1l

For VHDL, generates the bitwise AND operator
operating on a set of individual slices

For Verilog, generates the reduce operator:

&a[lidx:ridx]

bitcmp(a) Bitwise complement bitcmp

bitconcat(a, b) Concatenate fixed-point operands. bitconcat
bitconcat([a vector])

bitconcat(a
b,c,d,...)

Operands can be of different signs.

’

Output data type: ufixN, where N is the sum of
the word lengths of a and b.

For VHDL, generates the concatenation operator:
(a & b)

For Verilog, generates the concatenation operator:

{a , b}

2-20

Fixed-Point Bitwise Functions

MATLAB Syntax

Description

See Also

bitget(a,idx)

Access a bit at position idx.
For VHDL, generates the slice operator: a (idx)

For Verilog, generates the slice operator: a[idx]

bitget

bitor(a, b)

Bitwise OR

bitor

bitorreduce(a, lidx,
ridx)

Bitwise OR of a field of consecutive bits within a.
The field is delimited by 1idx and ridx.

Output data type: ufix1l

For VHDL, generates the bitwise OR operator
operating on a set of individual slices.

For Verilog, generates the reduce operator:

|[a[lidx: ridx]

bitorreduce

bitset(a, idx, val)

Set or clear bit(s) at position idx.

If val = 0, clears the indicated bit(s). Otherwise,
sets the indicated bits.

bitset

bitreplicate(a, n)

Concatenate bits of fi object a n times

bitreplicate

bitrol(a, idx)

Rotate left.

idx must be a positive integer. The value of idx
can be greater than the word length of a. idx is
normalized to mod (idx, wlen).wlen is the word
length of a.

For VHDL, generates the rol operator.

For Verilog, generates the following expression
(where wl is the word length of a:

a << idx || a >> wl - idx

bitrol

bitror(a, idx)

Rotate right.

idx must be a positive integer. The value of idx
can be greater than the word length of a. idx is
normalized to mod(idx, wlen) .wlen is the
word length of a.

For VHDL, generates the ror operator.

For Verilog, generates the following expression
(where wl is the word length of a:

a >> idx || a << wl - idx

bitror

2-21

2 MATLAB Algorithm Design

2-22

MATLAB Syntax Description See Also
bitset(a, idx, val) Set or clear bit(s) at position idx. bitset
If val = 0, clears the indicated bit(s). Otherwise,
sets the indicated bits.
bitshift(a, idx) Note: For efficient HDL code generation, use bitshift
bitsll, bitsrl, or bitsrainstead of bitshift.
Shift left or right, based on the positive or
negative integer value of'idx.
idx must be an integer.
For positive values of idx, shift left idx bits.
For negative values of idx, shift right idx bits.
If idx is a variable, generated code contains logic
for both left shift and right shift.
Result values saturate if the overflowMode of a
is set to saturate.
bitsliceget(a, lidx, Access consecutive set of bits from 1idx to ridx. |bitsliceget
ridx)
Output data type: ufixN, where N = lidx-
ridix+1.
bitsll(a, idx) Shift left logical. bitsll

idx must be a scalar within the range
0 <= idx < wl
wl is the word length of a.

Overflow and rounding modes of input operand a
are ignored.

Generates s11 operator in VHDL.

Generates << operator in Verilog.

Fixed-Point Bitwise Functions

MATLAB Syntax

Description

See Also

bitsra(a, idx)

Shift right arithmetic.

idx must be a scalar within the range

0 <= idx < wl

wl is the word length of a,

Overflow and rounding modes of input operand a

are ignored.

Generates sra operator in VHDL.

Generates >>> operator in Verilog.

bitsra

bitsrl(a, idx)

Shift right logical.

idx must be a scalar within the range

0 <= idx < wl

wl is the word length of a.

Overflow and rounding modes of input operand a

are ignored.

Generates srl operator in VHDL.

Generates >> operator in Verilog.

bitsrl

bitxor(a, b)

Bitwise XOR

bitxor

bitxorreduce(a, lidx,
ridx)

Bitwise XOR reduction.

Bitwise XOR of a field of consecutive bits within a.
The field is delimited by 1idx and ridx.

Output data type: ufix1l
For VHDL, generates a set of individual slices.

For Verilog, generates the reduce operator:

~a[lidx:ridx]

bitxorreduce

getlsb(a)

Return value of LSB.

getlsb

getmsb(a)

Return value of MSB.

getmsb

See Also

Related Examples

. “Bitwise Operations in MATLAB for HDL Code Generation” on page 2-32

2-23

2 MATLAB Algorithm Design

More About

. “Bitwise Operations” (Fixed-Point Designer)
. “Fixed-Point Run-Time Library Functions” on page 2-25

2-24

Fixed-Point Run-Time Library Functions

Fixed-Point Run-Time Library Functions

HDL code generation support for fixed-point run-time library functions from the Fixed-Point Designer
is summarized in the following table. See “Fixed-Point Function Limitations” on page 2-27 for
general limitations of fixed-point run-time library functions for code generation.

Function

Remarks and Limitations

abs

Double and complex data types not supported.

add

bitand

bitandreduce

bitcmp

bitconcat

bitget

bitor

bitorreduce

bitreplicate

bitrol

bitror

bitset

bitshift

bitsliceget

bitsll

bitsra

bitsrl

bitxor

bitxorreduce

ceil

complex

conj

convergent

ctranspose

divide

» For HDL Code generation, the divisor must be a constant and a power
of two.

* Non-fi inputs must be constant; that is, their values must be known at
compile time so that they can be cast to fi objects.

* Complex and imaginary divisors are not supported.

* Code generation in MATLAB does not support the syntax
T.divide(a,b).

2-25

2 MATLAB Algorithm Design

Function

Remarks and Limitations

eps

* Supported for scalar fixed-point signals only.

* Supported for scalar, vector, and matrix, fi single and fi double
signals.

€q

fi

fimath

fix

floor

ge

getlsb

getmsb

gt

horzcat

int8, int16, int32

isequal

isfi

isfimath

isfimathlocal

isnumerictype

issigned

le

lowerbound

1sb

1t

max

min

minus

mpower

Both inputs must be scalar, and the exponent input, k, must be a constant
integer.

mtimes

nearest

numerictype

ones

Dimensions must be real, nonnegative integers.

plus

Inputs cannot be data type logical.

power

Both inputs must be scalar, and the exponent input, k, must be a constant
integer.

range

2-26

Fixed-Point Run-Time Library Functions

Function

Remarks and Limitations

realmax

realmin

reinterpretcast —

rescale

round

sfi

sign

sqrt

sub

subsasgn

Supported data types for HDL code generation are listed in “Supported
MATLAB Data Types, Operators, and Control Flow Statements” on page 2-
2.

subsref

Supported data types for HDL code generation are listed in “Supported
MATLAB Data Types, Operators, and Control Flow Statements” on page 2-
2.

sum

times

Inputs cannot be data type logical.

ufi

uint8, uint

16, uint32 =

uminus

upperbound

vertcat

Fixed-Point Function Limitations

In addition to function-specific limitations listed in the table, the following general limitations apply to
the use of Fixed-Point Designer functions in generated HDL code:

fipref and quantizer objects are not supported.
Slope and bias scaling are not supported.

Dot notation is only supported for getting the values of fimath and numerictype properties. Dot
notation is not supported for fi objects, and it is not supported for setting properties.

Word lengths greater than 128 bits are not supported.

You cannot change the fimath or numerictype of a given variable after that variable has been
created.

The boolean and ScaledDoub'le values of the DataTypeMode and DataType properties are not
supported.

For all SumMode property settings other than FullPrecision, the CastBeforeSum property
must be set to true.

The numel function returns the number of elements of fi objects in the generated code.

General limitations of C/C++ code generated from MATLAB apply. See “MATLAB Language
Features That Code Generation Does Not Support” (Fixed-Point Designer) for more information.

2-27

2 MATLAB Algorithm Design

See Also

Related Examples
. “Bitwise Operations in MATLAB for HDL Code Generation” on page 2-32

More About
. “Bitwise Operations” (Fixed-Point Designer)
. “Fixed-Point Bitwise Functions” on page 2-20

2-28

Model State with Persistent Variables and System Objects

Model State with Persistent Variables and System Objects

This example shows how to use persistent variables and System objects to model state and delays in a
MATLAB® design for HDL code generation.

Introduction
Using System objects to model delay results in concise generated code.

In MATLAB, multiple calls to a function having persistent variables do not result in multiple delays.
Instead, the state in the function gets updated multiple times.

In order to reuse code implemented in a function with states,
you need to duplicate functions multiple times to create multiple
instances of the algorithm with delay.

o° o o°

Examine the MATLAB Code
Let us take a quick look at the implementation of the Sobel algorithm.
Examine the design to see how the delays and line buffers are modeled using:

» Persistent variables: mlhdlc sobel
* System objects: mlhdlc_sysobj sobel

Notice that the 'filterdelay' function is duplicated with different function names in 'mlhdlc_sobel' code
to instantiate multiple versions of the algorithm in MATLAB for HDL code generation.

The delay line implementation is more complicated when done using MATLAB persistent variables.

Now examine the simplified implementation of the same algorithm using System objects in
'mlhdlc_sysobj sobel'.

When used within the constraints of HDL code generation, the dsp.Delay objects always map to
registers. For persistent variables to be inferred as registers, you have to be careful to read the
variable before writing to it to map it to a register.

MATLAB Design

demo files = {...
'mlhdlc_sysobj sobel',
'mlhdlc_sysobj sobel tb',
'mlhdlc_sobel’,
‘'mlhdlc sobel tb'
b

Create a New Folder and Copy Relevant Files
Execute the following lines of code to copy the necessary example files into a temporary folder.

mlhdlc demo dir
mlhdlc temp dir

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderde
[tempdir 'mlhdlc _delay modeling'];

% create a temporary folder and copy the MATLAB files
cd(tempdir);
[~, ~, ~] = rmdir(mlhdlc_temp dir, 's');

2-29

2 MATLAB Algorithm Design

2-30

mkdir(mlhdlc_temp dir);
cd(mlhdlc_temp dir);

for ii=l:numel(demo files)
copyfile(fullfile(mlhdlc demo dir, [demo files{ii},'.m*']), mlhdlc temp dir);
end

Known Limitations

For predefined System Objects, HDL Coder™ only supports the 'step' method and does not support
'output’ and 'update' methods.

With support for only the step method, delays cannot be used in modeling feedback paths. For
example, the following piece of MATLAB code cannot be supported using the dsp.Delay System
object.

s#codegen

function y = accumulate(u)
persistent p;

if isempty(p)

p=20;
end
y =p;
p=p+u;

Create a New HDL Coder Project
To create a new project, enter the following command:
coder -hdlcoder -new mlhdlc sobel

Next, add the file 'mlhdlc_sobel.m' to the project as the MATLAB Function and 'mlhdlc sobel th.m' as
the MATLAB Test Bench.

You can refer to the Getting Started with MATLAB to HDL Workflow tutorial for a more complete
tutorial on creating and populating MATLAB HDL Coder projects.

Run Fixed-Point Conversion and HDL Code Generation

Launch the Workflow Advisor and right-click the 'Code Generation' step. Choose the option 'Run to
selected task' to run all the steps from the beginning through HDL code generation.

Examine the generated HDL code by clicking the hyperlinks in the Code Generation Log window.

Now, create a new project for the system object design:

coder -hdlcoder -new mlhdlc sysobj sobel

Add the file 'mlhdlc_sysobj sobel.m' to the project as the MATLAB Function and
‘'mlhdlc_sysobj sobel th.m'as the MATLAB Test Bench.

Repeat the code generation steps and examine the generated fixed-point MATLAB and HDL code.

Additional Notes:

You can model integer delay using dsp.Delay object by setting the 'Length' property to be greater
than 1. These delay objects will be mapped to shift registers in the generated code.

Model State with Persistent Variables and System Objects

If the optimization option 'Map persistent array variables to RAMs' is enabled, delay System objects

will get mapped to block RAMs under the following conditions:

 ‘'InitialConditions' property of the dsp.Delay is set to zero.

* Delay input data type is not floating-point.

* RAMSize (DelayLength * InputWordLength) is greater than or equal to the 'RAM Mapping
Threshold'.

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc_demo dir
mlhdlc_temp dir
clear mex;

cd (mlhdlc_demo dir);
rmdir(mlhdlc_temp dir, 's');

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderder
[tempdir 'mlhdlc _delay modeling'];

2-31

2 MATLAB Algorithm Design

Bitwise Operations in MATLAB for HDL Code Generation

HDL Coder supports bit shift, bit rotate, bit slice operations that mimic HDL-specific operators
without saturation and rounding logic.

Bit Shiftting and Rotation
Bit Shifting and Rotation Algorithms

The following code implements a barrel shifter/rotator that performs a selected operation (based on
the mode argument) on a fixed-point input operand.

function y = fcn(u, mode)
% Multi Function Barrel Shifter/Rotator

% fixed width shift operation
fixed width = uint8(3);

switch mode
case 1
% shift left logical
y bitsll(u, fixed width);
case 2

o°

shift right logical

y = bitsrl(u, fixed width);
case 3

% shift right arithmetic

y = bitsra(u, fixed width);
case 4

% rotate left

y bitrol(u, fixed width);
case 5

% rotate right
bitror(u, fixed width);
wise
o nothing
u;

othe

< 3
o =l

end
Generated Code

In VHDL code generated for this function, the shift and rotate functions map directly to shift and
rotate instructions in VHDL.

CASE mode IS
WHEN "00000001" =>
-- shift left logical
--'<52>:1:8"
cr := signed(u) sll 3;
y <= std logic vector(cr);
WHEN "00000010" =>
-- shift right logical
--'<S2>:1:11"
b cr := signed(u) srl 3;
y <= std logic vector(b cr);
WHEN "00000011" =>

2-32

Bitwise Operations in MATLAB for HDL Code Generation

-- shift right arithmetic
--'<S82>:1:14"
c cr := SHIFT RIGHT(signed(u) , 3);

y <=

std logic vector(c cr);

WHEN "00000100" =>
-- rotate left

--'<
d cr
y <=
WHEN "00
--r
--'<
e cr
y <=
WHEN OTH
--d
--'<
y <=
END CASE;

The corresponding Verilog code is similar, except that Verilog does not have native operators for

rotate instructions.

case (
1 :

S2>:1:17"'
:= signed(u) rol 3;
std logic vector(d cr);
000101" =>
otate right
S2>:1:20"
:= signed(u) ror 3;
std logic vector(e cr);
ERS =>
o nothing
S$2>:1:23"
u;

mode)

begin
// shift left logical
//'<S52>:1:8'
Cr = u <<< 3;
y = cr;

end

begin
// shift right logical
//'<S2>:1:11"
b cr =u> 3;
y = b cr;

end

begin
// shift right arithmetic
//'<S2>:1:14"
cCcr =u>>3;
y = c cr;

end

begin
// rotate left
//'<S2>:1:17"
d cr = {u[12:0], u[15:131};
y =d cr;

end

begin
// rotate right
//'<52>:1:20"
e cr = {u[2:0], u[l5:31};
y = e cr;

2-33

2 MATLAB Algorithm Design

2-34

end
default :

begin
// do nothing
//'<52>:1:23"
y = u;

end

endcase

Bit Slicing and Bit Concatenation

The bitsliceget and bitconcat functions map directly to slice and concatenate operators in both
VHDL and Verilog.

Bit Slicing and Concatenation Algorithm

You can use the functions bitsliceget and bitconcat to access and manipulate bit slices (fields)
in a fixed-point or integer word. As an example, consider the operation of swapping the upper and
lower 4-bit nibbles of an 8-bit byte. The following example accomplishes this task without resorting to
traditional mask-and-shift techniques.

function y = fcn(u)

% NIBBLE SWAP

y = bitconcat(..
bitsliceget(u, 4, 1),
bitsliceget(u, 8, 5));

Generated Code

The following listing shows the corresponding generated VHDL code.

ENTITY fcn IS
PORT (
clk : IN std logic;
clk enable : IN std logic;
reset : IN std logic;
u : IN std logic vector(7 DOWNTO 0);
y : OUT std logic vector(7 DOWNTO 0));
END nibble swap 7b;

ARCHITECTURE fsm SFHDL OF fcn IS

BEGIN

-- NIBBLE SWAP

y <= u(3 DOWNTO 0) & u(7 DOWNTO 4);
END fsm SFHDL;

The following listing shows the corresponding generated Verilog code.

module fcn (clk, clk enable, reset, u, y);
input clk;
input clk _enable;
input reset;
input [7:0] u;

Bitwise Operations in MATLAB for HDL Code Generation

output [7:0] vy;

// NIBBLE SWAP
assign y = {u[3:0], u[7:41};

endmodule
See Also

More About

. “Bitwise Operations” (Fixed-Point Designer)
. “Fixed-Point Bitwise Functions” on page 2-20
. “Fixed-Point Run-Time Library Functions” on page 2-25

2-35

2 MATLAB Algorithm Design

Guidelines for Writing MATLAB Code to Generate Efficient HDL

Code

2-36

MATLAB Design Requirements for HDL Code Generation

When you generate HDL code from your MATLAB design, you are converting an algorithm into an
architecture that must meet hardware area and speed requirements.

Your MATLAB design has the following requirements:

* MATLAB code within the design must be supported for HDL code generation.
* Inputs and outputs must not be matrices or structures.

If you are generating code from the command line, verify your code readiness for code generation
with the following command:

coder.screener('design function name')

If you use the HDL Workflow Advisor to generate code, this check runs automatically.

For a MATLAB language support reference, including supported functions from the Fixed-Point
Designer, see “Functions Supported for HDL Code Generation — Alphabetical List” on page 1-2.

Guidelines for Writing MATLAB code

For better HDL code and faster code generation, design your MATLAB code according to the
following best practices:

» Serialize your input and output data. Parallel data processing structures require more hardware
resources and a higher pin count.

* Use add and subtract algorithms instead of algorithms that use functions like sine, divide, and
modulo. Add and subtract operations use fewer hardware resources.

* Avoid large arrays and matrices. Large arrays and matrices require more registers and RAM for
storage.

* Convert your code from floating-point to fixed-point. Floating-point data types are inefficient for
hardware realization. HDL Coder provides an automated workflow for floating-point to fixed-point
conversion.

* Unroll loops to increase speed at the cost of higher area; unroll fewer loops and enable the loop
streaming optimization to conserve area at the cost of lower throughput.

See Also

Apps
HDL Coder

Classes
coder.HdlConfig | coder.hdl.loopspec | coder.hdl.pipeline

Guidelines for Writing MATLAB Code to Generate Efficient HDL Code

More About

. “Optimize MATLAB Loops” on page 8-11

. “For-Loop Best Practices for HDL Code Generation” on page 2-38

. “Supported MATLAB Data Types, Operators, and Control Flow Statements” on page 2-2

2-37

2 MATLAB Algorithm Design

For-Loop Best Practices for HDL Code Generation

2-38

When you generate HDL code from your MATLAB design, you are converting an algorithm into an
architecture that must meet hardware area and speed requirements. Some best practices for using
loops in MATLAB code for HDL code generation are:

» Use monotonically increasing loop counters, with increments of 1, to minimize the amount of
hardware generated in the HDL code.

» If you want to use the loop streaming optimization:

* When assigning new values to persistent variables inside a loop, do not use other persistent
variables on the right side of the assignment. Instead, use an intermediate variable.

+ If aloop modifies any elements in a persistent array, the loop should modify all of the elements
in the persistent array.

Monotonically Increasing Loop Counters

By using monotonically increasing loop counters with increments of 1, you can reduce the amount of
hardware in the generated HDL code. The following loop is an example of a monotonically increasing
loop counter with increments of 1.

a=1;

for i=1:10
a=a+l;

end

If a loop counter increases by an increment other than 1, the generated HDL code can require
additional adders. Due to this additional hardware, do not use the following type of loop.

a=1;

for i=1:2:10
a=a+l;

end

If a loop counter decreases, the generated HDL code can require additional adders. Due to this
additional hardware, do not use the following type of loop.

a=1;

for i=10:-1:1
a=a+l;

end

Persistent Variables in Loops

If a loop contains multiple persistent variables, when you assign values to persistent variables, use
intermediate variables that are not persistent on the right side of the assignment. This practice
makes dependencies clear to the compiler and assists internal optimizations during the HDL code
generation process. If you want to use the loop streaming optimization to reduce the amount of
generated hardware, this practice is recommended.

In the following example, varl and var2 are persistent variables. varl is used on the right side of
the assignment. Because a persistent variable is on the right side of an assignment, do not use this
type of loop:

For-Loop Best Practices for HDL Code Generation

for i=1:10
varl =1 + i;
var2 = varl * 2;
end

Instead of using varl on the right side of the assignment, use an intermediate variable that is not
persistent. This example demonstrates this with the intermediate variable var intermediate.

for i=1:10
var_intermediate = 1 + i;
varl var_intermediate;
var2 = var_intermediate * 2;
end

Persistent Arrays in Loops

If a loop modifies elements in a persistent array, make sure that the loop modifies all of the elements
in the persistent array. If all elements of the persistent array are not modified within the loop, HDL
Coder cannot perform the loop streaming optimization.

In the following example, a is a persistent array. The first element is modified outside of the loop. Do
not use this type of loop.

for i=2:10
a(i)=1+i;

end

a(l)=24;

Rather than modifying the first element outside the loop, modify all of the elements inside the loop.

for i=1:10
if i==
a(i)=24;
else
a(i)=1+i;
end
end

See Also

Apps
HDL Coder

Classes
coder.HdlConfig | coder.hdl.loopspec | coder.hdl.pipeline

More About

. “Optimize MATLAB Loops” on page 8-11

. “Guidelines for Writing MATLAB Code to Generate Efficient HDL Code” on page 2-36

. “Supported MATLAB Data Types, Operators, and Control Flow Statements” on page 2-2

2-39

2 MATLAB Algorithm Design

MATLAB Test Bench Requirements and Best Practices for HDL
Code Generation

2-40

What Is a MATLAB Test Bench?

A test bench is a MATLAB script or function that you write to test the algorithm in your MATLAB
design function. The test bench varies the input data to the design to simulate real world conditions.
It can also can check that the output data meets design specifications.

HDL Coder uses the data it gathers from running your test bench with your design to infer fixed-point
data types for floating-point to fixed-point conversion. The coder also uses the data to generate HDL
test data for verifying your generated code. For more information on how to write your test bench for
the best results, see “"MATLAB Test Bench Requirements and Best Practices for HDL Code
Generation” on page 2-40.

MATLAB Test Bench Requirements

You can use any MATLAB data type and function in your test bench.

A MATLAB test bench has the following requirements:

» For floating-point to fixed-point conversion, the test bench must be a script or a function with no
inputs.

* The inputs and outputs in your MATLAB design interface must use the same data types, sizes, and
complexity in each call site in your test bench.

» If you enable the Accelerate test bench for faster simulation option in the Float-to-Fixed
Workflow, the MATLAB constructs in your test bench loop must be compilable.

MATLAB Test Bench Best Practices

Use the following MATLAB test bench best practices:

» Design your test bench to cover the full numeric range of data that the design must handle. HDL
Coder uses the data that it accumulates from running the test bench to infer fixed-point data types
during floating-point to fixed-point conversion.

If you call the design function multiple times from your test bench, the coder uses the
accumulated data from each instance to infer fixed-point types. Both the design and the test bench
can call local functions within the file or other functions on the MATLAB path. The call to the
design function can be at any level of your test bench hierarchy.

* Before trying to generate code, run your test bench in MATLAB . If simulation is slow, accelerate
your test bench. To learn how to accelerate your simulation, see “Accelerate MATLAB Algorithms”
(MATLAB Coder).

» Ifyou have a loop that calls your design function, use only compilable MATLAB constructs within
the loop and enable the Accelerate test bench for faster simulation option.

» Before each test bench simulation run, use the clear variables command to reset your
persistent variables.

To see an example of a test bench, enter this command:

MATLAB Test Bench Requirements and Best Practices for HDL Code Generation

showdemo mlhdlc tutorial float2fixed files

See Also

Apps
HDL Coder

Classes
coder.HdlConfig | coder.hdl.loopspec | coder.hdl.pipeline

More About

. “Guidelines for Writing MATLAB Code to Generate Efficient HDL Code” on page 2-36
. “For-Loop Best Practices for HDL Code Generation” on page 2-38
. “Supported MATLAB Data Types, Operators, and Control Flow Statements” on page 2-2

2-41

MATLAB Best Practices and Design
Patterns for HDL Code Generation

* “Model a Counter for HDL Code Generation” on page 3-2

* “Model a State Machine for HDL Code Generation” on page 3-4

* “Generate Hardware Instances For Local Functions” on page 3-8
“Implement RAM Using MATLAB Code” on page 3-10

3 MATLAB Best Practices and Design Patterns for HDL Code Generation

Model a Counter for HDL Code Generation

In this section...

“MATLAB Counter” on page 3-2

“MATLAB Code for the Counter” on page 3-2
“Best Practices in this Example” on page 3-3

MATLAB Counter

This design pattern shows a MATLAB example of a counter, which is suitable for HDL code
generation.

This model demonstrates the following best practices for writing MATLAB code to generate HDL
code:

» Initialize persistent variables.
* Read persistent variables before they are modified.

This Simulink model illustrates the counter modeled in this example.

Enable
1 » =0 p z
> ?_-1 | - count
count_val
a .
o 4 | .’—|_'-";‘\—
1 > g —
count_add
L
>
15—

count_threshold

MATLAB Code for the Counter

The function mlhdlc_counter is a behavioral model of a four bit synchronous up counter. The input
signal, enable_ctr, triggers the value of the count register, count_val, to increase by one. The
counter continues to increase by one each time the input is nonzero, until the count reaches a limit of
15. After the counter reaches this limit, the counter returns to zero. A persistent variable, which is
initialized to zero, represents the current value of the count. Two if statements determine the value

of the count based on the input.

3-2

Model a Counter for HDL Code Generation

The following section of code defines the mldhlc counter function.

s#codegen
function count = mlhdlc counter(enable ctr)
%sfour bit synchronous up counter

%spersistent variable for the state
persistent count val;
if isempty(count val)
count val = 0;
end

scounting up
if enable ctr
count val=count val+l;

%limit to four bits
if count _val>15
count val=0;
end
end

count=count val;

end

Best Practices in this Example

This design pattern demonstrates two best practices for writing MATLAB code for HDL code
generation:

+ Initialize persistent variables to a specific value. In this example, an if statement and the
isempty function initialize the persistent variable. If the persistent variable is not initialized then
HDL code cannot be generated.

* Inside a function, read persistent variables before they are modified, in order for the persistent
variables to be inferred as registers.

3-3

3 MATLAB Best Practices and Design Patterns for HDL Code Generation

Model a State Machine for HDL Code Generation

3-4

In this section...

“MATLAB State Machines” on page 3-4
“MATLAB Code for the Mealy State Machine” on page 3-4
“MATLAB Code for the Moore State Machine” on page 3-5

“Best Practices” on page 3-7

MATLAB State Machines

The following design pattern shows MATLAB examples of Mealy and Moore state machines which are
suitable for HDL code generation.

The MATLAB code in these models demonstrates best practices for writing MATLAB models for HDL
code generation.

* With a switch block, use the otherwise statement to account for all conditions.
» Use variables to designate states in a state machine.

In a Mealy state machine, the output depends on the state and the input. In a Moore state machine,
the output depends only on the state.

MATLAB Code for the Mealy State Machine

The following MATLAB code defines the mlhdlc_fsm mealy function. A persistent variable
represents the current state. A switch block uses the current state and input to determine the
output and new state. In each case in the switch block, an if-else statement calculates the new
state and output.

s#codegen
function Z = mlhdlc_ fsm mealy(A)
% Mealy State Machine

y = f(x,u)
all actions are condition actions and
outputs are function of state and input

o° o o°

% define states
S1 = 0;
S2 = 1;
S3 = 2;
S4 = 3;

persistent current state;
if isempty(current state)

current state = S1;
end

% switch to new state based on the value state register
switch (current state)

Model a State Machine for HDL Code Generation

end

case S1,

o

if (A)
Z = true;
current state
else
Z = false;

current state

end
case S2,
if (A)
Z = false;
current state
else
Z = true;
current state
end
case S3,
if (A)
Z = false;
current state
else
Z = true;
current state
end
case 5S4,
if (A)
Z = true;
current state
else
Z = false;
current state
end
otherwise,
Z = false;

S1;

S2;

S3;

S2;

S4;

S1;

S1;

S3;

% value of output 'Z' depends both on state and inputs

MATLAB Code for the Moore State Machine

The following MATLAB code defines the mlhdlc_fsm _moore function. A persistent variable
represents the current state, and a switch block uses the current state to determine the output and
new state. In each case in the switch block, an if-else statement calculates the new state and
output. The value of the state is represented by numerical variables.

%s#codegen

function Z = mlhdlc_fsm moore(A)

% Moore State Machine

3 MATLAB Best Practices and Design Patterns for HDL Code Generation

y = f(x)
all actions are state actions and
outputs are pure functions of state only

o° o o°

°

5 define states

S1 = 0;
S2 = 1;
S3 = 2;
S4 = 3;

’

% using persistent keyword to model state registers in hardware
persistent curr_state;
if isempty(curr_state)

curr_state = S1;
end
% switch to new state based on the value state register
switch (curr_state)

case S1,

% value of output 'Z' depends only on state and not on inputs
Z = true;

% decide next state value based on inputs

if (~A)
curr_state = S1;
else
curr_state = S2;
end
case S2,
Z = false;
if (~A)
curr_state = S1;
else
curr_state = S3;
end
case S3,
Z = false;
if (~A)
curr_state = S2;
else
curr_state = S4;
end
case 5S4,
Z = true;
if (~A)

curr_state = S3;

Model a State Machine for HDL Code Generation

else
curr_state = S1;
end

otherwise,
Z = false;
end

Best Practices

This design pattern demonstrates two best practices for writing MATLAB code for HDL code
generation.

* With a switch block, use the otherwise statement to ensure that the model accounts for all
conditions. If the model does not cover all conditions, the generated HDL code can contain errors.

» To designate the states in a state machine, use variables with numerical values.

3 MATLAB Best Practices and Design Patterns for HDL Code Generation

Generate Hardware Instances For Local Functions

3-8

In this section...

“MATLAB Local Functions” on page 3-8
“MATLAB Code for mlhdlc_two counters.m” on page 3-8

MATLAB Local Functions

The following example shows how to use local functions in MATLAB, so that each execution of a local
function corresponds to a separate hardware module in the generated HDL code. This example
demonstrates best practices for writing local functions in MATLAB code that is suitable for HDL code
generation.

» If your MATLAB code executes a local function multiple times, the generated HDL code does not
necessarily instantiate multiple hardware modules. Rather than instantiating multiple hardware
modules, multiple calls to a function typically update the state variable.

» Ifyou want the generated HDL code to contain multiple hardware modules corresponding to each
execution of a local function, specify two different local functions with the same code but different
function names. If you want to avoid code duplication, consider using System objects to implement
the behavior in the function, and instantiate the System object multiple times.

» If you want to specify a separate HDL file for each local function in the MATLAB code, in the
Workflow Advisor, on the Advanced tab in the HDL Code Generation section, select Generate
instantiable code for functions .

MATLAB Code for mlhdlc_two_counters.m

This function creates two counters and adds the output of these counters. To create two counters,
there are two local functions with identical code, counter and counter2. The main method calls
each of these local functions once. If the function were to call the counter function twice, separate
hardware modules for the counters would not be generated in the HDL code.

s#codegen
function total count = mlhdlc_two counters(a,b)

%This function contains two different local functions with identical
%counters and calls each counter once.

total countl=counter(a);
total count2=counter2(b);
total count=total countl+total count2;

function count = counter(enable ctr)
%four bit synchronous up counter

%spersistent variable for the state
persistent count val;
if isempty(count val)
count val = 0;
end

Generate Hardware Instances For Local Functions

scounting up
if enable ctr

count _val=count val+l;
end

%limit from four bits
if count val>15

count val=0;
end

count=count val;

function count = counter2(enable ctr)
%four bit synchronous up counter

%spersistent variable for the state
persistent count val;
if isempty(count val)
count val = 0;
end

scounting up
if enable ctr

count val=count val+l;
end

%limit from four bits
if count val>15

count val=0;
end

count=count _val;

3 MATLAB Best Practices and Design Patterns for HDL Code Generation

Implement RAM Using MATLAB Code

3-10

In this section...

“Implementation of RAM” on page 3-10
“Implement RAM Using a Persistent Array or System object Properties” on page 3-10

“Implement RAM Using hdl.RAM” on page 3-11

Implementation of RAM

You can write MATLAB code that maps to RAM during HDL code generation by using:

» Persistent arrays or private properties in a user-defined System object.
* hdl.RAM System objects.

The following examples model the same line delay in MATLAB. However, one example uses a
persistent array and the other uses an hd1.RAM System object to model the RAM behavior.

The line delay uses memory in a ring structure. Data is written to one location and read from another
location in such a way that the data written is read after a delay of a specific number of cycles. The
RAM read address is generated by a counter. The write address is generated by adding a constant
value to the read address.

For a comparison of the ways you can write MATLAB code to map to RAM during HDL code
generation, and for an overview of the tradeoffs, see “RAM Mapping Comparison for MATLAB Code”
on page 8-6. For more information, see “Map Persistent Arrays and dsp.Delay to RAM” on page 8-

3.

Implement RAM Using a Persistent Array or System object Properties

This example shows a line delay that implements the RAM behavior using a persistent array with the
function mlhdlc_hdlram persistent. Changing a specific value in the persistent array is
equivalent to writing to the RAM. Accessing a specific value in the array is equivalent to reading from
the RAM.

You can implement RAM by using user-defined System object private properties in the same way.

s#codegen
function data out = mlhdlc _hdlram persistent(data_in)

persistent hRam;
if isempty(hRam)

hRam = zeros(128,1);
end

% read address counter

persistent rdAddrCtr;

if isempty(rdAddrCtr)
rdAddrCtr = 1;

end

% ring counter length
ringCtrLength = 10;

Implement RAM Using MATLAB Code

ramWriteAddr = rdAddrCtr + ringCtrLength;

ramWriteData = data in;
sramWriteEnable = true;

ramReadAddr = rdAddrCtr;
% execute single step of RAM

hRam(ramWriteAddr)=ramWriteData;
ramRdDout=hRam(ramReadAddr) ;

rdAddrCtr = rdAddrCtr + 1;

data out = ramRdDout;

Implement RAM Using hdl.RAM

This example shows a line delay that implements the RAM behavior using hdl.RAM with the function,
mlhdlc _hdlram sysobj. In this function, the step method of the hdl.RAM System object reads
and writes to specific locations in hRam.

%#codegen
function data out = mlhdlc_hdlram sysobj(data in)
persistent hRam;
if isempty(hRam)
hRam = hdl.RAM('RAMType', 'Dual port');
end

% read address counter
persistent rdAddrCtr;
if isempty(rdAddrCtr)
rdAddrCtr = 0;
end
% ring counter length
ringCtrLength = 10;
ramwWriteAddr = rdAddrCtr + ringCtrLength;

ramWriteData = data in;
ramWriteEnable = true;

ramReadAddr = rdAddrCtr;

% execute single step of RAM

[~, ramRdDout] = step(hRam, ramWriteData, ramWriteAddr,
ramWriteEnable, ramReadAddr) ;

rdAddrCtr = rdAddrCtr + 1;

data out = ramRdDout;

hdl.RAM Restrictions for Code Generation

Code generation from hdl.RAM has the same restrictions as code generation from other System
objects. For details, see “Limitations of HDL Code Generation for System Objects” on page 2-12.

3-11

Fixed-Point Conversion

* “Specify Type Proposal Options” on page 4-2

* “Log Data for Histogram” on page 4-5

* “View and Modify Variable Information” on page 4-7

* “Automated Fixed-Point Conversion” on page 4-9

* “Custom Plot Functions” on page 4-23

* “Visualize Differences Between Floating-Point and Fixed-Point Results” on page 4-24
+ “Inspecting Data Using the Simulation Data Inspector” on page 4-29

* “Enable Plotting Using the Simulation Data Inspector” on page 4-31

* “Replacing Functions Using Lookup Table Approximations” on page 4-32
* “Replace a Custom Function with a Lookup Table” on page 4-33

* “Replace the exp Function with a Lookup Table” on page 4-39

* “Data Type Issues in Generated Code” on page 4-45

4 Fixed-Point Conversion

Specify Type Proposal Options

Basic Type Proposal Settings |Values

Description

Fixed-point type proposal mode |Propose fraction lengths for Use the specified word length
specified word length

for data type proposals and
propose the minimum fraction
lengths to avoid overflows.

Propose word lengths for
specified fraction length
(default)

Use the specified fraction length
for data type proposals and
propose the minimum word
lengths to avoid overflows.

Default word length 14 (default)

Default word length to use when
Fixed-point type proposal
mode is set to Propose
fraction lengths for
specified word lengths

Default fraction length 4 (default)

Default fraction length to use
when Fixed-point type
proposal mode is set to
Propose word lengths for
specified fraction
lengths

Advanced Type Proposal Settings

Values

Description

When proposing types

ignore simulation
ranges

Propose data types based on derived
ranges.

Note Manually-entered static ranges always
take precedence over simulation ranges.

ignore derived ranges

Propose data types based on simulation
ranges.

use all collected data
(default)

Propose data types based on both
simulation and derived ranges.

Propose target container types

Yes

Propose data type with the smallest
word length that can represent the
range and is suitable for C code
generation (8,16,32, 64 ...). For
example, for a variable with range
[0..7], propose a word length of 8
rather than 3.

No (default)

Propose data types with the minimum
word length needed to represent the
value.

Optimize whole numbers

No

Do not use integer scaling for variables
that were whole numbers during
simulation.

Yes (default)

Use integer scaling for variables that
were whole numbers during simulation.

4-2

Specify Type Proposal Options

Advanced Type Proposal Settings

Values

Description

Signedness

Automatic (default)

Proposes signed and unsigned data
types depending on the range
information for each variable.

Signed

Propose signed data types.

Unsigned

Propose unsigned data types.

Safety margin for sim min/max (%)

0 (default)

Specify safety factor for simulation
minimum and maximum values.

The simulation minimum and maximum
values are adjusted by the percentage
designated by this parameter, allowing
you to specify a range different from
that obtained from the simulation run.
For example, a value of 55 specifies that
you want a range at least 55 percent
larger. A value of - 15 specifies that a
range up to 15 percent smaller is
acceptable.

Search paths "' (default) Add paths to the list of paths to search
for MATLAB files. Separate list items
with a semicolon.

fimath Settings Values Description
Rounding method Ceiling Specify the fimath properties
Convergent for the generated fixed-point
data types.
Floor (default)
Nearest The default fixed-point math
properties use the Floor
Round rounding and Wrap overflow.
Zero These settings generate the
Dvedilon aetan el most efficient code but might

Wrap (default)

cause problems with overflow.

Product mode

FullPrecision (default)

After code generation, if

KeepLSB

required, modify these settings
to optimize the generated code,

KeepMSB

or example, avoid overflow or

SpecifyPrecision

eliminate bias, and then rerun
the verification.

Sum mode

FullPrecision (default)

KeepLSB

For more information on

KeepMSB

fimath properties, see “fimath
Object Properties” (Fixed-Point

SpecifyPrecision

Designer).

4-3

4 Fixed-Point Conversion

4-4

Generated File Settings

Value

Description

Generated fixed-point file name
suffix

_fixpt (default)

Specify the suffix to add to the
generated fixed-point file
names.

Plotting and Reporting Values Description
Settings
Custom plot function "' (default) Specify the name of a custom

plot function to use for
comparison plots.

Plot with Simulation Data
Inspector

No (default)

Yes

Specify whether to use the
Simulation Data Inspector for
comparison plots.

Highlight potential data type
issues

No (default)

Yes

Specify whether to highlight
potential data types in the
generated html report. If this
option is turned on, the report
highlights single-precision,
double-precision, and expensive
fixed-point operation usage in
your MATLAB code.

Log Data for Histogram

Log Data for Histogram

To log data for histograms:

1

3

In the Fixed-Point Conversion window, click Run Simulation and select Log data for
histogram, and then click the Run Simulation button.

The simulation runs and the simulation minimum and maximum ranges are displayed on the
Variables tab. Using the simulation range data, the software proposes fixed-point types for each
variable based on the default type proposal settings, and displays them in the Proposed Type
column.

To view a histogram for a variable, click the variable’s Proposed Type field.

-~

Whole Mumber Proposed Type

I_|nu|'nerict}-'pe(1, 161, (143
M

. I
.

Sim values covered 99% Signed

Supported range -2 : 1.9999
20

You can view the effect of changing the proposed data types by:

* Selecting and dragging the white bounding box in the histogram window. This action does not
change the word length of the proposed data type, but modifies the position of the binary
point within the word so that the fraction length of the proposed data type changes.

* Selecting and dragging the left edge of the bounding box to increase or decrease the word
length. This action does not change the fraction length or the position of the binary point.

4 Fixed-Point Conversion

4-6

I_lnumerict}rpetl, 16, (14))
M

Sim values covered 99% Signed

Supported range -2 : 1.9999

- 1€

* Selecting and dragging the right edge to increase or decrease the fraction length of the
proposed data type. This action does not change the position of the binary point. The word
length changes to accommodate the fraction length.

* Selecting or clearing Signed. Clear Signed to ignore negative values.

Before committing changes, you can revert to the types proposed by the automatic conversion by

A-)

clicking .

View and Modify Variable Information

View and Modify Variable Information

View Variable Information

In the Fixed-Point Conversion tool, you can view information about the variables in the MATLAB
functions. To view information about the variables for the selected function, use the Variables tab or
pause over a variable in the code window. For more information, see “Viewing Variables” on page 4-
14.

You can view the variable information:

Variable

Variable name. Variables are classified and sorted as inputs, outputs, persistent, or local variables.
Type

The original size, type, and complexity of each variable.

Sim Min

The minimum value assigned to the variable during simulation.

Sim Max

The maximum value assigned to the variable during simulation.

To search for a variable in the MATLAB code window and on the Variables tab, use Ctr1+F.

Modify Variable Information

If you modify variable information, the app highlights the modified values using bold text. You can
modify the following fields:

Static Min

You can enter a value for Static Min into the field or promote Sim Min information. See
“Promote Sim Min and Sim Max Values” on page 4-8.

Editing this field does not trigger static range analysis, but the app uses the edited values in
subsequent analyses.

Static Max

You can enter a value for Static Max into the field or promote Sim Max information. See
“Promote Sim Min and Sim Max Values” on page 4-8.

Editing this field does not trigger static range analysis, but the app uses the edited values in
subsequent analyses.

Whole Number

The app uses simulation data to determine whether the values assigned to a variable during
simulation were always integers. You can manually override this field.

Editing this field does not trigger static range analysis, but the app uses the edited value in
subsequent analyses.

4 Fixed-Point Conversion

4-8

Proposed Type

You can modify the signedness, word length, and fraction length settings individually:

* On the Variables tab, modify the value in the ProposedType field.

Proposed Type

numerictype((1], |16,]I
A

numerictyy Enter fraction length

* In the code window, select a variable, and then modify the Proposed Type field.

If you selected to log data for a histogram, the histogram dynamically updates to reflect the
modifications to the proposed type. You can also modify the proposed type in the histogram, see
“Histogram” on page 4-19.

Revert Changes

To clear results and revert edited values, right-click the Variables tab and select Reset entire
table.

To revert the type of a selected variable to the type computed by the app, right-click the field and
select Undo changes.

To revert changes to variables, right-click the field and select Undo changes for all
variables.

To clear a static range value, right-click an edited field and select Clear this static range.

To clear manually entered static range values, right-click anywhere on the Variables tab and
select Clear all manually entered static ranges.

Promote Sim Min and Sim Max Values

With the app, you can promote simulation minimum and maximum values to static minimum and
maximum values. This capability is useful if you have not specified static ranges and you have
simulated the model with inputs that cover the full intended operating range.

To copy:

A simulation range for a selected variable, select a variable, right-click, and then select Copy sim
range.

Simulation ranges for top-level inputs, right-click the Static Min or Static Max column, and then
select Copy sim ranges for all top-level inputs.

Simulation ranges for persistent variables, right-click the Static Min or Static Max column, and
then select Copy sim ranges for all persistent variables.

Automated Fixed-Point Conversion

Automated Fixed-Point Conversion

In this section...

“License Requirements” on page 4-9
“Automated Fixed-Point Conversion Capabilities” on page 4-9
“Code Coverage” on page 4-10

“Proposing Data Types” on page 4-12
“Locking Proposed Data Types” on page 4-13
“Viewing Functions” on page 4-14

“Viewing Variables” on page 4-14
“Histogram” on page 4-19

“Function Replacements” on page 4-20
“Validating Types” on page 4-21

“Testing Numerics” on page 4-21

“Detecting Overflows” on page 4-21

License Requirements

Fixed-point conversion requires the following licenses:

* Fixed-Point Designer
* MATLAB Coder™

Automated Fixed-Point Conversion Capabilities

You can convert floating-point MATLAB code to fixed-point code using the Fixed-Point Conversion tool
in HDL Coder projects. You can choose to propose data types based on simulation range data, derived
(also known as static) range data, or both.

You can manually enter static ranges. These manually-entered ranges take precedence over
simulation ranges and the tool uses them when proposing data types. In addition, you can modify and
lock the proposed type so that the tool cannot change it. For more information, see “Locking
Proposed Data Types” on page 4-13.

For a list of supported MATLAB features and functions, see “MATLAB Language Features Supported
for Automated Fixed-Point Conversion” (MATLAB Coder).

During fixed-point conversion, you can:

» Verify that your test files cover the full intended operating range of your algorithm using code
coverage results.

* Propose fraction lengths based on default word lengths.

* Propose word lengths based on default fraction lengths.

* Optimize whole numbers.

» Specify safety margins for simulation min/max data.

4-9

4 Fixed-Point Conversion

» Validate that you can build your project with the proposed data types.
* Test numerics by running the test bench with the fixed-point types applied.

* View a histogram of bits used by each variable.

* Detect overflows.

Code Coverage

By default, the Fixed-Point Conversion tool shows code coverage results. Your test files must exercise
the algorithm over its full operating range so that the simulation ranges are accurate. The quality of
the proposed fixed-point data types depends on how well the test files cover the operating range of
the algorithm with the accuracy that you want. Reviewing code coverage results helps you verify that
your test files are exercising the algorithm adequately. If the code coverage is inadequate, modify the
test files or add more test files to increase coverage. If you simulate multiple test files in one run, the
tool displays cumulative coverage. However, if you specify multiple test files but run them one at a
time, the tool displays the coverage of the file that ran last.

The tool displays a color-coded coverage bar to the left of the code.

1 function y = ex ZndOrder filter(x) %Fcodegen
2z persistent =

3 if isempty(z)

4 z = geros(Z,1l);

= end

6 % [b,a] = butter (2, 25)

7 b = [0.0876310725378175, 0.195262145875635,
8 a = [1, -0.9428059041582063,
9

10

11 ¥y = Zeros(size(x));

&= for i=l:length(x)

13 ¥vii) = b{l)y*=x(i) + =(1):

14 z(1l) = kB(2)*=x(i) + =(2Z) - a(Z) * y(i):
15 z(2) = b(3)*x(i) — a(3) * vi(i):
1a end

17 end

This table describes the color coding.

4-10

0.0876310725378175];
0.33333333333333331»

Automated Fixed-Point Conversion

B T O T I T= = T B S T RSN SR S R

Green

One of the following situations:

* The entry-point function executes multiple times and the code executes more
than one time.

* The entry-point function executes one time and the code executes one time.

Different shades of green indicate different ranges of line execution counts. The
darkest shade of green indicates the highest range.

Orange

The entry-point function executes multiple times, but the code executes one
time.

Red

Code does not execute.

When you pause over the coverage bar, the color highlighting extends over the code. For each section
of code, the app displays the number of times that section executes.

To verify that your test files are testing your algorithm over the intended operating range, review the
code coverage results.

Green If you expect sections of code to execute more frequently than the coverage
shows, either modify the MATLAB code or the test files.
Orange This behavior is expected for initialization code, for example, the initialization

of persistent variables. If you expect the code to execute more than one time,
either modify the MATLAB code or the test files.

4 Fixed-Point Conversion

4-12

Coverage Bar Action
Color
Red If the code that does not execute is an error condition, this behavior is

acceptable. If you expect the code to execute, either modify the MATLAB code
or the test files. If the code is written conservatively and has upper and lower
boundary limits, and you cannot modify the test files to reach this code, add
static minimum and maximum values. See “Computing Derived Ranges” on
page 4-13.

Code coverage is on by default. Turn it off only after you have verified that you have adequate test file
coverage. Turning off code coverage can speed up simulation. To turn off code coverage, in the Fixed-
Point Conversion tool:

1 (Click Run Simulation.
2 (Clear Show code coverage.

Proposing Data Types

The Fixed-Point Conversion tool proposes fixed-point data types based on computed ranges and the
word length or fraction length setting. The computed ranges are based on simulation range data,
derived range data, or both. If you run a simulation and compute derived ranges, the conversion tool
merges the simulation and derived ranges.

Note You cannot propose data types based on derived ranges for MATLAB classes.

You can manually enter static ranges. These manually-entered ranges take precedence over
simulation ranges and the tool uses them when proposing data types. In addition, you can modify and
lock the proposed type so that the tool cannot change it. For more information, see “Locking
Proposed Data Types” on page 4-13.

Running a Simulation

When you open the Fixed-Point Conversion tool, the tool generates an instrumented MEX function for
your MATLAB design. If the build completes without errors, the tool displays compiled information
(type, size, complexity) for functions and variables in your code. To navigate to local functions, click
the Functions tab. If build errors occur, the tool provides error messages that link to the line of code
that caused the build issues. You must address these errors before running a simulation. Use the link
to navigate to the offending line of code in the MATLAB editor and modify the code to fix the issue. If
your code uses functions that are not supported for fixed-point conversion, the tool displays them on
the Function Replacements tab. See “Function Replacements” on page 4-20.

Before running a simulation, specify the test bench that you want to run. When you run a simulation,
the tool runs the test bench, calling the instrumented MEX function. If you modify the MATLAB
design code, the tool automatically generates an updated MEX function before running the test
bench.

If the test bench runs successfully, the simulation minimum and maximum values and the proposed
types are displayed on the Variables tab. If you manually enter static ranges for a variable, the
manually-entered ranges take precedence over the simulation ranges. If you manually modify the
proposed types by typing or using the histogram, the data types are locked so that the tool cannot
modify them.

Automated Fixed-Point Conversion

If the test bench fails, the errors are displayed on the Simulation Output tab.

The test bench should exercise your algorithm over its full operating range. The quality of the
proposed fixed-point data types depends on how well the test bench covers the operating range of the
algorithm with the desired accuracy.

Optionally, you can select to log data for histograms. After running a simulation, you can view the
histogram for each variable. For more information, see “Histogram” on page 4-19.

Computing Derived Ranges

The advantage of proposing data types based on derived ranges is that you do not have to provide
test files that exercise your algorithm over its full operating range. Running such test files often takes
a very long time.

To compute derived ranges and propose data types based on these ranges, provide static minimum
and maximum values or proposed data types for all input variables. To improve the analysis, enter as
much static range information as possible for other variables. You can manually enter ranges or
promote simulation ranges to use as static ranges. Manually-entered static ranges always take
precedence over simulation ranges.

If you know what data type your hardware target uses, set the proposed data types to match this
type. Manually-entered data types are locked so that the tool cannot modify them. The tool uses these
data types to calculate the input minimum and maximum values and to derive ranges for other
variables. For more information, see “Locking Proposed Data Types” on page 4-13.

When you select Compute Derived Ranges, the tool runs a derived range analysis to compute static
ranges for variables in your MATLAB algorithm. When the analysis is complete, the static ranges are
displayed on the Variables tab. If the run produces +/ - Inf derived ranges, consider defining ranges
for all persistent variables.

Optionally, you can select Quick derived range analysis. With this option, the conversion tool
performs faster static analysis. The computed ranges might be larger than necessary. Select this
option in cases where the static analysis takes more time than you can afford.

If the derived range analysis for your project is taking a long time, you can optionally set a timeout.
The tool aborts the analysis when the timeout is reached.

Locking Proposed Data Types

You can lock proposed data types against changes by the Fixed-Point Conversion tool using one of the
following methods:

* Manually setting a proposed data type in the Fixed-Point Conversion tool.

* Right-clicking a type proposed by the tool and selecting Lock computed value.

The tool displays locked data types in bold so that they are easy to identify. You can unlock a type
using one of the following methods:

* Manually overwriting it.

* Right-clicking it and selecting Undo changes. This action unlocks only the selected type.

* Right-clicking and selecting Undo changes for all variables. This action unlocks all locked
proposed types.

4-13

4 Fixed-Point Conversion

Viewing Functions

You can view a list of functions in your project on the Navigation pane. This list also includes
function specializations and class methods. When you select a function from the list, the MATLAB
code for that function or class method is displayed in the Fixed-Point Conversion tool code window.

A\ Fixed-Point Conversion - fun_with_matlab.prj EI@

Run Simulation Compute Derived

-

HL"J ; ; ? Propose fraction lengths @ Q:;P L) Q)
Function: L% fun_with_matlab = i Iﬁ Propose word lengths
Default word length: | 16

|

ced Validate Types Test Numerics Help

-

Ranges = 1 fun_with_matlab k

4

DATA COLLECTION NAVIGATION TYFE FROPOSAL VERIFICATION HELF

After conversion, the left pane also displays a list of output files including the fixed-point version of
the original algorithm. If your function is not specialized, the conversion retains the original function
name in the fixed-point filename and appends the fixed-point suffix. For example, the fixed-point
version of fun_with matlab.mis fun_with matlab_ fixpt.m.

Viewing Variables

The Variables tab provides the following information for each variable in the function selected in the
Navigation pane:

4-14

Type — The original data type of the variable in the MATLAB algorithm.

Sim Min and Sim Max — The minimum and maximum values assigned to the variable during
simulation.

You can edit the simulation minimum and maximum values. Edited fields are shown in bold.
Editing these fields does not trigger static range analysis, but the tool uses the edited values in
subsequent analyses. You can revert to the types proposed by the tool.

Static Min and Static Max — The static minimum and maximum values.

To compute derived ranges and propose data types based on these ranges, provide static minimum
and maximum values for all input variables. To improve the analysis, enter as much static range
information as possible for other variables.

When you compute derived ranges, the Fixed-Point Conversion tool runs a static analysis to
compute static ranges for variables in your code. When the analysis is complete, the static ranges
are displayed. You can edit the computed results. Edited fields are shown in bold. Editing these
fields does not trigger static range analysis, but the tool uses the edited values in subsequent
analyses. You can revert to the types proposed by the tool.

Whole Number — Whether all values assigned to the variable during simulation are integers.

The Fixed-Point Conversion tool determines whether a variable is always a whole number. You can
modify this field. Edited fields are shown in bold. Editing these fields does not trigger static range
analysis, but the tool uses the edited values in subsequent analyses. You can revert to the types
proposed by the tool.

The proposed fixed-point data type for the specified word (or fraction) length. Proposed data types
use the numerictype notation. For example, numerictype(1l,16,12) denotes a signed fixed-
point type with a word length of 16 and a fraction length of 12. numerictype(0,16,12) denotes
an unsigned fixed-point type with a word length of 16 and a fraction length of 12.

Automated Fixed-Point Conversion

Because the tool does not apply data types to expressions, it does not display proposed types for

them. Instead, it displays their original data types.

You can also view and edit variable information in the code pane by placing your cursor over a

variable name.

You can use Ctrl+F to search for variables in the MATLAB code and on the Variables tab. The tool

highlights occurrences in the code and displays only the variable with the specified name on the

Variables tab.

Viewing Information for MATLAB Classes

The tool displays:

* Code for MATLAB classes and code coverage for class methods in the code window. Use the
Function list in the Navigation bar to select which class or class method to view.

4\ Fixed-Point Conversion - counter.prj

1,

(]

’}% H@j O Propose fraction lengths (O < @
Elneiin .P-' next - ~ Propose word lengths "
Run Simulation Cur;;;ute Derived Default word length: |16 Advanced Valdate Types TestMumerics Help
- nges J* - -
.f'i’_.
DATA COLLECTION A G k‘ TYPE PROPOSAL VERIFICATION HELP
J% use_counter
- ~ ey - -
’/\H HQ) : _ © Propose fraction lengths Oy Qﬁ ’) @
Function: 7 next - Iﬁ ™ Propose word lengths
Run Simulation Corg;:ﬂe Derived L Default word length: |15 Advanced Validate Types Test Numerics Help
- nges = - -
DATA COLLEGTION NAVIGATION TYPE PROPOSAL VERIFICATION HELF

W m -1 & ook W

I I R R R = T e e = = =y o
& WM O wom-1mone W e O

classdef Counter < handle
properties
Value;

end

methods (Static)
function t = MAX VALUE ()
T = 128;
end
end

methods
function this = Counter|()
this.Value = 0;
end
function out = next (this)

out = this.Value;

if this.Value == this.MAX VALUE
this.Value = 0;

else
this.Value = this.Value + 1:

end

end
end
end

4-15

4 Fixed-Point Conversion

* Information about MATLAB classes on the Variables tab.

Wariables | Function Replacements | Simulation Qutput

Specializations

Variable Type Sim Min Sirmn Max Static Min Static Max
4

this Counter Unknonwen Unknowen

this Walue double 1] 1024
i

W double I 1024

Whele Number Proposed Type

Mo
Yes numerictype(0, 11, 0)
Yes numerictypell, 11, 0

If a function is specialized, the tool lists each specialization and numbers them sequentially. For
example, consider a function, dut, that calls subfunctions, foo and bar, multiple times with different

input types.

function y = dut(u, v)

ttl = foo(u);

tt2 = foo([u vl]);

tt3 = foo(complex(u,v));
ssl = bar(u);

ss2 = bar([u v]);

ss3 = bar(complex(u,v));

y = (ttl + ssl) + sum(tt2 + ss2) + real(tt3) + real(ss3);
end
function y = foo(u)
y =u* 2;
end
function y = bar(u)

y =u * 4;
end

4-16

Automated Fixed-Point Conversion

[Cl function ¥ = dut{u,)

ttl = foo(u)r
ttc2 foo([u v]):
tt3 = foo(complex(u,v)):

551 = bar(u)r
=52 bar([u v]):

283 = bar (complex(u,v)):

v {ttl + =2=1) + sum(ttZ + 322) + real(tt3) + real(s=3):

-end

function v = foo{u)
¥y =u * 2;

end

function v = bar{u)
¥y =u * 4;

end

Varisbles | Function Replacerens |

Variable Type Whole Number Proposed Type

4 Input
Mo

Mo

u double

W double
4 Output

y double Mo
4 Local

551 double

If you select a specialization, the app displays only the variables used by the specialization.

4-17

4 Fixed-Point Conversion

4\ Fixed-Point Conversion - dut.prj [ro]]
’;H HQ—,I :) © Propose fraction lengths @ ., L @
)) . Function: /= foa>1 = Iﬁ ™ Propose word lengths . .
Run Simulation Compute Derived = . Default word length: 16 Advanced Walidate Types Test Numerics Help
A Ranges - - -
DATA COLLECTION MAVIGATION TYPE PROPOSAL VERIFICATION HELP
1 function ¥ = dut{ua, ¥)
&
B ttl = foo(u):
4 tt2 = foo([u ¥v]):
5 tt3 = foo(complex(u,v)):
5]
7 sl = bar(u):
=1 882 = bar([u v]):
= 283 = bar(complex(u,v)):
10
11 v = (ttl + s31) + sum(tt2 + ==52) + real(tt3) + real(ss3):
1z
13 end
14
15 function v = foo(u)
16 ¥y =u * 2
17 end
15
19 function v = bar(u)
z0 ¥ =u * 4;
21 end
Wariables | Function Replacements
Variable Type Sim Min Sim Max Static Min Static Max Whole Number Proposed Type
P
u double Mo
4
Y double Mo

4-18

In the generated fixed-point code, the number of each fixed-point specialization matches the number
in the Source Code list which makes it easy to trace between the floating-point and fixed-point
versions of your code. For example, the generated fixed-point function for foo > 1 is named

foo sl.

Automated Fixed-Point Conversion

M Editor - C:\Worlk\specializations\codegen'dut\fixpt\dut_fixpt.m [Read Only]

PUBLISH

,f']j ™ % [Find Files. & o Insert 5 fx [5] = D L@ 3] A Sccton

[Compare > ©fGoTo ~ Comment % g %

=))

RRE S A S =0

&

New Open Save Breakpoints Run Run and @Mvanoe Run and
- - v (=Pt v _ Find = Indent doz) ek - ~ Advance Time
FILE NAVIGATE EDIT BREAKPOINTS RUN
| dut.m | dut_fixpt.m |+ |
1 g%%% TD
2 % %
3 % Generated by MATLAB 8.4 and Fixed-Point Designer 4.3 3
4 % %
5 I TEIE TR L IR LR LT LT TR TR L TR LT LT LT TT LTI RRTLTRLRRRRLRRR
& %¥codegen
T function v = dut_fixptiu, v)
g
9 - fm = fimath('RoundingMethod', 'Floor', 'Overflowhction', 'Wrap', 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128, 'SumMode', 'Full
10
11 - tcl = fi(foo_sl(u), O, 5, O, fm): E
12 = tc2 = fi(foo_s2([fi(u, O, 5, O, fm) ¥I1)}, O, &, 0O, Im):
13 - tt3 = fi(foo_s3(complex(u,v)), 9, &, 0, Im);:
14
15 — =3l = fi(bar sl(u), O, &, 0, fm):
16 — =32 = fi(bar s2([fi(u, O, 5, 0, fm) ¥l), O, 7, O, fm):
AT = =33 = fi (bar_ s3(complex(u,v)), 0, 7, 0, fm):
18
19 — ¥y = fi((ttl + ss51) + sum(tt2 + s5s52) + real(tt3) + real(ss3), 0, S, 0, fm):
20 u
21| = end
22
23 function y = foo_sl(u)
24 — fm = fimath ('RoundingMethod', 'Floor', 'CverflowhAction', 'Wrap', 'ProductMode', 'FullPrecision', 'MaxProductWordLength',6 128, 'SumMode', 'Fu
25
26 — y=filu * £i(2, 0, 2, O, fm), O, 5, 0, £m):
27 — end
28
29 function v = foo_s2 (u)
30 — fm = fimath ('RoundingMethod', 'Floor', 'CverflowhAction', 'Wrap', 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128, 'SumMode', 'Fu
31
32 - y = fi{w * fi(2, 0, 2, 0, fm), 0, 6, O, fm);
33 - end
34 2
I a | [r

Histogram

To log data for histograms, in the Fixed-Point Conversion window, click Run Simulation and select
Log data for histogram, and then click the Run Simulation button.

After simulation, to view the histogram for a variable, on the Variables tab, click the Proposed Type

field for that variable.

The histogram provides the range of the proposed data type and the percentage of simulation values
that the proposed data type covers. The bit weights are displayed along the X-axis, and the
percentage of occurrences along the Y-axis. Each bin in the histogram corresponds to a bit in the
binary word. For example, this histogram displays the range for a variable of type

numerictype(1l,16,14).

4-19

4 Fixed-Point Conversion

-

Whele Murmber Proposed Type

I_|numerict}fpe[1, 161, (14))
M

* I
.

Sim values covered 99% Signed

Supported range -2 : 1.9999

1€

You can view the effect of changing the proposed data types by:

* Dragging the edges of the bounding box in the histogram window to change the proposed data
type.

I_|numerict}rpe(1, 1a6), |14
M

Sim values covered 99% Signed

Supported range -2 : 1.9999

90

* Selecting or clearing Signed.
To revert to the types proposed by the automatic conversion, in the histogram window, click @ .

Function Replacements

If your MATLAB code uses functions that do not have fixed-point support, the tool lists these functions
on the Function Replacements tab. You can choose to replace unsupported functions with a custom
function replacement or with a lookup table.

4-20

Automated Fixed-Point Conversion

“ariables | Function Replacernents | Simulation Output —

Enter a function to replace Custom Function * + | —

Function or Operator Replacement

foo_fixedpoint

MNare Auto Auto 1000

You can add and remove function replacements from this list. If you enter a function replacements for
a function, the replacement function is used when you build the project. If you do not enter a
replacement, the tool uses the type specified in the original MATLAB code for the function.

Note Using this table, you can replace the names of the functions but you cannot replace argument
patterns.

Validating Types

Selecting Validate Types validates the build using the proposed fixed-point data types. If the
validation is successful, you are ready to test the numerical behavior of the fixed-point MATLAB
algorithm.

If the errors or warnings occur during validation, they are displayed on the Type Validation Output
tab. If errors or warning occur:

* On the Variables tab, inspect the proposed types and manually modified types to verify that they
are valid.

* On the Function Replacements tab, verify that you have provided function replacements for
unsupported functions.

Testing Numerics

After validating the proposed fixed-point data types, select Test Numerics to verify the behavior of
the fixed-point MATLAB algorithm. By default, if you added a test bench to define inputs or run a
simulation, the tool uses this test bench to test numerics. The tool compares the numerical behavior
of the generated fixed-point MATLAB code with the original floating-point MATLAB code. If you select
to log inputs and outputs for comparison plots, the tool generates an additional plot for each scalar
output. This plot shows the floating-point and fixed-point results and the difference between them.
For non-scalar outputs, only the error information is shown.

If the numerical results do not meet your desired accuracy after fixed-point simulation, modify fixed-
point data type settings and repeat the type validation and numerical testing steps. You might have to
iterate through these steps multiple times to achieve the desired results.

Detecting Overflows
When testing numerics, selecting Use scaled doubles to detect overflows enables overflow

detection. When this option is selected, the conversion tool runs the simulation using scaled double
versions of the proposed fixed-point types. Because scaled doubles store their data in double-

4-21

4 Fixed-Point Conversion

precision floating-point, they carry out arithmetic in full range. They also retain their fixed-point
settings, so they are able to report when a computation goes out of the range of the fixed-point type. .

If the tool detects overflows, on its Overflow tab, it provides:

» Alist of variables and expressions that overflowed
» Information on how much each variable overflowed
* Alink to the variables or expressions in the code window

Variahles | Function Replacements | Overflows | =

4-22

| Function | Line | Cescription
Ay overflow fixpt 7 Owverflow errar in expression '«
Ay overflow fixpt 7 Owverflow errar in expression 'y
Ay overflow fixpt 10 Overflow error in expression '2',
Ay overflow fisgpt 10 Overflow error in expression 'z = fitk®y, 0, 8, O, frm)",
Ay overflow fixpt 10 Owverflow error in expression fils®y, 0, 8, 0, fm)",
Ay overflow fisgpt 10 Owverflow errar in expression '
Ay overflow fixpt 10 Cwverflow errar in expression wHy',
Ay overflow fisgpt 10 Owverflow error in expression 'y
Ay overflow fixpt 11 Cwverflow errar in expression 'z,

If your original algorithm uses scaled doubles, the tool also provides overflow information for these
expressions.

See Also

“Detect Overflows” (MATLAB Coder)

Custom Plot Functions

Custom Plot Functions

The Fixed-Point Conversion tool provides a default time series based plotting function. The
conversion process uses this function at the test numerics step to show the floating-point and fixed-
point results and the difference between them. However, during fixed-point conversion you might
want to visualize the numerical differences in a view that is more suitable for your application
domain. For example, plots that show eye diagrams and bit error differences are more suitable in the
communications domain and histogram difference plots are more suitable in image processing
designs.

You can choose to use a custom plot function at the test numerics step. The Fixed-Point Conversion
tool facilitates custom plotting by providing access to the raw logged input and output data before
and after fixed-point conversion. You supply a custom plotting function to visualize the differences
between the floating-point and fixed-point results. If you specify a custom plot function, the fixed-
point conversion process calls the function for each input and output variable, passes in the name of
the variable and the function that uses it, and the results of the floating-point and fixed-point
simulations.

Your function should accept three inputs:
* A structure that holds the name of the variable and the function that uses it.
Use this information to:

* Customize plot headings and axes.
* Choose which variables to plot.
* Generate different error metrics for different output variables.
* A cell array to hold the logged floating-point values for the variable.
This cell array contains values observed during floating-point simulation of the algorithm during
the test numerics phase. You might need to reformat this raw data.
* A cell array to hold the logged values for the variable after fixed-point conversion.

This cell array contains values observed during fixed-point simulation of the converted design.

For example, function customComparisonPlot(varInfo, floatVarVals,
fixedPtVarVals).

To use a custom plot function, in the Fixed-Point Conversion tool, select Advanced, and then set
Custom plot function to the name of your plot function.

In the programmatic workflow, set the coder.FixptConfig configuration object PlotFunction
property to the name of your plot function. See “Visualize Differences Between Floating-Point and
Fixed-Point Results” on page 4-24.

4-23

4 Fixed-Point Conversion

Visualize Differences Between Floating-Point and Fixed-Point
Results

This example shows how to configure the codegen function to use a custom plot function to compare
the behavior of the generated fixed-point code against the behavior of the original floating-point
MATLAB code.

By default, when the LogIOForComparisonPlotting option is enabled, the conversion process
uses a time series based plotting function to show the floating-point and fixed-point results and the
difference between them. However, during fixed-point conversion you might want to visualize the
numerical differences in a view that is more suitable for your application domain. This example shows
how to customize plotting and produce scatter plots at the test numerics step of the fixed-point
conversion.

Prerequisites

To complete this example, you must install the following products:

+ MATLAB
* Fixed-Point Designer
* C compiler

See https://www.mathworks.com/support/compilers/current release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”
(MATLAB).

Create a New Folder and Copy Relevant Files

Create a local working folder, for example, c:\custom plot.

2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB command line,
enter:
cd(fullfile(docroot, 'toolbox', 'fixpoint', ‘'examples'))

3 CopythemyFilter.m, myFilterTest.m, plotDiff.m, and filterData.mat files to your
local working folder.

Type Name Description

Function code myFilter.m Entry-point MATLAB function

Test file myFilterTest.m MATLAB script that tests
myFilter.m

Plotting function |plotDiff.m Custom plot function

MAT-file filterData.mat Data to filter.

The myFilter Function
function [y, ho] = myFilter(in)
persistent b h;

if isempty(b)
b = complex(zeros(1,16));

4-24

Visualize Differences Between Floating-Point and Fixed-Point Results

h = complex(zeros(1,16));

h(8) = 1;
end
b = [in, b(l:end-1)];
y = b*h.';
errf = 1-sqrt(real(y)*real(y) + imag(y)*imag(y));

S
update = 0.001*conj(b)*y*errf;

h + update;
1;

1
ata = load('filterData.mat');
= data.symbols;

for idx = 1:4000
y = myFilter(d(idx));
end

The plotDiff Function

varInfo - structure with information about the variable. It has the following fields
i) name
ii) functionName
floatVals - cell array of logged original values for the 'varInfo.name' variable
fixedVals - cell array of logged values for the 'varInfo.name' variable after Fixed-Point conv
function plotDiff(varInfo, floatVals, fixedVals)

d° o° o° o° o°

varName = varInfo.name;

fcnName = varInfo.functionName;

% escape the ' 's because plot titles treat these as subscripts
escapedVarName = regexprep(varName,' ', "\\ ');

escapedFcnName = regexprep(fcnName,' ', '\\ ');

% flatten the values

flatFloatVals = floatVals(l:end);

flatFixedVals = fixedVals(l:end);

% build Titles

floatTitle = [escapedFcnName ' > ' 'float : ' escapedVarName];
fixedTitle = [escapedFcnName ' > ' 'fixed : ' escapedVarName];

data = load('filterData.mat');
switch varName
case 'y'
x_vec = data.symbols;

figure('Name', 'Comparison plot', 'NumberTitle', 'off');

% plot floating point values

4-25

4 Fixed-Point Conversion

4-26

end

y vec = flatFloatVals;
subplot(1, 2, 1);
plotScatter(x vec, y vec, 100, floatTitle);

% plot fixed point values

y vec = flatFixedVals;

subplot(1l, 2, 2);

plotScatter(x vec, y vec, 100, fixedTitle);

otherwise
% Plot only output 'y' for this example, skip the rest
end

function plotScatter(x vec, y vec, n, figTitle)

end

Set

% plot the last n samples
x_plot = x vec(end-n+l:end);
y plot = y vec(end-n+l:end);

hold on
scatter(real(x plot),imag(x plot), 'bo');

hold on
scatter(real(y plot),imag(y plot),

rx');

title(figTitle);

Up Configuration Object
Create a coder.FixptConfig object.

fxptcfg = coder.config('fixpt');
Specify the test file name and custom plot function name. Enable logging and numerics testing.

fxptcfg.TestBenchName = 'myFilterTest';
fxptcfg.PlotFunction = 'plotDiff"';
fxptcfg.TestNumerics = true;

fxptcfg. LogIOForComparisonPlotting = true;
fxptcfg.DefaultWordLength = 16;

Convert to Fixed Point

Convert the floating-point MATLAB function, myFilter, to fixed-point MATLAB code. You do not
need to specify input types for the codegen command because it infers the types from the test file.

codegen -args {complex(0, 0)} -float2fixed fxptcfg myFilter

The

conversion process generates fixed-point code using a default word length of 16 and then runs a

fixed-point simulation by running the myFilterTest.m function and calling the fixed-point version of
myFilter.m.

Because you selected to log inputs and outputs for comparison plots and to use the custom plotting
function, plotDiff.m, for these plots, the conversion process uses this function to generate the
comparison plot.

Visualize Differences Between Floating-Point and Fixed-Point Results

4 Figures - Testbench: Comparison plot 16-bit WL (15:26:35)

File Edit View Insert Tools Debug Desktop Window Help

LROBVEL- G 0E D

Ocda|h

Testbench: Comparison plot 16-bit WL (15:26:35)

o) o o
0 0 oo % o
(@] o
0.8 o o
o 0 oo o
cg o § z]
06 [o
o o] & o
o 0
04
02r
ot
02
-04 F
0
o] Oo 5 o o
e O 00
o o oP @ o}
08F © © 0
o © @
4 L L .
-1 0.5 0 0.5

myFilter > float : y

myFilter > fixed : y

g _ o ® x
[} (o) w00 %o o
0o . . @0
08 L9 8 3 o * :}
D [oF o o
T e q Qg]
0 "
08, x x O = "
o O x
x o % o* & %o
x X o 0
0.4 *
X
"
* x x
02r x
o x x
x
0 i
x x o ke
x x a
-02
x x
04
x &% o
o OO 8 & o x©
=08 o Mg 0%0 x
KO 00 x© %0 00 g
o} K g
08 o o Xe
P i y
o © @
1 .3 L L L §
-1 0.5 0 0.5 1

The plot shows that the fixed-point results do not closely match the floating-point results.

Increase the word length to 24 and then convert to fixed point again.

fxptcfg.DefaultWordLength = 24;
codegen -args {complex(0, 0)} -float2fixed fxptcfg myFilter

The increased word length improved the results. This time, the plot shows that the fixed-point results
match the floating-point results.

4-27

4 Fixed-Point Conversion

[&] Figures - Testbench: Comparison plot 24-bit WL (15:28:44)
File Edit View Insert Tools Debug Desktop Window Help
ddde | AKOBDLL-2 08 0D

| Testbench: Comparison plot 24-bit WL (15:28:44)

4-28

1 myFilter > float : y - myFilter > fixed : y
o o o o o
o w0 000 Con o =] 000 Coo
oo ao S o @o
0.8 o o 08 o o
A o0 o ° M ¢ °0 %
o o
06 e 06 2
: o : o
%o o & O'g o, &
(o] o [o] o
04| 04
0.2t 02F
3 or
02t 02
-04 | -04
o o
s 8 o © co,] 5 ©
e 00 AL o0
% P * 8 o % P *° £
o8} o © c sl o o e
o © o ©
4 . . A " .
-1 0.5 0.5 -1 0.5 0.5

Inspecting Data Using the Simulation Data Inspector

Inspecting Data Using the Simulation Data Inspector

In this section...

“What Is the Simulation Data Inspector?” on page 4-29

“Import Logged Data” on page 4-29

“Export Logged Data” on page 4-29

“Group Signals” on page 4-29

“Run Options” on page 4-29

“Create Report” on page 4-30

“Comparison Options” on page 4-30

“Enabling Plotting Using the Simulation Data Inspector” on page 4-30

“Save and Load Simulation Data Inspector Sessions” on page 4-30

What Is the Simulation Data Inspector?

The Simulation Data Inspector allows you to view data logged during the fixed-point conversion
process. You can use it to inspect and compare the inputs and outputs to the floating-point and fixed-
point versions of your algorithm.

For fixed-point conversion, there is no programmatic interface for the Simulation Data Inspector.

Import Logged Data

Before importing data into the Simulation Data Inspector, you must have previously logged data to
the base workspace or to a MAT-file.

Export Logged Data
The Simulation Data Inspector provides the capability to save data collected by the fixed-point

conversion process to a MAT-file that you can later reload. The format of the MAT-file is different from
the format of a MAT-file created from the base workspace.

Group Signals
You can customize the organization of your logged data in the Simulation Data Inspector Runs pane.

By default, data is first organized by run. You can then organize your data by logged variable or no
hierarchy.

Run Options

You can configure the Simulation Data Inspector to:
* Append New Runs

In the Run Options dialog box, the default is set to add new runs to the bottom of the run list. To
append new runs to the top of the list, select Add new runs at top.

4-29

4 Fixed-Point Conversion

4-30

* Specify a Run Naming Rule

To specify run naming rules, in the Simulation Data Inspector toolbar, click Run Options.

Create Report

You can create a report of the runs or comparison plots. Specify the name and location of the report
file. By default, the Simulation Data Inspector overwrites existing files. To preserve existing reports,
select If report exists, increment file name to prevent overwriting.

Comparison Options

To change how signals are matched when runs are compared, specify the Align by and Then by
parameters and then click OK.

Enabling Plotting Using the Simulation Data Inspector

To enable the Simulation Data Inspector, see “Enable Plotting Using the Simulation Data Inspector”
on page 4-31.

Save and Load Simulation Data Inspector Sessions

If you have data in the Simulation Data Inspector and you want to archive or share the data to view in
the Simulation Data Inspector later, save the Simulation Data Inspector session. When you save a
Simulation Data Inspector session, the MAT-file contains:

* All runs, data, and properties from the Runs and Comparisons panes.

* Check box selection state for data in the Runs pane.

Save a Session to a MAT-File

1 On the Visualize tab, click Save.
2 Browse to where you want to save the MAT-file to, name the file, and click Save.

Load a Saved Simulation Data Inspector Simulation

On the Visualize tab, click Open.
Browse, select the MAT-file saved from the Simulation Data Inspector, and click Open.

If data in the session is plotted on multiple subplots, on the Format tab, click Subplots and
select the subplot layout.

Enable Plotting Using the Simulation Data Inspector

Enable Plotting Using the Simulation Data Inspector

In this section...

“From the UI” on page 4-31
“From the Command Line” on page 4-31

From the Ul

You can use the Simulation Data Inspector to inspect and compare floating-point and fixed-point
logged input and output data. In the Fixed-Point Conversion tool:

Click Advanced.
In the Advanced Settings dialog box, set Plot with Simulation Data Inspector to Yes.
At the Test Numerics stage in the conversion process, click Test Numerics, select Log inputs

and outputs for comparison plots, and then chck’/>

For an example, see “Propose Fixed-Point Data Types Based on Derived Ranges” (MATLAB Coder).

From the Command Line

You can use the Simulation Data Inspector to inspect and compare floating-point and fixed-point input
and output data logged using the function. At the MATLAB command line:

1

Create a fixed-point configuration object and configure the test file name.
fixptcfg = coder.config('fixpt');
fixptcfg.TestBenchName = 'dti test';

Select to run the test file to verify the generated fixed-point MATLAB code. Log inputs and
outputs for comparison plotting and select to use the Simulation Data Inspector to plot the
results.

fixptcfg.TestNumerics = true;
fixptcfg.LogIOForComparisonPlotting = true;
fixptcfg.PlotWithSimulationDataInspector = true;

Generate fixed-point MATLAB code using codegen.

codegen -float2fixed fixptcfg -config cfg dti

For an example, see “Propose Fixed-Point Data Types Based on Derived Ranges” (MATLAB Coder).

4-31

4 Fixed-Point Conversion

Replacing Functions Using Lookup Table Approximations

The software provides an option to generate lookup table approximations for continuous and stateless

single-input, single-output functions in your original MATLAB code. These functions must be on the
MATLAB path.

You can use this capability to handle functions that are not supported for fixed point and to replace
your own custom functions. The fixed-point conversion process infers the ranges for the function and
then uses an interpolated lookup table to replace the function. You can control the interpolation
method and number of points in the lookup table. By adjusting these settings, you can tune the
behavior of replacement function to match the behavior of the original function as closely as possible.

The fixed-point conversion process generates one lookup table approximation per call site of the
function that needs replacement.

To use lookup table approximations, see:

* coder.approximation
* “Replace the exp Function with a Lookup Table” on page 4-39
* “Replace a Custom Function with a Lookup Table” on page 4-33

4-32

Replace a Custom Function with a Lookup Table

Replace a Custom Function with a Lookup Table

In this section...
“Using the HDL Coder App” on page 4-33
“From the Command Line” on page 4-36

With HDL Coder, you can generate lookup table approximations for functions that do not support
fixed-point types, and replace your own functions. To replace a custom function with a Lookup Table,
use the HDL Coder app, or the fiaccel codegen function.

Using the HDL Coder App

This example shows how to replace a custom function with a Lookup Table using the HDL Coder app.
Create Algorithm and Test Files
In a local, writable folder:

1 Create a MATLAB function, custom_fcn, which is the function that you want to replace.

function y = custom fcn(x)
y = 1./(1+exp(-x));
end

2 Create a wrapper function that calls custom fcn.
function y = call custom fcn(x)

y = custom_fcn(x);
end

3 Create a test file, custom_test, which uses call custom_ fcn.

close all

x = linspace(-10,10,1e3);
for itr = 1e3:-1:1
y(itr) = call custom_fcn(x(itr));
end
plot(x, y);

Create and Set up a HDL Coder Project

Navigate to the work folder that contains the file for this example.

To open the HDL Coder app, in the MATLAB command prompt, enter hdlcoder. Set Name to
custom project.prj and click OK. The project opens in the MATLAB workspace.

3 In the project window, on the MATLAB Function tab, click the Add MATLAB function link.
Browse to the file call custom fcn.m, and then click OK to add the file to the project.

Define Input Types

1 To define input types for call custom fcn.m, on the MATLAB Function tab, click
Autodefine types.

2 Add custom test as a test file, and then click Run.

From the test file, HDL Coder determines that x is a scalar double.

4-33

4 Fixed-Point Conversion

3 Click Use These Types.

Replace custom_fcn with Lookup Table

1 To open the HDL Workflow Advisor, click Workflow Advisor, and in the Workflow Advisor

window, click Fixed-Point Conversion.

2 Toreplace custom fcn with a Lookup Table, on the Function Replacements tab, enter

custom_fcn, select Lookup Table, and then click +.

By default, the lookup table uses linear interpolation, 1000 points, and design minimum and
maximum values that the app detects by running a simulation or computing derived ranges.

4\ Workflow Advisor - custom_project.prj

-] HDL Workflow Advisor

i]
@ Define Input Types [;;} [}W . : 7
= - o Function: = call_custom_fcn - |2
| Fixed-Point Conversion Run Simulation Compute Derived L = 2 J
) Select Code Generation Target - Ranges =

[HOL Code Generation DATA GOLLECTION NAVIGATION

O Propose fraction lengths
™ Propose word lengths

Default word length: 14

TYPE PROPOSAL

[E=3 ECR =<
o
Advanced YERIFICATION HELF

-
- -

£ HDL Verification o

Verify with HDL Test Bench =
Verify with Cosimulation 3
] Verify with FPGA-in-the-Loop

function ¥y = call custom fcn(x)
v = custom fcn(x):
end

Wartiables | Function Replacernents | Sirmulation Output
Enter a function to replace

Function or Operator

=]

Replacement

exp Replacement required to use fixed-point
=]

custom_fen Linear

Auto

Auto

Custom Function » =+ |—

Customn Function

Lookup Table

1000

3 Under Run Simulation, select Log data for histogram, and then click Run Simulation.

Verify that custom_test file is selected as the test file.

The simulation runs and the tool displays simulation minimum and maximum ranges on the
Variables tab. HDL Coder plots the simulation results in the MATLAB Editor.

4-34

Replace a Custom Function with a Lookup Table

o o)

4 Figures - Testbench:float (14:03:26) || E | |
File Edit View Insert Tools Debug Desktop Window Help ™ | "X
NEAdS M RRODRL-|"EDE 0
| Testbenchifloat (14:03:26) |
1 - - —
08 1
06 1
04r 1
02r 1
-
0 - . .
-10 -5 0 5 10

Validate Fixed-Point Types

1 In the Proposed Type column, verify that the fixed-point types proposed by software cover the
full simulation range. To view logged histogram data for a variable, click its Proposed Type field.

The histogram provides range information and the percentage of simulation range that the
proposed data type covers.

Wariables ‘ Function Replacements | Type Validation Output =

Yariable Type Sim Min Sim Max Static Min Static Max ~ Whole Mu... Proposed Type
B Input
B Qutput 2
Y double 0 1

Sim values covered 100% Signed

Supported range -16 | 15.998

1€,

4-35

4 Fixed-Point Conversion

4-36

2 To validate the build by using the proposed types, click Validate Types.

The software validates the proposed types and generates a fixed-point code,
call custom fcn fixpt.
3 To view the generated fixed-point code, click the call custom_fcn_fixpt link.

The generated fixed-point function, call custom fcn fixpt.m, calls this approximation
instead of calling custom_fcn.

function y = call custom fcn fixpt(x)
fm = get fimath();

y = fi(replacement custom fcn(x), 0, 14, 14, fm);
end

function fm = get fimath()
fm = fimath('RoundingMethod', 'Floor',...

'OverflowAction', 'Wrap',...
'"ProductMode’', 'FullPrecision', ...
'MaxProductWordLength', 128,...
'SumMode', 'FullPrecision', ...
'MaxSumWordLength', 128);

end

From the Command Line

Prerequisites

To complete this example, you must install the following products:

+ MATLAB
* Fixed-Point Designer
* C compiler

See https://www.mathworks.com/support/compilers/current release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”
(MATLAB).

Create a MATLAB function, custom_fcn.m. This is the function that you want to replace.
function y = custom_fcn(x)

y = 1./(1+exp(-x));
end

Create a wrapper function that calls custom fcn.m.
function y = call custom_fcn(x)

y = custom_fcn(x);
end

Create a test file, custom_test.m, that uses call custom fcn.m.

close all

x = linspace(-10,10,1e3);

Replace a Custom Function with a Lookup Table

for itr = 1e3:-1:1

y(itr) = call custom fcn(x(itr));
end
plot(x, y);

Create a function replacement configuration object to approximate custom_fcn. Specify the function
handle of the custom function and set the number of points to use in the lookup table to 50.

q = coder.approximation('Function', 'custom fcn',...
'CandidateFunction',@custom_fcn, 'NumberOfPoints',50);

Create a coder.FixptConfig object, fixptcfg. Specify the test file name and enable numerics
testing. Associate the function replacement configuration object with the fixed-point configuration
object.

fixptcfg = coder.config('fixpt"');
fixptcfg.TestBenchName = 'custom test';
fixptcfg.TestNumerics = true;
fixptcfg.addApproximation(q);

Generate fixed-point MATLAB code.

codegen -float2fixed fixptcfg call custom fcn
codegen generates fixed-point MATLAB code in call custom fcn fixpt.m.
To view the generated fixed-point code, click the link to call custom fcn fixpt.

The generated code contains a lookup table approximation, replacement custom fcn, for the
custom_fcn function. The fixed-point conversion process infers the ranges for the function and then
uses an interpolated lookup table to replace the function. The lookup table uses 50 points as
specified. By default, it uses linear interpolation and the minimum and maximum values detected by
running the test file.

The generated fixed-point function, call custom fcn fixpt, calls this approximation instead of
calling custom fcn.

function y = call custom fcn_ fixpt(x)
fm = get fimath();

y = fi(replacement custom fcn(x), 0, 14, 14, fm);
end

You can now test the generated fixed-point code and compare the results against the original
MATLAB function. If the behavior of the generated fixed-point code does not match the behavior of
the original code closely enough, modify the interpolation method or number of points used in the
lookup table and then regenerate code.

See Also
coder.approximation

Related Examples
. “Replace the exp Function with a Lookup Table” on page 4-39

4-37

4 Fixed-Point Conversion

More About

. “Replacing Functions Using Lookup Table Approximations” on page 4-32

4-38

Replace the exp Function with a Lookup Table

Replace the exp Function with a Lookup Table

With HDL Coder, you can handle functions that are not supported for fixed point and replace your
own functions. To replace a custom function with a Lookup Table, use the HDL Coder App, or the
fiaccel codegen function.

In this section...

“From the UI” on page 4-39

“From the Command Line” on page 4-42

From the Ul

This example shows how to replace a custom function with a Lookup Table using the HDL Coder app.
Create Algorithm and Test Files

In a local, writable folder:

1 Create a MATLAB function, custom_fcn, which is the function that you want to replace.

function y = custom fcn(x)
y = 1./(1+exp(-x));
end

2 Create a wrapper function that calls custom_ fcn.
function y = call custom fcn(x)

y = custom_fcn(x);
end

3 Create a test file, custom_test, which uses call custom_ fcn.

close all

x = linspace(-10,10,1e3);
for itr = 1e3:-1:1
y(itr) = call custom_fcn(x(itr));
end
plot(x, y);

Create and Set up a HDL Coder Project

Navigate to the work folder that contains the file for this example.

To open the HDL Coder app, in the MATLAB command prompt, enter hdlcoder. Set Name to
custom project.prj and click OK. The project opens in the MATLAB workspace.

3 In the project window, on the MATLAB Function tab, click the Add MATLAB function link.
Browse to the file call custom fcn.m, and then click OK to add the file to the project.

Define Input Types

1 To define input types for call custom fcn.m, on the MATLAB Function tab, click
Autodefine types.

2 Add custom test as a test file, and then click Run.

From the test file, HDL Coder determines that x is a scalar double.

4-39

4 Fixed-Point Conversion

3 Click Use These Types.

Replace custom_fcn with Lookup Table

1 To open the HDL Workflow Advisor, click Workflow Advisor, and in the Workflow Advisor

window, click Fixed-Point Conversion.

2 Toreplace custom fcn with a Lookup Table, on the Function Replacements tab, enter

custom_fcn, select Lookup Table, and then click +.

By default, the lookup table uses linear interpolation, 1000 points, and design minimum and
maximum values that the app detects by running a simulation or computing derived ranges.

4\ Workflow Advisor - custom_project.prj

-] HDL Workflow Advisor

i]
@ Define Input Types [;;} [}W . : 7
= - o Function: = call_custom_fcn - |2
| Fixed-Point Conversion Run Simulation Compute Derived L = 2 J
) Select Code Generation Target - Ranges =

[HOL Code Generation DATA GOLLECTION NAVIGATION

O Propose fraction lengths
™ Propose word lengths

Default word length: 14

TYPE PROPOSAL

[E=3 ECR =<
o
Advanced YERIFICATION HELF

-
- -

£ HDL Verification o

Verify with HDL Test Bench =
Verify with Cosimulation 3
] Verify with FPGA-in-the-Loop

function ¥y = call custom fcn(x)
v = custom fcn(x):
end

Wartiables | Function Replacernents | Sirmulation Output
Enter a function to replace

Function or Operator

=]

Replacement

exp Replacement required to use fixed-point
=]

custom_fen Linear

Auto

Auto

Custom Function » =+ |—

Customn Function

Lookup Table

1000

3 Under Run Simulation, select Log data for histogram, and then click Run Simulation.

Verify that custom_test file is selected as the test file.

The simulation runs and the tool displays simulation minimum and maximum ranges on the
Variables tab. HDL Coder plots the simulation results in the MATLAB Editor.

4-40

Replace the exp Function with a Lookup Table

o o)

4 Figures - Testbench:float (14:03:26) || E | |
File Edit View Insert Tools Debug Desktop Window Help ™ | "X
NEAdS M RRODRL-|"EDE 0
| Testbenchifloat (14:03:26) |
1 - - —
08 1
06 1
04r 1
02r 1
-
0 - . .
-10 -5 0 5 10

Validate Fixed-Point Types

1 In the Proposed Type column, verify that the fixed-point types proposed by software cover the
full simulation range. To view logged histogram data for a variable, click its Proposed Type field.

The histogram provides range information and the percentage of simulation range that the
proposed data type covers.

Wariables ‘ Function Replacements | Type Validation Output =

Yariable Type Sim Min Sim Max Static Min Static Max ~ Whole Mu... Proposed Type
B Input
B Qutput 2
Y double 0 1

Sim values covered 100% Signed

Supported range -16 | 15.998

1€,

4-41

4 Fixed-Point Conversion

4-42

To validate the build by using the proposed types, click Validate Types.

The software validates the proposed types and generates a fixed-point code,
call custom fcn fixpt.

To view the generated fixed-point code, click the call custom_fcn_fixpt link.

The generated fixed-point function, call custom fcn_ fixpt.m, calls this approximation
instead of calling custom_fcn.

function y = call custom fcn fixpt(x)
fm = get fimath();

y = fi(replacement custom fcn(x), 0, 14, 14, fm);
end

function fm = get fimath()
fm = fimath('RoundingMethod', 'Floor',...

'OverflowAction', 'Wrap',...
'ProductMode’, 'FullPrecision', ...
'MaxProductWordLength', 128,...
'SumMode', 'FullPrecision', ...
'MaxSumWordLength', 128);

end

From the Command Line

This example shows how to replace the exp function with a lookup table approximation in the
generated fixed-point code using the function.

Prerequisites

To complete this example, you must install the following products:

MATLAB
Fixed-Point Designer
C compiler

See https://www.mathworks.com/support/compilers/current release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”
(MATLAB).

Create Algorithm and Test Files

1

Create a MATLAB function, my fcn.m, that calls the exp function.

function y = my fcn(x)

y = exp(x);
end

Create a test file, iy fcn test.m, that usesmy fcn.m.

close all

x = linspace(-10,10,1e3);
for itr = 1e3:-1:1

Replace the exp Function with a Lookup Table

y(itr) = my fcn(x(itr));
end
plot(x, y);

Configure Approximation

Create a function replacement configuration object to approximate the exp function, using the
default settings of linear interpolation and 1000 points in the lookup table.

g = coder.approximation(‘'exp');

Set Up Configuration Object

Create a coder.FixptConfig object, fixptcfg. Specify the test file name and enable numerics
testing. Associate the function replacement configuration object with the fixed-point configuration
object.

fixptcfg = coder.config('fixpt');

fixptcfg.TestBenchName = 'my fcn test';

fixptcfg.TestNumerics = true;

fixptcfg.DefaultWordLength = 16;

fixptcfg.addApproximation(q);

Convert to Fixed Point

Generate fixed-point MATLAB code.
codegen -float2fixed fixptcfg my fcn

View Generated Fixed-Point Code
To view the generated fixed-point code, click the link tomy fcn fixpt.

The generated code contains a lookup table approximation, replacement _exp, for the exp function.
The fixed-point conversion process infers the ranges for the function and then uses an interpolated
lookup table to replace the function. By default, the lookup table uses linear interpolation, 1000
points, and the minimum and maximum values detected by running the test file.

The generated fixed-point function, my fcn fixpt, calls this approximation instead of calling exp.

function y = my fcn fixpt(x)
fm = get fimath();

y = fi(replacement exp(x), 0, 16, 1, fm);
end

You can now test the generated fixed-point code and compare the results against the original
MATLAB function. If the behavior of the generated fixed-point code does not match the behavior of
the original code closely enough, modify the interpolation method or number of points used in the
lookup table and then regenerate code.

See Also
coder.approximation

4-43

4 Fixed-Point Conversion

Related Examples

. “Replace a Custom Function with a Lookup Table” on page 4-33

More About

. “Replacing Functions Using Lookup Table Approximations” on page 4-32

4-44

Data Type Issues in Generated Code

Data Type Issues in Generated Code

Within the fixed-point conversion report, you have the option to highlight MATLAB code that results
in double, single, or expensive fixed-point operations. Consider enabling these checks when trying to
achieve a strict single, or fixed-point design.

These checks are disabled by default.

Enable the Highlight Option in a Project

1 Open the Settings menu.

2 Under Plotting and Reporting, set Highlight potential data type issues to Yes.
Enable the Highlight Option at the Command Line

1 Create a fixed-point code configuration object:

cfg = coder.config('fixpt');
2 Setthe HighlightPotentialDataTypeIssues property of the configuration object to true.

cfg.HighlightPotentialDataTypelssues = true;

Stowaway Doubles

When trying to achieve a strict-single or fixed-point design, manual inspection of code can be time-
consuming and error prone. This check highlights all expressions that result in a double operation.

Stowaway Singles

This check highlights all expressions that result in a single operation.

Expensive Fixed-Point Operations

The expensive fixed-point operations check identifies optimization opportunities for fixed-point code.
It highlights expressions in the MATLAB code that require cumbersome multiplication or division,
expensive rounding, expensive comparison, or multiword operations. For more information on
optimizing generated fixed-point code, see “Tips for Making Generated Code More Efficient” (Fixed-
Point Designer).

Cumbersome Operations

Cumbersome operations most often occur due to insufficient range of output. Avoid inputs to a
multiply or divide operation that has word lengths larger than the base integer type of your
processor. Operations with larger word lengths can be handled in software, but this approach
requires much more code and is much slower.

Expensive Rounding

Traditional handwritten code, especially for control applications, almost always uses "no effort"
rounding. For example, for unsigned integers and two's complement signed integers, shifting right
and dropping the bits is equivalent to rounding to floor. To get results comparable to, or better than,

4-45

4 Fixed-Point Conversion

4-46

what you expect from traditional handwritten code, use the floor rounding method. This check
identifies expensive rounding operations in multiplication and division.

Expensive Comparison Operations

Comparison operations generate extra code when a casting operation is required to do the
comparison. For example, when comparing an unsigned integer to a signed integer, one of the inputs
must first be cast to the signedness of the other before the comparison operation can be performed.
Consider optimizing the data types of the input arguments so that a cast is not required in the
generated code.

Multiword Operations

Multiword operations can be inefficient on hardware. When an operation has an input or output data
type larger than the largest word size of your processor, the generated code contains multiword
operations. You can avoid multiword operations in the generated code by specifying local fimath
properties for variables. You can also manually specify input and output word lengths of operations
that generate multiword code.

Code Generation

* “Create and Set Up Your Project” on page 5-2
* “Specify Properties of Entry-Point Function Inputs” on page 5-4

* “Basic HDL Code Generation and FPGA Synthesis from MATLAB by Using the Workflow Advisor”
on page 5-7

* “HDL Code Generation from System Objects” on page 5-14

* “Code Generation Reports” on page 5-18

* “Generate Instantiable Code for Functions” on page 5-22

* “Integrate Custom HDL Code Into MATLAB Design” on page 5-23

* “Enable MATLAB Function Block Generation” on page 5-28

+ “System Design with HDL Code Generation from MATLAB and Simulink” on page 5-29
» “Specify the Clock Enable Rate” on page 5-32

» “Specify Test Bench Clock Enable Toggle Rate” on page 5-34

* “Generate an HDL Coding Standard Report from MATLAB” on page 5-36

* “Generate an HDL Lint Tool Script” on page 5-39

* “Generate Board-Independent IP Core from MATLAB Algorithm” on page 5-41
* “Minimize Clock Enables” on page 5-43

5 Code Generation

Create and Set Up Your Project

In this section...

“Create a New Project” on page 5-2
“Open an Existing Project” on page 5-3
“Add Files to the Project” on page 5-3

Create a New Project

1 At the MATLAB command line, enter:

hdlcoder
2 Enter a project name in the project dialog box and click OK.

HDL Coder creates the project in the local working folder, and, by default, opens the project in the
right side of the MATLAB workspace.

Workspace | HDL Code Generation @ |
mydesign.prj v i @

MATLAB Function (7]

Specify the top-level MATLAB design
function (Design Under Test).

Add only the file that you would call directly
from MATLAB. Do not add files that are
called by this function.

Add MATLAB function

MATLAE Test Bench

I

Specify the top-level MATLAB test script or
function that calls the MATLAE design
function.

Add only the file that you would call directly

from MATLAB. Do not add files that are
called by this test file.

Add files

Specify your design function and test
bench above, then use the Workflow
Advisor to generate code.

gy Workflow Advisor

Alternatively, you can create a new HDL Coder project from the apps gallery:

5-2

Create and Set Up Your Project

1 Onthe Apps tab, on the far right of the Apps section, click the arrow ™.

2 Under Code Generation, click HDL Coder.
3 Enter a project name in the project dialog box and click OK.

Open an Existing Project

At the MATLAB command line, enter:
open project _name
where project name specifies the full path to the project file.

Alternatively, navigate to the folder that contains your project and double-click the .prj file.

Add Files to the Project
Add the MATLAB Function (Design Under Test)

First, you must add the MATLAB file from which you want to generate code to the project. Add only
the top-level function that you call from MATLAB (the Design Under Test). Do not add files that are
called by this file. Do not add files that have spaces in their names. The path must not contain spaces,
as spaces can lead to code generation failures in certain operating system configurations.

To add a file, do one of the following:

* In the project pane, under MATLAB Function , click the Add MATLAB function link and browse
to the file.
* Drag a file from the current folder and drop it in the project pane under MATLAB Function.

If the functions that you added have inputs, and you do not specify a test bench, you must define
these inputs. See “Specify Properties of Entry-Point Function Inputs” on page 5-4.

Add a MATLAB Test Bench

You must add a MATLAB test bench unless your design does not need fixed-point conversion and you
do not want to generate an RTL test bench. If you do not add a test bench, you must define the inputs
to your top-level MATLAB function. For more information, see “Specify Properties of Entry-Point
Function Inputs” on page 5-4.

To add a test bench, do one of the following:

* In the project panel, under MATLAB Test Bench, click the Add MATLAB test bench link and
browse to the file.

* Drag a file from the current folder and drop it in the project pane under MATLAB Test Bench.

5-3

5 Code Generation

Specify Properties of Entry-Point Function Inputs

In this section...

“When to Specify Input Properties” on page 5-4

“Why You Must Specify Input Properties” on page 5-4
“Properties to Specify” on page 5-4

“Rules for Specifying Properties of Primary Inputs” on page 5-5

“Methods for Defining Properties of Primary Inputs” on page 5-5

When to Specify Input Properties

If you supply a test bench for your MATLAB algorithm, you do not need to specify the primary
function inputs manually. The HDL Coder software uses the test bench to infer the data types.

Why You Must Specify Input Properties

HDL Coder must determine the properties of all variables in the MATLAB files at compile time. To
infer variable properties in MATLAB files, HDL Coder must be able to identify the properties of the
inputs to the primary function, also known as the top-level or entry-point function. Therefore, if your
primary function has inputs, you must specify the properties of these inputs, to HDL Coder. If your
primary function has no input parameters, HDL Coder can compile your MATLAB file without
modification. You do not need to specify properties of inputs to local functions or external functions
called by the primary function.

If you use the tilde (~) character to specify unused function inputs in an HDL Coder project, and you
want a different type to appear in the generated code, specify the type. Otherwise, the inputs default
to real, scalar doubles.

Properties to Specify

If your primary function has inputs, you must specify the following properties for each input.

For Specify properties

Class Size Complexity numerictype fimath
Fixed-point inputs| ./ e 4 v 4
Other inputs v ¥ ¥

The following data types are not supported for primary function inputs, although you can use them
within the primary function:

* structure
e matrix

Variable-size data is not supported in the test bench or the primary function.
Default Property Values

HDL Coder assigns the following default values for properties of primary function inputs.

Specify Properties of Entry-Point Function Inputs

Property Default
class double
size scalar
complexity real
numerictype No default
fimath hdlfimath

Supported Classes

The following table presents the class names supported by HDL Coder.

Class Name Description

logical Logical array of true and false values

char Character array

int8 8-bit signed integer array

uint8 8-bit unsigned integer array

intl6 16-bit signed integer array

uintle6 16-bit unsigned integer array

int32 32-bit signed integer array

uint32 32-bit unsigned integer array

single Single-precision floating-point or fixed-point number
array

double Double-precision floating-point or fixed-point number

array

embedded. fi

Fixed-point number array

Rules for Specifying Properties of Primary Inputs

When specifying the properties of primary inputs, follow these rules:

* You must specify the class of all primary inputs. If you do not specify the size or complexity of
primary inputs, they default to real scalars.

» For each primary function input whose class is fixed point (fi), you must specify the input

numerictype and fimath properties.

Methods for Defining Properties of Primary Inputs

Method

Advantages

Disadvantages

3-5

5 Code Generation

Method

Advantages

Disadvantages

“Define Input Properties
by Example at the
Command Line”

Note If you define input
properties
programmatically in the
MATLAB file, you cannot
use this method

Easy to use
Does not alter original MATLAB code

Designed for prototyping a function
that has a few primary inputs

Must be specified at the command
line every time you invoke (unless you
use a script)

Not efficient for specifying memory-
intensive inputs such as large
structures and arrays

“Define Input Properties
Programmatically in the
MATLAB File” (MATLAB
Coder)

Integrated with MATLAB code; no
need to redefine properties each time
you invoke HDL Coder

Provides documentation of property
specifications in the MATLAB code

Efficient for specifying memory-
intensive inputs such as large
structures

Uses complex syntax

HDL Coder project files do not
currently recognize properties defined
programmatically. If you are using a
project, you must reenter the input
types in the project.

See Also

Basic HDL Code Generation and FPGA Synthesis from MATLAB by Using the Workflow Advisor

Basic HDL Code Generation and FPGA Synthesis from MATLAB
by Using the Workflow Advisor

This example shows how to create a HDL Coder™ project, generate code for your MATLAB design,
and synthesize the HDL code. In this example, you:

Create a MATLAB HDL Coder project.

Add the design and test bench files to the project.

Start the HDL Workflow Advisor for the MATLAB design.
Run fixed-point conversion and HDL code generation.
Generate a HDL test bench from the MATLAB test bench.

Verify the generated HDL code by using a HDL simulator. This example uses ModelSim® as the
tool.

o U1 A W N KR

7 Synthesize the generated HDL code by using a synthesis tool. This example uses Xilinx®
Vivado® as the tool.

FIR Filter MATLAB Design
The MATLAB design mlhdlc_sfir is a simple symmetric FIR filter.

design name = 'mlhdlc sfir';
testbench _name = 'mlhdlc _sfir tb';

Review the MATLAB design.

open(design_name);

Introduction:

% We can reduce the complexity of the FIR filter by leveraging its symmetry.
% Symmetry for an n-tap filter implies, coefficient h0® = coefficient hn-1,
% coefficient, hl = coefficient hn-2, etc. In this case, the number of
% multipliers can be approximately halved. The key is to add the

% two data values that need to be multiplied with the same coefficient

% prior to performing the multiplication.

Key Design pattern covered in this example:
(1) Filter states represented using the persistent variables
(2) Filter coefficients passed in as parameters

% Copyright 2011-2019 The MathWorks, Inc.

s#codegen
function [y out, delayed xout] = mlhdlc sfir(x in,h inl,h in2,h in3,h in4)
% Symmetric FIR Filter

% declare and initialize the delay registers
persistent udl ud2 ud3 ud4 ud5 ud6 ud7 ud8;
if isempty(udl)
udl = 0; ud2 = 0; ud3 = 0; ud4 = 0; ud5 = 0; udé = 0; ud7 = 0; ud8 = 0;

5-7

5 Code Generation

end

% access the previous value of states/registers
al = udl + ud8; a2 = ud2 + ud7;
a3 = ud3 + ud6; a4 = ud4 + ud5;

% multiplier chain
ml = h_inl * al; m2
m3 = h_in3 * a3; m4

h in2 * a2;
h in4 * a4;

% adder chain
a5 =ml + m2; a6 = m3 + m4;

% filtered output
y out = a5 + a6;

% delayout input signal
delayed xout = ud8;

% update the delay line

ud8 = ud7;
ud7 = ud6;
udé = ud5;
ud5 = ud4;
ud4 = ud3;
ud3 = ud2;
ud2 = udl;
udl = x _in;
end

FIR Filter MATLAB Test Bench

A MATLAB testbench mlhdlc_sfir tb exercises the filter design by using a representative input
range. Review the MATLAB test bench mlhdlc_sfir tb.

open(testbench _name);

000000
676766700

% MATLAB test bench for the FIR filte

0.0.00000000000000000000000000000000
%6%%%% %% %% %% %6 %6 %6%6%6%6%6%6°%6°6°6°6°6°6°6°6°6°6°6°6°6 6%

) ()
"o “6°6

o°
o°
o®
o°
o
o°
o°
o°
o°
o°
o°
o°
o?
o°
o°
o°
o
o°
o°
o?
o°

=

% Copyright 2011-2019 The MathWorks, Inc.
clear mlhdlc sfir;

T = 2;
dt = 0.001;
N = T/dt+1;

sample time = 0:dt:T;

df = 1/dt;
sample freq = linspace(-1/2,1/2,N).*df;

% input signal with noise
_in = cos(2.*pi.*(sample time).*(1l+(sample time).*75)).";

X

% filter coefficients
hl = -0.1339; h2 = -0.0838; h3 = 0.2026; h4 = 0.4064;

Basic HDL Code Generation and FPGA Synthesis from MATLAB by Using the Workflow Advisor

len = length(x _in);
y out = zeros(1,len);
x_out = zeros(1,len);

for ii=1:1len
data = x_in(ii);

% call to the design 'mlhdlc sfir' that is targeted for hardware
[y out(ii), x out(ii)] = mlhdlc sfir(data, hl, h2, h3, h4);

end

figure('Name', [mfilename, ' plot']);
subplot(3,1,1);

plot(1l:len,x in,"'-b");

xlabel('Time (ms)")

ylabel('Amplitude")

title('Input Signal (with noise)')
subplot(3,1,2); plot(1l:len,y out,'-b');
xlabel('Time (ms)")

ylabel('Amplitude")

title('Output Signal (filtered)"')

freq fft = @(x) abs(fftshift(fft(x)));

subplot(3,1,3); semilogy(sample freq,freq fft(x in),'-b');
hold on

semilogy(sample freq,freq fft(y out),'-r'")

hold off

xlabel('Frequency (Hz)"')

ylabel('Amplitude (dB)"')

title('Input and Output Signals (Frequency domain)')
legend({'FilterIn', 'FilterOut'}, 'Location', 'South")
axis([-500 500 1 100])

Test the Original MATLAB Algorithm

To avoid run-time errors, simulate the design by using the test bench.

mlhdlc sfir tb

5-9

5 Code Generation

5-10

1
W
E
=2 0r T
E
oL
-1
L] 2500
Time (ms)
Output Signal (filtered)
© 1 T T]
E
= 0 el .
E
= -1 | 1 1 N
L] 500 1000 1500 2000 2500
Time (ms)
. Input and Output Signals (Frequency domain)
[in] 1{:" T T T T T T T T T E
- - = 1
% \—"—l—-w_]
210 | Filtarln \ 3
5 i /-u FiltarOut 'nn'ﬁ".l
= 1{}:'_'. I I ” i I 1 1 I {I) I
500 4 300 200 -1 00 L] 100 200 300 400 500

Frequency (Hz)

Create a Folder and Copy Relevant Files

To copy the example files into a temporary folder, run these commands:

design _name = 'mlhdlc sfir';
testbench name = 'mlhdlc sfir tb"';

Create a temporary folder

mlhdlc_demo dir
mlhdlc_temp dir
cd(tempdir);

[~, ~, ~1 = rmdir(mlhdlc_temp dir, 's');
mkdir(mlhdlc_temp dir);
cd(mlhdlc_temp dir);

[tempdir 'mlhdlc sfir'];

Copy the MATLAB files.

copyfile(fullfile(mlhdlc demo dir, [design name,'.m*']), mlhdlc temp dir);
copyfile(fullfile(mlhdlc demo dir, [testbench name,'.m*']), mlhdlc_temp dir);

Set Up HDL Simulator and Synthesis Tool Path

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos',

'matlabhdlcoderder

If you want to synthesize the generated HDL code, before you use HDL Coder to generate code, set
up your synthesis tool path. To set up the path to your synthesis tool, use the hdlsetuptoolpath

function. For example, if your synthesis tool is Xilinx Vivado:

Basic HDL Code Generation and FPGA Synthesis from MATLAB by Using the Workflow Advisor

hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', ...
"C:\Xilinx\Vivado\2018.3\bin\vivado.bat');

You must have already installed Xilinx Vivado. To check your Xilinx Vivado synthesis tool setup,
launch the tool by running this command:

lvivado

If you want to simulate the generated HDL code by using a HDL test bench, you can use an HDL
simulator such as ModelSim®. You must have already installed the HDL simulator.

Create an HDL Coder Project
To create an HDL Coder project:

1. Create a project by running this command:

coder -hdlcoder -new sfir project

2. For MATLAB Function, add the MATLAB design mlhdlc_sfir. Add mlhdlc sfir tb.m as the
MATLAB test bench.

3. Click Autodefine types and use the recommended types for the MATLAB design. The code
generator infers data types by running the test bench.

MATLAB Function (?)

= £ mihdlc_sfir.m

*_in double(l x 1)
h_inl double(l x 1)
h_in2 double(1 x 1)
h_in3 double{1 x 1)
h_ind double(l x 1)

Remove MATLAB function Autodefine types

MATLAB Test Bench (2

) mihdic_sfir_tb.m

Add files

After specifying your design function and test bench above, use
the Workflow Advisor to generate code.

&4 Workflow Advisor

5-11

5 Code Generation

5-12

Create Fixed-Point Versions of Algorithm and Test Bench

1 Click the Workflow Advisor button to open the Workflow Advisor. You see that the Define Input
Types task has passed.

2 Run the Fixed-Point Conversion task. The Fixed-Point Conversion tool opens in the right
pane.

When you run fixed-point conversion, to propose fraction lengths for floating-point data types, HDL
Coder uses the Default word length. In this tutorial, the Default word length is 14. The advisor
provides a default Safety Margin for Simulation Min/Max of 0%. The advisor adjusts the range of
the data by this safety factor. For example, a value of 4 specifies that you want a range of at least 4
percent larger. See also Floating-Point to Fixed-Point Conversion.

Select Code Generation Options and Generate HDL Code

Before you generate HDL code, if you want to deploy the code onto a target platform, specify the
synthesis tool. In the Code Generation Target task, leave Workflow to Generic ASIC/FPGA and
specify Xilinx Vivado as the Synthesis Tool. If you don't see the synthesis tool, click Refresh
list. Run this task.

In the HDL Code Generation task, by using the tabs on the right side of this task, you can specify
additional code generation options.

1 By default, HDL Coder generates VHDL® code. To generate Verilog code, in the Target tab,
choose Verilog as the Language.

2 To generate a code generation report with comments and traceability links, in the Coding style
tab, select Include MATLAB source code as comments and 'Generate report*.

3 To optimize your design, you can use the distributed pipelining optimization. In the
Optimizations tab, specify 1 for Input pipelining and Output pipelining and then select
Distribute pipeline registers. To learn more, see “Distributed Pipelining” on page 8-10.

4 Click Run to generate Verilog code.
Examine the log window and click the links to explore the generated code and the reports.
Generate HDL Test Bench and Simulate the Generated Code

HDL Coder generates a HDL test bench, runs the HDL test bench by using a HDL simulator, and
verifies whether the HDL simulation matches the numerics and latency of the fixed-point MATLAB
simulation.

To generate a HDL test bench and simulate the generated code, in the HDL Verification > Verify
with HDL Test Bench task:
In the Output Settings tab, select Generate HDL test bench.

2 To simulate the generated test bench, set the Simulation Tool to Mode1Sim. You must have
already installed ModelSim.

3 To specify generation of HDL test bench code and test bench data in separate files, in the Test
Bench Options tab, select Multi-file test bench.

4 Click the Run button.

The task generates an HDL test bench, then simulates the fixed-point design by using the selected
simulation tool, and generates a compilation report and a simulation report.

Basic HDL Code Generation and FPGA Synthesis from MATLAB by Using the Workflow Advisor

Synthesize Generated HDL Code

HDL Coder synthesizes the HDL code on the target platform and generates area and timing reports
for your design based on the target device that you specify.

To synthesize the generated HDL code:
1. Run the Create project task.

This task creates a Xilinx Vivado synthesis project for the HDL code. HDL Coder uses this project in
the next task to synthesize the design.

2. Select and run the Run Synthesis task.

This task launches the synthesis tool in the background, opens the synthesis project, compiles the
HDL code, synthesizes the design, and generates netlists and area and timing reports.

3. Select and run the Run Implementation task.

This task launches the synthesis tool in the background, runs place and route on the design, and
generates pre- and post-route timing information for use in critical path analysis and back annotation
of your source model.

Clean Up Generated Files

To clean up the temporary project folder, run these commands:

mlhdlc demo dir
mlhdlc temp dir
clear mex;

cd (mlhdlc_demo dir);
rmdir(mlhdlc_temp dir, 's');

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderder
[tempdir 'mlhdlc sfir'];

See Also

More About

. “HDL Workflow Advisor” on page 9-2

. “Automatic Verification of Generated HDL Code from MATLAB” (HDL Verifier)
. “FIL Simulation with HDL Workflow Advisor for MATLAB” (HDL Verifier)

5-13

5 Code Generation

HDL Code Generation from System Objects

5-14

This example shows how to generate HDL code from MATLAB® code that contains System objects.
MATLAB Design

The MATLAB code used in this example implements a simple symmetric FIR filter and uses the
dsp.Delay System object to model state. This example also shows a MATLAB test bench that exercises
the filter.

design _name = 'mlhdlc sysobj ex';
testbench name = 'mlhdlc sysobj ex tb';

Let us take a look at the MATLAB design.

type(design _name);

Filter states modeled using DSP System object (

o
Cl
o
Cl
o
Cl
% Design pattern covered in this example:
% ds
% Filter coefficients passed in as parameters to th
% %

% Copyright 2011-2015 The MathWorks, Inc.

s#codegen
function [y out, delayed xout] = mlhdlc sysobj ex(x in, h inl, h in2, h in3, h in4)
% Symmetric FIR Filter

persistent hl h2 h3 h4 h5 h6 h7 h8;
if isempty(hl)

hl = dsp.Delay;

h2 = dsp.Delay;

h3 dsp.Delay;

h4 dsp.Delay;

h5 dsp.Delay;

h6 dsp.Delay;

h7 = dsp.Delay;

h8 dsp.Delay;

end

hlp
h2p
h3p
h4dp
h5p
hép
h7p
h8p

step(hl, x _in);
step(h2, hlp)
step(h3, h2p)
step(h4, h3p)
step(h5, h4p)
step(h6, h5p)
step(h7, hép)
step(h8, h7p)

’
’
’
’
’
’

’

al
a2
a3
a4

hlp
h2p
h3p
h4p

h8p;
h7p;
hé6p;
h5p;

+ + + +

HDL Code Generation from System Objects

ml = h inl * al;
m2 = h in2 * a2;
m3 = h _in3 * a3;
m4 = h ind4 * a4;
a5 =ml + m2;
ab = m3 + m4;

% filtered output

y out = a5 + a6;

s delayout input signal
delayed xout = h8p;

N

end

type(testbench _name);

% Copyright 2011-2015 The MathWorks, Inc.
clear mlhdlc_sysobj ex;

X _in = cos(2.*pi.*(0:0.001:2).*(1+(0:0.001:2).*75)).";

hl = -0.1339;
h2 = -0.0838;
h3 = 0.2026;
h4 = 0.4064;

len = length(x_in);

y out _sysobj = zeros(1l,len);
x_out_sysobj = zeros(1l,len);
a = 10;

for ii=1:1en
data = x_in(ii);
% call to the design 'sfir' that is targeted for hardware

[y out sysobj(ii), x out sysobj(ii)] = mlhdlc_sysobj ex(data, hl, h2, h3, h4);

end

figure('Name', [mfilename, ' plot']);

subplot(2,1,1);

plot(l:len,x in); title('Input signal with noise');
subplot(2,1,2);

plot(l:len,y out sysobj); title('Filtered output signal');

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a temporary folder.

mlhdlc demo dir
mlhdlc temp dir

[tempdir 'mlhdlc sysobj intro'];

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos',

'matlabhdlcoderder

5-15

Code Generation

5-16

% Create a temporary folder and copy the MATLAB files.
cd(tempdir);

[~, ~, ~]1 = rmdir(mlhdlc_temp dir, 's');
mkdir(mlhdlc_temp dir);

cd(mlhdlc_temp dir);

copyfile(fullfile(mlhdlc _demo dir, [design name,'.m*']), mlhdlc_ temp dir);
copyfile(fullfile(mlhdlc _demo dir, [testbench name,'.m*']), mlhdlc temp dir);

Simulate the Design

Simulate the design with the test bench prior to code generation to make sure there are no runtime
errors.

mlhdlc sysobj ex tb

Input signal with noise

0 500 1000 1500 2000 2500

0 500 1000 1500 2000 2500

Create a New HDL Coder™ Project
To create a new project, enter the following command:
coder -hdlcoder -new mlhdlc _sysobj prj

Next, add the file 'mlhdlc_sysobj ex.m' to the project as the MATLAB Function and
'mlhdlc_sysobj ex th.m'as the MATLAB Test Bench.

You can refer to the Getting Started with MATLAB to HDL Workflow tutorial for a more complete
tutorial on creating and populating MATLAB HDL Coder projects.

HDL Code Generation from System Objects

Run Fixed-Point Conversion and HDL Code Generation

Launch the Workflow Advisor. In the Workflow Advisor, right-click the 'Code Generation' step. Choose
the option 'Run to selected task' to run all the steps from the beginning through HDL code
generation.

Examine the generated HDL code by clicking the links in the log window.
Supported System objects

Refer to the documentation for a list of System objects supported for HDL code generation.

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc demo dir
mlhdlc temp dir
clear mex;

cd (mlhdlc _demo dir);
rmdir(mlhdlc_temp dir, 's');

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderde
[tempdir 'mlhdlc sysobj intro'];

5-17

5 Code Generation

Code Generation Reports

In this section...

“Report Generation” on page 5-18
“Report Location” on page 5-18
“Errors and Warnings” on page 5-19
“Files and Functions” on page 5-19
“MATLAB Source” on page 5-19
“MATLAB Variables” on page 5-20
“Additional Reports” on page 5-21

“Report Limitations” on page 5-21

HDL Coder produces a code generation report that helps you to:

* Debug code generation issues and verify that your MATLAB code is suitable for code generation.
* View generated HDL code.

* See how the code generator determines and propagates type information for variables and
expressions in your MATLAB code.

* Access additional reports.

Report Generation

When you enable report generation, the code generator produces a code generation report. To
control generation and opening of a code generation report, use app settings, codegen options, or
configuration object properties.

In the HDL Coder app:

1 Open the HDL Coder Workflow Advisor.

2 Inthe HDL Code Generation step options, on the Coding Style tab, under Generated Code
Comments, select the Generate report check box.

At the command line, use codegen options:

* To generate a report, use the - report option.
* To generate and open a report, use the - launchreport option.

Alternatively, use configuration object properties:

* To generate a report, set GenerateReport to true.
» Ifyou want codegen to open the report for you, set LaunchReport to true.

Report Location
The code generation report is named report.mldatx. It is located in the html subfolder of the code

generation output folder. If you have MATLAB R2018a or later, you can open the report.mldatx file
by double-clicking it.

5-18

Code Generation Reports

Errors and Warnings
View code generation error, warning, and information messages on the All Messages tab. To

highlight the source code for an error or warning, click the message. It is a best practice to address
the first message because subsequent errors and warnings can be related to the first message.

Files and Functions

The report lists MATLAB source functions and generated files. In the MATLAB Source pane, the
Function List view organizes functions according to the containing file. To visualize functions
according to the call structure, use the Call Tree view.

To view a function in the code pane of the report, click the function in the list. Clicking a function
opens the file that contains the function. To edit the selected file in the MATLAB Editor, click Edit in
MATLAB or click a line number in the code pane.

Specialized Functions or Classes

When a function is called with different types of inputs or a class uses different types for its

properties, the code generator produces specializations. In the MATLAB Source pane, numbered
functions (or classes) indicate specializations. For example:

Jx fen = 1
fx fen = 2

MATLAB Source

To view a MATLAB function in the code pane, click the function in the MATLAB Source pane. To see
information about the type of a variable or expression, pause over the variable or expression.

In the code pane, syntax highlighting of MATLAB source code helps you to identify MATLAB syntax
elements. Syntax highlighting also helps you to identify certain code generation attributes such as
whether a function is extrinsic or whether an argument is constant.

Extrinsic Functions

In the MATLAB code, the report identifies an extrinsic function with purple text. The information
window indicates that the function is extrinsic.

Function: callMyExtrinsic

1 function z = callMyExtrinsic(a,b)

2 H#codegen

3 coder.extrinsic('myExtr ayExtrinsic(a,b)

4 7 = 8;

5z = : Size 1=1

6 disp(z); Class MmArray

7 end o ..
g 1) myExtrinsic /5 an exinnsic runcion

5-19

5 Code Generation

5-20

Constant Arguments

In the MATLAB code, orange text indicates a compile-time constant argument to an entry-point
function or a specialized function. The information window includes the constant value.

SHARE
Function: myadd a .j.
1 function ¢ 5
SiFe 1=1
2 c = §+b; Cla doubl
3 end e ouble
Complex Mo
Value 2

Knowing the value of the constant arguments helps you to understand generated function signatures.
It also helps you to see when code generation created function specializations for different constant
argument values.

To export the value to a variable in the workspace, click e,

MATLAB Variables

The Variables tab provides information about the variables for the selected MATLAB function. To
select a function, click the function in the MATLAB Source pane.

The variables table shows:

* Class, size, and complexity
* Properties of fixed-point types

This information helps you to debug errors, such as type mismatch errors, and to understand type
propagation.

Visual Indicators on the Variables Tab

This table describes symbols, badges, and other indicators in the variables table.

Column in the Variables Indicator Description
Table
Name expander Variable has elements or

properties that you can see by
clicking the expander.

Name {:} Heterogeneous cell array (all
elements have the same
properties)

Name {n} nth element of a heterogeneous
cell array

Code Generation Reports

Column in the Variables
Table

Indicator

Description

Class

v is reused with a different
class, size, and complexity. The
number n identifies each unique
reuse (a reuse with a unique set
of properties). When you pause
over a renamed variable, the
report highlights only the
instances of this variable that
share the class, size, and
complexity.

Class

complex prefix

Complex number

Class

Fixed-point type

To see the fixed-point
properties, click the badge.

Additional Reports

The Summary tab can have links to these additional reports:

* Conformance report
* Resource report

+ “HDL Coding Standard Report” on page 26-2

Report Limitations

* The entry-point summary shows individual elements of varagin and vargout, but the variables

table does not show them.

* The report does not show full information for unrolled loops. It displays data types of one arbitrary

iteration.

* The report does not show information about dead code.

See Also

More About

. “Basic HDL Code Generation and FPGA Synthesis from MATLAB by Using the Workflow

Advisor” on page 5-7

. “Generate HDL Code from MATLAB Code Using the Command Line Interface”

5-21

5 Code Generation

Generate Instantiable Code for Functions

5-22

In this section...

“How to Generate Instantiable Code for Functions” on page 5-22
“Generate Code Inline for Specific Functions” on page 5-22

“Limitations for Instantiable Code Generation for Functions” on page 5-22

You can use the Generate instantiable code for functions option to generate a VHDL entity or
Verilog module for each function. The software generates code for each entity or module in a
separate file.

How to Generate Instantiable Code for Functions

To enable instantiable code generation for functions in the UI:

1 In the HDL Workflow Advisor, select the HDL Code Generation task.
2 In the Advanced tab, select Generate instantiable code for functions.

To enable instantiable code generation for functions programmatically, in your coder.Hd1Config
object, set the InstantiateFunctions property to true. For example, to create a
coder.Hd1Config object and enable instantiable code generation for functions:

hdlcfg = coder.config('hdl');
hdlcfg.InstantiateFunctions = true;

Generate Code Inline for Specific Functions

If you want to generate instantiable code for some functions but not others, enable the option to
generate instantiable code for functions, and use coder.inline. See coder.inline for details.

Limitations for Instantiable Code Generation for Functions

The software generates code inline when:

* Function calls are within conditional code or for loops.

* Any function is called with a nonconstant struct input.

* The function has state, such as a persistent variable, and is called multiple times.
* There is an enumeration anywhere in the design function.

If you enable InstantiateFunctions , UseMatrixTypesInHDL has no effect.

Integrate Custom HDL Code Into MATLAB Design

Integrate Custom HDL Code Into MATLAB Design

hdl.BlackBox provides a way to include custom HDL code, such as legacy or handwritten HDL
code, in a MATLAB design intended for HDL code generation.

When you create a user-defined System object that inherits from hdl.BlackBox, you specify a port
interface and simulation behavior that matches your custom HDL code.

HDL Coder simulates the design in MATLAB using the behavior you define in the System object.
During code generation, instead of generating code for the simulation behavior, the coder instantiates
a module with the port interface you specify in the System object.

To use the generated HDL code in a larger system, you include the custom HDL source files with the
rest of the generated code.

In this section...

“Define the hdl.BlackBox System object” on page 5-23

“Use System object In MATLAB Design Function” on page 5-24
“Generate HDL Code” on page 5-25

“Limitations for hdl.BlackBox” on page 5-27

Define the hdl.BlackBox System object

Create a user-defined System object that inherits from hdl.BlackBox.

2 Configure the black box interface to match the port interface for your custom HDL code by
setting hdl.BlackBox properties in the System object.

3 Define the step method such that its simulation behavior matches the custom HDL code.

Alternatively, the System object you define can inherit from both hd1.BlackBox and the
matlab.system.mixin.Nondirect class, and you can define output and update methods to
match the custom HDL code simulation behavior.

Example Code

For example, the following code defines a System object, CounterBbox, that inherits from
hdl.BlackBox and represents custom HDL code for a counter that increments until it reaches a
threshold. The CounterBbox reset and step methods model the custom HDL code behavior.

classdef CounterBbox < hdl.BlackBox % derive from hdl.BlackBox class
%Counter: Count up to a threshold.

This is an example of a discrete-time System object with state
variables.

o® o° o o°

properties (Nontunable)
Threshold =1
end

properties (DiscreteState)
% Define discrete-time states.
Count

end

5-23

5 Code Generation

5-24

methods
function obj = CounterBbox(varargin)
% Support name-value pair arguments
setProperties(obj,nargin,varargin{:});
obj.NumInputs = 1; % define number of inputs
obj.NumOutputs = 1; % define number of inputs
end
end

methods (Access=protected)
% Define simulation behavior.
% For code generation, the coder uses your custom HDL code instead.
function resetImpl(obj)
% Specify initial values for DiscreteState properties
obj.Count = 0;
end

function myout = stepImpl(obj, myin)
% Implement algorithm. Calculate y as a function of
% input u and state.
if (myin > obj.Threshold)

obj.Count = obj.Count + 1;

end
myout = obj.Count;

end

end
end

Use System object In MATLAB Design Function

After you define your System object, use it in the MATLAB design function by creating an instance
and calling its step method.

To generate code, you also need to create a test bench function that exercises the top-level design
function.

Example Code

The following example code shows a top-level design function that creates an instance of the
CounterBbox and calls its step method.

function [yl, y2] = topLevelDesign(u)

persistent mybboxObj myramObj

if isempty(mybbox0bj)
mybbox0Obj = CounterBbox; % instantiate the black box
myramObj = hdl.RAM('RAMType', 'Dual port');

end

yl = step(mybboxObj, u); % call the system object step method
[~, y2] = step(myramObj, uint8(10), uint8(0), true, uint8(20));

The following example code shows a test bench function for the topLevelDesign function.

clear topLevelDesign
yl = zeros(1,200);

Integrate Custom HDL Code Into MATLAB Design

y2 = zeros(1,200);
for 1ii=1:200
[yl(ii), y2(ii)] = topLevelDesign(ii);
end
plot([1:200], y2)

Generate HDL Code

Generate HDL code using the design function and test bench code.
When you use the generated HDL code, include your custom HDL code with the generated HDL files.
Example Code

In the following generated VHDL code for the CounterBbox example, you can see that the
CounterBbox instance in the MATLAB code maps to an HDL component definition and instantiation,
but HDL code is not generated for the step method.

LIBRARY IEEE;
USE IEEE.std logic 1164.ALL;
USE IEEE.numeric std.ALL;

ENTITY foo IS

PORT(clk : IN std logic;
reset : IN std logic;
clk enable : IN std logic;
u : IN std logic vector(7 DOWNTO O); -- uint8
ce out : OUT std logic;
yl : ouT real; -- double
y2 : OUT std logic vector(7 DOWNTO 0) -- uint8
);

END foo;

ARCHITECTURE rtl OF foo IS

-- Component Declarations
COMPONENT CounterBbox

PORT(clk : IN std logic;
clk _enable : IN std logic;
reset : IN std logic;
myin : IN std logic vector(7 DOWNTO @); -- uint8
myout : ouT real -- double

);
END COMPONENT;

COMPONENT DualPortRAM Inst0O

PORT(clk : IN std logic;
enb : IN std logic;
wr_din : IN std logic_vector(7 DOWNTO 0); -- uint8
wr_addr : IN std logic vector(7 DOWNTO @); -- uint8
wr_en : IN std logic;
rd _addr : IN std logic_vector(7 DOWNTO 0); -- uint8
wr_dout : ouT std logic _vector(7 DOWNTO 0); -- uint8
rd dout : OUT std logic _vector(7 DOWNTO 0) -- uint8

)
END COMPONENT;

5-25

5 Code Generation

-- Component Configuration Statements
FOR ALL : CounterBbox
USE ENTITY work.CounterBbox(rtl);

FOR ALL : DualPortRAM Inst@
USE ENTITY work.DualPortRAM InstO(rtl);

-- Signals

SIGNAL enb : std logic;

SIGNAL varargout 1 : real := 0.0; -- double

SIGNAL tmp : unsigned(7 DOWNTO 0); ~-- uint8

SIGNAL tmp 1 : unsigned(7 DOWNTO 0); ~-- uint8

SIGNAL tmp 2 1 std logic;

SIGNAL tmp 3 : unsigned(7 DOWNTO 0); -- uint8

SIGNAL varargout 1 1 : std logic vector(7 DOWNTO 0); -- ufix8

SIGNAL varargout 2 : std logic vector(7 DOWNTO 0); -- ufix8
BEGIN

u_CounterBbox : CounterBbox
PORT MAP(clk => clk,
clk_enable => enb,
reset => reset,
myin => u, -- uint8
myout => varargout 1 -- double
);

u DualPortRAM Inst@ : DualPortRAM Inst@
PORT MAP(clk => clk,
enb => enb,

wr_din => std logic vector(tmp), -- uint8
wr_addr => std logic vector(tmp 1), -- uint8
wr_en => tmp 2,

rd addr => std logic vector(tmp 3), -- uint8
wr_dout => varargout 1 1, -- uint8

rd dout => varargout 2 -- uint8

)i
enb <= clk enable;
yl <= varargout 1;

--y2 = U;
tmp <= to_unsigned(2#00001010#, 8);

tmp 1 <= to unsigned(2#00000000#, 8);
tmp 2 <= '1";

tmp 3 <= to unsigned(2#00010100#, 8);
ce out <= clk enable;

y2 <= varargout 2;

END rtl;

5-26

Integrate Custom HDL Code Into MATLAB Design

Limitations for hdl.BlackBox

You cannot use hdl.BlackBox to assign values to a VHDL generic or Verilog parameter in your
custom HDL code.

See Also
hdl.BlackBox

Related Examples
. “Generate Board-Independent IP Core from MATLAB Algorithm” on page 5-41

5-27

5 Code Generation

Enable MATLAB Function Block Generation

5-28

In this section...

“Requirements for MATLAB Function Block Generation” on page 5-28
“Enable MATLAB Function Block Generation” on page 5-28
“Restrictions for MATLAB Function Block Generation” on page 5-28
“Results of MATLAB Function Block Generation” on page 5-28

Requirements for MATLAB Function Block Generation

During HDL code generation, your MATLAB algorithm must go through the floating-point to fixed-
point conversion process, even if it is already a fixed-point algorithm.

Enable MATLAB Function Block Generation

Using the GUI
To enable MATLAB Function block generation using the HDL Workflow Advisor:

1 In the HDL Workflow Advisor, on the left, click Code Generation.
2 In the Advanced tab, select the Generate MATLAB Function Black Box option.

Using the Command Line

To enable MATLAB Function block generation, at the command line, enter:

hdlcfg = coder.config('hdl');
hdlcfg.GenerateMLFcnBlock = true;

Restrictions for MATLAB Function Block Generation

The top-level MATLAB design function cannot have input or output arguments with the struct data
type.

Results of MATLAB Function Block Generation
After you generate HDL code, an untitled model opens containing a MATLAB Function block.

You can use the MATLAB Function block as part of a larger model in Simulink for simulation and
further HDL code generation.

To learn more about generating a MATLAB Function block from a MATLAB algorithm, see “System
Design with HDL Code Generation from MATLAB and Simulink” on page 5-29.

System Design with HDL Code Generation from MATLAB and Simulink

System Design with HDL Code Generation from MATLAB and
Simulink

This example shows how to generate a MATLAB Function block from a MATLAB® design for system
simulation, code generation, and FPGA programming in Simulink®.

Introduction

HDL Coder can generate HDL code from both MATLAB® and Simulink®. The coder can also
generate a Simulink® component, the MATLAB Function block, from your MATLAB code.

This capability enables you to:

Design an algorithm in MATLAB;

Generate a MATLAB Function block from your MATLAB design;
Use the MATLAB component in a Simulink model of the system;
Simulate and optimize the system model;

Generate HDL code; and

Program an FPGA with the entire system design.

o U A W N K

In this example, you will generate a MATLAB Function block from MATLAB code that implements a
FIR filter.

MATLAB Design

The MATLAB code used in the example is a simple FIR filter. The example also shows a MATLAB
testbench that exercises the filter.

design name = 'mlhdlc fir';
testbench_name = 'mlhdlc _fir tb';

1 Design: mlhdlc fir
2 Test Bench: mlhdlc fir tbh

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the example files into a temporary folder.

mlhdlc demo dir
mlhdlc temp dir

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdel
[tempdir 'mlhdlc fir'];

% Create a temporary folder and copy the MATLAB files
cd(tempdir);

[~, ~, ~] = rmdir(mlhdlc_temp dir, 's');
mkdir(mlhdlc temp dir);

cd(mlhdlc_temp dir);

copyfile(fullfile(mlhdlc_demo dir, [design name,'.m*']), mlhdlc_temp dir);
copyfile(fullfile(mlhdlc _demo dir, [testbench name,'.m*']), mlhdlc_temp dir);

Simulate the Design

To simulate the design with the test bench prior to code generation to make sure there are no
runtime errors, enter the following command:

5-29

5 Code Generation

mlhdlc fir tbh

Create a New Project

To create a new HDL Coder project, enter the following command:
coder -hdlcoder -new fir project

Next, add the file 'mlhdlc firm' to the project as the MATLAB Function and 'mlhdlc fir th.m' as the
MATLAB Test Bench.

Click the Workflow Advisor button to launch the HDL Workflow Advisor.
Enable the MATLAB Function Block Option

To generate a MATLAB Function block from a MATLAB HDL design, you must have a Simulink
license. If the following command returns '1', Simulink is available:

license('test', 'Simulink')

In the HDL Workflow Advisor Advanced tab, enable the Generate MATLAB Function Block option.

A\ HDL Code Generation EI@

5-30

| Sirmulation and Verification

=2- J MATLAE HOL Coder Workfl ow Generate synthesizable HDL code from the fixed-point MATLAB code.
E| @ Float-to-Fixed Workflow

: OVerlfy Flaating-Paint Design
/] Propase Ficed-Paint Types Advanced Coding Options
0 Generate Fixed-Point Code
0 “erify Fixed-Point Design
B) MATLAE to HDL Warkflow [7] Generate instantiable code for functions

| Targetl Coding Style | Clacks & Parts | Test Bench | Optimizations | Advanced | Seript Options

RAM architecture: :RAM with clock enable v:

Code Generation

Sirnulink Integration
| Synthesis and Analysis
Create Project Generate MATLAR Function Block (Simulink license is required)

? Run Logic Synthesis

7 Rur Place and Raute [T] Generate Xilirx Systern Generator Black Box (Simulink and Xilinx Systern Generator for DSP licenses are required)

o (B |

Warning: RAM mapping not performed for warisble, 'tap delay', because it doesz not meet the U_lj
ck

> In m:\Ahdlstagey2Z012_04_18_h15m09s546_jobl13Z86_ failimatlabltoolboxbcoderdcoder’private’eml

Run Floating-Point to Fixed-Point Conversion and Generate Code

To generate a MATLAB Function block, you must also convert your design from floating-point to fixed-
point.

Right-click the 'Code Generation' step and choose the option 'Run to selected task' to run all the steps
from the beginning through HDL code generation.

Examine the Generated MATLAB Function Block

An untitled model opens after HDL code generation. It has a MATLAB Function block containing the
fixed-point MATLAB code from your MATLAB HDL design. HDL Coder automatically applies settings
to the model and MATLAB Function block so that they can simulate in Simulink and generate HDL
code.

To generate HDL code from the MATLAB Function block, enter the following command:

System Design with HDL Code Generation from MATLAB and Simulink

makehdl('untitled');

'D'i untitled * = | [E £

-
File Edit View Display Diagram Simulation Analysis Code Tools Help

- - - 10 - -
Model Browser = untitled
untitled ® untitled h
3l
—

@—p indatabuf ik outdatabuf —»@
milhdlc_fir_FixPt

in1 out1

mihdic_fir_FixPt_slcfg

«

Ready 235% FieedStepDiscrete

You can rename and save the new block to use in a larger Simulink design.
Clean Up the Generated Files

You can run the following commands to clean up the temporary project folder.

mlhdlc demo dir
mlhdlc_ temp dir
clear mex;

cd (mlhdlc _demo dir);
rmdir(mlhdlc_temp dir,

[tempdir 'mlhdlc fir'];

s');

5-31

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderder

5 Code Generation

Specify the Clock Enable Rate

In this section...
“Why Specify the Clock Enable Rate?” on page 5-32
“How to Specify the Clock Enable Rate” on page 5-32

Why Specify the Clock Enable Rate?

When HDL Coder performs area optimizations, it might upsample parts of your design (DUT), and
thereby introduce an increase in your required DUT clock frequency.

If the coder upsamples your design, it generates a message indicating the ratio between the new
clock frequency and your original clock frequency. For example, the following message indicates that
your design’s new required clock frequency is 4 times higher than the original frequency:

The design requires 4 times faster clock with respect to the base rate =1

This frequency increase introduces a rate mismatch between your input clock enable and output
clock enable, because the output clock enable runs at the slower original clock frequency.

With the Drive clock enable at option, you can choose whether to drive the input clock enable at the
faster rate (DUT base rate) or at a rate that is less than or equal to the original clock enable rate
(Input data rate).

How to Specify the Clock Enable Rate

1 In the HDL Workflow Advisor, select MATLAB to HDL Workflow > Code Generation. Click the
Clocks & Ports tab.

2 For the Drive clock enable at option, select Input data rate or DUT base rate.

Drive clock enable at Option Clock Enable Behavior

Input data rate (default) Each assertion of the input clock enable
produces an output clock enable assertion.

You can assert the input clock enable at a
maximum rate of once every N clocks. N =
the upsampled clock rate / original clock
rate.

For example, if you see the message, “The
design requires 4 times faster
clock with respect to the base
rate = 1”, your maximum input clock
enable rate is once every 4 clocks.

5-32

Specify the Clock Enable Rate

Drive clock enable at Option

Clock Enable Behavior

DUT base rate

Input clock enable rate does not match the
output clock enable rate. You must assert the
input clock enable with your input data N
times to get 1 output clock enable assertion.
N = the upsampled clock rate / original clock
rate.

For example, if you see the message, “The
design requires 4 times faster
clock with respect to the base
rate = 1”, you must assert the input clock
enable 4 times to get 1 output clock enable
assertion.

5-33

5 Code Generation

Specify Test Bench Clock Enable Toggle Rate

In this section...
“When to Specify Test Bench Clock Enable Toggle Rate” on page 5-34
“How to Specify Test Bench Clock Enable Toggle Rate” on page 5-34

When to Specify Test Bench Clock Enable Toggle Rate

When you want the test bench to drive your input data at a slower rate than the maximum input clock
enable rate, specify the test bench clock enable toggle rate.

This specification can help you to achieve better test coverage, and to simulate the real world input
data rate.

Note The maximum input clock enable rate is once every N clock cycles. N = the upsampled clock
rate / original clock rate. Refer to the clock enable behavior for Input data rate, in “Specify the
Clock Enable Rate” on page 5-32.

How to Specify Test Bench Clock Enable Toggle Rate

To set your test bench clock enable toggle rate:

In the HDL Workflow Advisor, select MATLAB to HDL Workflow > Code Generation.
In the Clocks & Ports tab, for the Drive clock enable at option, select Input data rate.

In the Test Bench tab, for Input data interval, enter 0 or an integer greater than the maximum
input clock enable interval.

Input data interval, | Test Bench Clock Enable Behavior

I = 0 (default) Asserts at the maximum input clock enable
rate, or once every N cycles. N = the
upsampled clock rate / original clock rate.

I<N Not valid; generates an error.
[=N Same as I = 0.
I>N Asserts every I clock cycles.

For example, this timing diagram shows clock enable behavior with Input data interval = 0. Here,
the maximum input clock enable rate is once every 2 cycles.

The following timing diagram shows the same test bench and DUT with Input data interval = 3.

5-34

Specify Test Bench Clock Enable Toggle Rate

7]
]
]
]

o

o

4
]

5-35

5 Code Generation

Generate an HDL Coding Standard Report from MATLAB

5-36

In this section...

“Using the HDL Workflow Advisor” on page 5-36
“Using the Command Line” on page 5-38

You can generate an HDL coding standard report that shows how well your generated code follows
industry standards. You can optionally customize the coding standard report and the coding standard
rules.

Using the HDL Workflow Advisor

To generate an HDL coding standard report using the HDL Workflow Advisor:

1 Inthe HDL Code Generation task, select the Coding Standards tab.
2 For HDL coding standard, select Industry.

Generate an HDL Coding Standard Report from MATLAB

|Target| Coding 5ty|e| Coding Standards | Clocks & Ports | Optimizations | Advanced | Script Options

Choose coding standard
HOL coding standard: :Industrj,f v:

Report options

[] Do not show passing rules in coding standard report

Basic coding rules

Check for duplicate names
Check for HDL keywords in design names

Check module, instance, entity name length

-

Minimurm: 2=
Maxirnurm: 325
Check signal, port, parameter name length

Minirum: 25

¥

Maxirurmn: 0=
RTL description rules

[] Check for clock enable signals

[] Check for reset signals

Check for asynchronous reset signals
[] Minimize use of variables

Check for initial staternents that set RAM initial values
Check number of conditicnal regions
Length: 1<
Check if-else staternent chain length
Length: 1=
Check if-else staternent nesting depth
Depth: 3=
Check multiplier width

M aximum: 16~

RTL desi [
esign rules 5.37
Check for non-integer constants

Check line wrap length

5 Code Generation

5-38

3 Optionally, using the other options in the Coding Standards tab, customize the coding standard
rules.

4 Click Run to generate code.

After you generate code, the message window shows a link to the HTML compliance report.

Using the Command Line

To generate an HDL coding standard report using the command line interface, set the
HDLCodingStandard property to Industry in the coder.Hd1Config object.

For example, to generate HDL code and an HDL coding standard report for a design, mlthdlc_sfir,
with a testbench, mlhdlc_sfir tb, enter the following commands:

hdlcfg = coder.config('hdl"');
hdlcfg.TestBenchName = 'mlhdlc sfir tb';
hdlcfg.HDLCodingStandard="Industry';
codegen -config hdlcfg mlhdlc sfir

Generating Resource Utilization Report resource report.html

Generating default Industry script file mlhdlc sfir mlhdlc sfir default.prj
Industry Compliance report with @ errors, 8 warnings, 4 messages.

Generating Industry Compliance Report mlhdlc sfir Industry report.html

To open the report, click the report link.

You can customize the coding standard report and coding standard rule checks by specifying an HDL
coding standard customization object. For example, suppose you have a design, mlhdlc sfir, and
testbench, mlhdlc sfir tb. You can create an HDL coding standard customization object, cso, set
the maximum if-else statement chain length to 5 by using the IfTElseChain property, and generate
code:

hdlcfg = coder.config('hdl');
hdlcfg.TestBenchName = 'mlhdlc sfir tb"';
hdlcfg.HDLCodingStandard="'Industry";

cso = hdlcoder.CodingStandard('Industry');
cso.IfElseChain.length = 5;
hdlcfg.HDLCodingStandardCustomizations = cso;
codegen -config hdlcfg mlhdlc sfir

See Also

Properties
HDL Coding Standard Customization

More About

. “HDL Coding Standard Report” on page 26-2

. “Basic Coding Practices” on page 26-9

. “RTL Description Techniques” on page 26-18

. “RTL Design Methodology Guidelines” on page 26-41

Generate an HDL Lint Tool Script

Generate an HDL Lint Tool Script

You can generate a lint tool script to use with a third-party lint tool to check your generated HDL
code.

HDL Coder can generate Tcl scripts for the following lint tools:

* Ascent Lint

* HDL Designer
* Leda

* SpyGlass

* Custom

If you specify one of the supported third-party lint tools, you can either generate a default tool-
specific script, or customize the script by specifying the initialization, command, and termination
names as a character vector. If you want to generate a script for a custom lint tool, you must specify
the initialization, command, and termination names.

HDL Coder writes the initialization, command, and termination names to a Tcl script that you can use
to run the third-party tool.

How To Generate an HDL Lint Tool Script
Using the HDL Workflow Advisor

1 In the HDL Workflow Advisor, select the HDL Code Generation task.

2 In the Script Options tab, select Lint.

3 For Choose lint tool, select Ascent Lint, HDL Designer, Leda, SpyGlass, or Custom.
4

Optionally, enter text to customize the Lint script initialization, Lint script command, and
Lint script termination fields. For a custom tool, you must specify these fields.

After you generate code, the command window shows a link to the lint tool script.
Using the Command Line

To generate an HDL lint tool script from the command line, set the HDLLintTool property to
AscentLint, HDLDesigner, Leda, SpyGlass or Custom in your coder.Hd1Config object.

To disable HDL lint tool script generation, set the HDLLintTool property to None.

For example, to generate a default SpyGlass lint script using a coder.Hd1Config object, hdlcfg,
enter:

hdlcfg.HDLLintTool = 'SpyGlass';

After you generate code, the command window shows a link to the lint tool script.

To generate an HDL lint tool script with custom initialization, command, and termination strings, use
the HDLLintTool, HDLLintInit, HDLLintCmd, and HDLLintTerm properties.

5-39

5 Code Generation

5-40

For example, you can use the following command to generate a custom Leda lint script for a DUT
subsystem, sfir fixed\symmetric fir, with custom initialization, termination, and command
strings:

hdlcfg.HDLLintTool 'Leda’;
hdlcfg.HDLLintInit 'myInitialization’;
hdlcfg.HDLLintCmd = 'myCommand %s';
hdlcfg.HDLLintTerm = 'myTermination';

After you generate code, the command window shows a link to the lint tool script.
Custom Lint Tool Command Specification

If you want to generate a lint tool script for a custom lint tool, you must use %s as a placeholder for
the HDL file name in the generated Tcl script.

For Lint script command or HDLLintCmd, specify the lint command in the following format:
custom_lint tool command -optionl -option2 %s

For example, to set the HDLLintCmd for a coder.Hd1Config object, hdlcfg, where the lint
command is custom lint tool command -optionl -option2, enter:

hdlcfg.HDLLintCmd = 'custom lint tool command -optionl -option2 %s';

Generate Board-Independent IP Core from MATLAB Algorithm

Generate Board-Independent IP Core from MATLAB Algorithm

In this section...

“Requirements and Limitations for IP Core Generation” on page 5-41

“Generate Board-Independent IP Core” on page 5-41

When you open the HDL Workflow Advisor and run the IP Core Generation workflow for your
Simulink model, you can specify a generic Xilinx® platform or a generic Intel® platform. The workflow
then generates a generic IP core that you can integrate into any target platform of your choice. For IP
core integration, define and register a custom reference design for your target board.

Requirements and Limitations for IP Core Generation

You cannot generate an HDL IP core without any AXI4 slave interface. At least one DUT port must
map to an AXI4 or AXI4-Lite interface. To generate an HDL IP core without any AXI4 slave interfaces,
use the Simulink IP core generation workflow. For more information, see “Generate Board-
Independent HDL IP Core from Simulink Model” on page 40-12.

In the same IP core, you cannot map to both an AXI4 interface and AXI4-Lite interface.
AXi4-Lite Interface Restrictions

* The inputs and outputs must have a bit width less than or equal to 32 bits.
* The input and outputs must be scalar.

AXl4-Stream Video Interface Restrictions

* Ports must have a 32-bit width.
* Ports must be scalar.
* You can have a maximum of one input video port and one output video port.

* The AXI4-Stream Video interface is not supported in Coprocessing - blocking Processor/FPGA
synchronization must be set to Free running mode. Coprocessing — blocking mode is not
supported.

Generate Board-Independent IP Core

To generate a board-independent IP core to use in an embedded system integration environment,
such as Intel Qsys, Xilinx EDK, or Xilinx IP Integrator:

1 Create an HDL Coder project containing your MATLAB design and test bench, or open an
existing project.

2 In the HDL Workflow Advisor, define input types and perform fixed-point conversion.
To learn how to convert your design to fixed-point, see “Basic HDL Code Generation and FPGA
Synthesis from MATLAB by Using the Workflow Advisor”.

3 In the HDL Workflow Advisor, in the Select Code Generation Target task:

* Workflow: Select IP Core Generation.
* Platform: Select Generic Xilinx Platformor Generic Altera Platform.

5-41

5 Code Generation

Depending on your selection, the code generator automatically sets the Synthesis tool. For
example, if you select Generic Xilinx Platform, Synthesis tool automatically changes
to Xilinx Vivado.

* Additional source files: If you are using an hdl.BlackBox System object to include
existing Verilog or VHDL code, enter the file names. Enter each file name manually, separated
with a semicolon (;), or by using the ... button. The source file language must match your
target language.

4 Inthe Set Target Interface step, for each port, select an option from the Target Platform
Interfaces drop-down list.

Ports | Build Log ®
Port Mame Data Type Target Platform Interfaces Bit Range / Address / FPGA Pin
=
Blink_frequency_1 numerictype(0, 4, 0) AX4 " 00"
Blink_direction numerictype(0, 1, 0) AX4 ®"104"
=
numenct_l,rpe{U g 0 External Port

5 Inthe HDL Code Generation step, optionally specify code generation options, then click Run.

In the HDL Workflow Advisor message pane, click the IP core report link to view detailed
documentation for your generated IP core.

See Also

Classes
hdlcoder.Board | hdlcoder.ReferenceDesign

Related Examples
. “Using IP Core Generation Workflow from MATLAB: LED Blinking”

More About
. “Custom IP Core Generation” on page 40-4
. “Board and Reference Design Registration System” on page 41-43

5-42

Minimize Clock Enables

Minimize Clock Enables

In this section...
“Using the GUI” on page 5-43
“Using the Command Line” on page 5-43

“Limitations” on page 5-44

By default, HDL Coder generates code in a style that is intended to map to registers with clock
enables, and the DUT has a top-level clock enable port.

If you do not want to generate registers with clock enables, you can minimize the clock enable logic.
For example, if your target hardware contains registers without clock enables, you can save hardware
resources by minimizing the clock enable logic.

The following VHDL code shows the default style of generated code, which uses clock enables. The
enb signal is the clock enable:

Unit Delay process : PROCESS (clk, reset)
BEGIN
IF reset = '1' THEN
Unit Delay outl <= to signed(0, 32);
ELSIF clk'EVENT AND clk = '1' THEN
IF enb = '1' THEN
Unit Delay outl <= Inl signed;
END IF;
END IF;
END PROCESS Unit Delay process;

The following VHDL code shows the style of code you generate if you minimize clock enables:

Unit Delay process : PROCESS (clk, reset)
BEGIN
IF reset = '1' THEN
Unit Delay outl <= to signed(0, 32);
ELSIF clk'EVENT AND clk = '1' THEN
Unit Delay outl <= Inl signed;
END IF;
END PROCESS Unit Delay process;

Using the GUI

To minimize clock enables, in the HDL Workflow Advisor, on the HDL Code Generation > Set Code
Generation Options > Set Optimization Options > General tab, select Minimize clock enables.

Using the Command Line

To minimize clock enables, in the coder.Hd1Config configuration object, set the
MinimizeClockEnables property to true. For example:

hd1Cfg = coder.config('hdl")
hdlCfg.MinimizeClockEnables = true;

5-43

5 Code Generation

Limitations

If you specify area optimizations that the coder implements by increasing the clock rate in certain
regions of the design, you cannot minimize clock enables. The following optimizations prevent clock
enable minimization:

* Resource sharing

* RAM mapping

* Loop streaming

5-44

Verification

* “Verify Code with HDL Test Bench” on page 6-2
» “Test Bench Generation” on page 6-5

6 Verification

Verify Code with HDL Test Bench

Simulate the generated HDL design under test (DUT) with test vectors from the test bench using the
specified simulation tool.

6-2

1

Start the MATLAB to HDL Workflow Advisor.

4\ HDL Code Generation

oo]

=42 HDL Workflow Adviser

@ Define Input Types
@ Fixed-Point Conversion
@ HDL Code Generation
-9 HDL Verification
IR JVerify with HDL Test Bench |
i @ Verify with Cosimulation
L ity Verify with FPGA-in-the-Loop
A, Synthesis and Analysis

] Create Project

{1 Run Logic Synthesis

Run Place and Route

i

Verify the HDL code with test vectors from the test bench using the specified simulation tool.

Output Settings | Test Bench Options|

HDL Test Bench Generation Settings

Generate HDL test bench

HDL Test Bench Simulation Settings
Simulate generated HDL test bench

Simulation tool: | ModelSim

[] Skip this Step

At step HDL Verification, click Verify with HDL Test Bench.
Select Generate HDL test bench.

This option enables HDL Coder to generate HDL test bench code from your MATLAB test script.

Optionally, select Simulate generated HDL test bench. This option enables MATLAB to
simulate the HDL test bench with the HDL DUT.

If you select this option, you must also select the Simulation tool.
For Test Bench Options, select and set the optional parameters according to the descriptions in

the following table.

HDL Test Bench Parameter Description

Test bench name postfix

Specify the postfix for the test bench name.

Verify Code with HDL Test Bench

HDL Test Bench Parameter

Description

Force clock

Enable for test bench to force clock input
signals.

Clock high time (ns)

Specify the number of nanoseconds the clock
is high.

Clock low time (ns)

Specify the number of nanoseconds the clock
is low.

Hold time (ns)

Specify the hold time for input signals and
forced reset signals.

Force clock enable

Enable to force clock enable.

Clock enable delay (in clock cycles)

Specify time (in clock cycles) between
deassertion of reset and assertion of clock
enable.

Force reset

Enable for test bench to force reset input
signals.

Reset length (in clock cycles)

Specify time (in clock cycles) between
assertion and deassertion of reset.

Hold input data between samples

Enable to hold subrate signals between clock
samples.

Input data interval

Specifies the number of clock cycles between
assertions of clock enable. For more
information, see “Specify Test Bench Clock
Enable Toggle Rate” on page 5-34.

Initialize test bench inputs

Enable to initialize values on inputs to test
bench before test bench drives data to DUT.

Multi file test bench

Enable to divide generated test bench into
helper functions, data, and HDL test bench
code.

Test bench data file name postfix

Specify the character vector to append to
name of test bench data file when generating
multi-file test bench.

Test bench reference postfix

Specify the character vector to append to
names of reference signals in test bench
code.

Ignore data checking (number of
samples)

Specify the number of samples at the
beginning of simulation during which output
data checking is suppressed.

Simulation iteration limit

Specify the maximum number of test samples
to use during simulation of generated HDL
code.

6 Optionally, select Skip this step if you don’t want to use the HDL test bench to verify the HDL

DUT.
7 Click Run.

6-3

6 Verification

6-4

If the test bench and simulation is successful, you should see messages similar to these in the
message pane:

##t#
##t#
##t#
##t#
##t#
##t#
##t#
##H#
##t#
##t#

Begin TestBench generation.

Collecting data...

Begin HDL test bench file generation with logged samples

Generating test bench: mlhdlc sfir fixpt tb.vhd

Creating stimulus vectors...

Simulating the design 'mlhdlc_sfir fixpt' using 'ModelSim'.
Generating Compilation Report mlhdlc sfir fixpt vsim log compile.txt
Generating Simulation Report mlhdlc sfir fixpt vsim log sim.txt
Simulation successful.

Elapsed Time: 113.0315 sec(s)

If there are errors, those messages appear in the message pane. Fix errors and click Run.

Test Bench Generation

Test Bench Generation

In this section...
“How Test Bench Generation Works” on page 6-5

“Test Bench Data Files” on page 6-5
“Test Bench Data Type Limitations” on page 6-5
“Use Constants Instead of File I/O” on page 6-5

How Test Bench Generation Works

HDL Coder writes the DUT stimulus and reference data from your MATLAB or Simulink simulation to
data files (.dat).

During HDL simulation, the HDL test bench reads the saved stimulus from the .dat files. The test
bench compares the actual DUT output with the expected output, which is also saved in .dat files.
After you generate code, the message window displays links to the test bench data files.

Reference data is delayed by one clock cycle in the waveform viewer compared to default test bench

generation due to the delay in reading data from files.

Test Bench Data Files

The coder saves stimulus and reference data for each DUT input and output in a separate test bench
data file (.dat), with the following exceptions:

» Two files are generated for the real and imaginary parts of complex data.
* Constant DUT input data is written to the test bench as constants.

Vector input or output data is saved as a single file.

Test Bench Data Type Limitations

If you have double, single, or enumeration data types at the DUT inputs and outputs, the simulation
data is generated as constants in the test bench code, instead of writing the simulation data to files.

Use Constants Instead of File 1/0

You can generate test bench stimulus and reference data as constants in the test bench code instead
of using file I/O. However, simulating a long running test bench that uses constants requires more
memory than a test bench that uses file I/O.

Test bench generation automatically generates data as constants if your DUT inputs or outputs use
data types that are not supported for file I/O. For details, see “Test Bench Data Type Limitations” on
page 6-5.

To generate a test bench that uses constants instead of file I/O:

1 In the HDL Workflow Advisor, select the HDL Verification > Verify with HDL Test Bench task.
2 In the Test bench Options tab, disable the Use file 1/O for test bench option.

Deployment

7 Deployment

Generate Synthesis Scripts

7-2

You can generate customized synthesis scripts for the following tools:

Xilinx Vivado®

Xilinx ISE

Microsemi Libero

Mentor Graphics® Precision
Altera® Quartus II

Synopsys® Synplify Pro®

You can also generate a synthesis script for a custom tool by specifying the fields manually.

To generate a synthesis script:

A W N -

In the HDL Workflow Advisor, select the HDL Code Generation task.
In the Script Options tab, select Synthesis.
For Choose synthesis tool, select a tool option.

If you want to customize your script, use the Synthesis file postfix, Synthesis initialization,
Synthesis command, and Synthesis termination text fields to do so.

After you generate code, your synthesis Tcl script (. tcl) is in the same folder as your generated HDL
code.

Optimization

* “RAM Mapping for MATLAB Code” on page 8-2

* “Map Persistent Arrays and dsp.Delay to RAM” on page 8-3
* “RAM Mapping Comparison for MATLAB Code” on page 8-6
+ “Pipelining MATLAB Code” on page 8-7

* “Pipeline MATLAB Expressions” on page 8-8

» “Distributed Pipelining” on page 8-10

* “Optimize MATLAB Loops” on page 8-11

* “Constant Multiplier Optimization” on page 8-13

8 Optimization

RAM Mapping for MATLAB Code

RAM mapping is an area optimization that maps storage and delay elements in your MATLAB code to
RAM. Without this optimization, storage and delay elements are mapped to registers. RAM mapping
can therefore reduce the area of your design in the target hardware.

You can map the following MATLAB code elements to RAM:

* persistent array variable
* dsp.Delay System object
* hdl.RAM System object

8-2

Map Persistent Arrays and dsp.Delay to RAM

Map Persistent Arrays and dsp.Delay to RAM

In this section...

“How To Enable RAM Mapping” on page 8-3
“RAM Mapping Requirements for Persistent Arrays and System object Properties” on page 8-4

“RAM Mapping Requirements for dsp.Delay System Objects” on page 8-5

How To Enable RAM Mapping

1 In the HDL Workflow Advisor, select MATLAB to HDL Workflow > Code Generation >
Optimizations tab.
Select the Map persistent array variables to RAMs option.

3 Set the RAM mapping threshold to the size (in bits) of the smallest persistent array, user-
defined System object private property, or dsp.Delay that you want to map to RAM.

4\ Workflow Advisor - Untitled1.prj

=-L5] HDL Workflow Advisar Generate synthesizable HDL code from the fixed-point MATLAB code.

-] Define Input Types

Target Coding Style Ceding Standards Clocks & Ports Optimizations Advanced Script Options Code

~[] Fixed-Peint Cenversion

>Q Select Code Generation Target ~
_| HDL Code Generation General
=+ HDL Verification Map persistent array variables to RAMSs
i~ Verify with HDL Test Bench . -
_| Verify with Cosimulation RAM mapping threshold: 256
{0 Verify with FPGA-in-the-Loop [Map pipeline delays to RAM
Multiplier partiticning threshold: 65
[] Aggressively convert MATLAB code to dataflow for more optimization support
Pipelining I:}
[Register inputs
|([Register outputs
[[] Distribute pipeline registers
Distributed pipeline priority: | Murmerical Integrity
v
® ® Run

8 Optimization

RAM Mapping Requirements for Persistent Arrays and System object
Properties

The following table shows a summary of the RAM mapping behavior for persistent arrays and private
properties of a user-defined System object.

Map Persistent Array Mapping Behavior

Variables to RAMs Setting

on Map to RAM. For restrictions, see “RAM Mapping Restrictions” on
page 8-4.

off Map to registers in the generated HDL code.

RAM Mapping Restrictions

When you enable RAM mapping, a persistent array or user-defined System object private property
maps to a block RAM when all of the following conditions are true:

» Each read or write access is for a single element only. For example, submatrix access and array
copies are not allowed.

* Address computation logic is not read-dependent. For example, computation of a read or write
address using the data read from the array is not allowed.

» Persistent variables or user-defined System object private properties are initialized to 0 if they
have a cyclic dependency. For example, if you have two persistent variables, A and B, you have a
cyclic dependency if A depends on B, and B depends on A.

» Ifan access is within a conditional statement, the conditional statement uses only simple logic
expressions (&&, | |, ~) or relational operators. For example, in the following code, r1 does not
map to RAM:

if (mod(i,2) > 0)
a =rl(u);
else
rl(i) = u;
end

Rewrite complex conditions, such as conditions that call functions, by assigning them to
temporary variables, and using the temporary variables in the conditional statement. For example,
to map rl to RAM, rewrite the previous code as follows:

temp = mod(1i,2);
if (temp > 0)
a = rl(u);
else
ri(i) = u;
end
* The persistent array or user-defined System object private property value depends on external
inputs.

For example, in the following code, bigarray does not map to RAM because it does not depend
on u:

function z = foo(u)

persistent cnt bigarray

8-4

Map Persistent Arrays and dsp.Delay to RAM

if isempty(cnt)

cnt = fi(0,1,16,10,hdlfimath);
bigarray = uint8(zeros(1024,1));

end
Z = U + cnt;
idx = uint8(cnt);

temp = bigarray(idx+1);

cnt(:) = cnt + fi(1,1,16,0,hdlfimath) + temp;

bigarray(idx+1l) = idx;

* RAMSize is greater than or equal to the RAMMappingThreshold value. RAMSize is the product
NumElements * WordLength * Complexity.

* NumElements is the number of elements in the array.
* WordLength is the number of bits that represent the data type of the array.

* Complexity is 2 for arrays with a complex base type; 1 otherwise.

If any of the above conditions is false, the persistent array or user-defined System object private
property maps to a register in the HDL code.

RAM Mapping Requirements for dsp.Delay System Objects

A summary of the mapping behavior for a dsp.Delay System object is in the following table.

Map Persistent Array
Variables to RAMs Option

Mapping Behavior

on A dsp.Delay System object maps to a block RAM when all of the
following conditions are true:
* Length property is greater than 4.
* InitialConditions property is 0.
* Delay input data type is one of the following:
* Real scalar with a non-floating-point data type.
* Complex scalar with real and imaginary parts that are non-
floating-point.
* Vector where each element is either a non-floating-point real
scalar or complex scalar.
* RAMSize is greater than or equal to the RAM Mapping
Threshold value.
* RAMSize is the product Length * InputWordLength.
* InputWordLength is the number of bits that represent the
input data type.
If any of the conditions are false, the dsp.Delay System object
maps to registers in the HDL code.
off A dsp.Delay System object maps to registers in the generated

HDL code.

8 Optimization

RAM Mapping Comparison for MATLAB Code

hdl.RAM, dsp.Delay, persistent array variables, and user-definedSystem object private properties
can map to RAM, but have different attributes. The following table summarizes the differences.

8-6

Attribute

hdl.RAM

dsp.Delay

Persistent Arrays and
User-Defined System
object Properties

RAM mapping criteria

Unconditionally maps to
RAM

Maps to RAM in HDL
code under specific
conditions. See “RAM
Mapping Requirements
for dsp.Delay System
Objects” on page 8-5.

Maps to RAM in HDL
code under specific
conditions. See “RAM
Mapping Requirements
for Persistent Arrays
and System object
Properties” on page 8-4.

Address generation and |User specified Automatic Automatic

port mapping

Access scheduling User specified Automatically inferred |Automatically inferred

Overclocking None None Local multirate if access
schedule requires it.

Latency with respect to [0 0 2 cycles if local

simulation in MATLAB. multirate; 1 cycle
otherwise.

RAM type User specified Dual port Dual port

Pipelining MATLAB Code

Pipelining MATLAB Code

Pipelining helps achieve a higher maximum clock rate by inserting registers at strategic points in the
hardware to break the critical path. However, the higher clock rate comes at the expense of increased
chip area and increased initial latency.

Port Registers

Input and output port registers for modules help partition a larger design so the critical path does not
extend across module boundaries. Having a port register at each input and output port is a good
design practice for synchronous interfaces. Distributed pipelining does not affect port registers. To
insert input or output port registers:

1 In the HDL Workflow Advisor, select the HDL Code Generation task and select the
Optimizations tab.
2 Enable Register inputs, Register outputs, or both.

Input and Output Pipeline Registers

You can insert multiple input and output pipeline stages. Distributed pipelining can move these input
and output pipeline registers to help reduce your critical path within the module. If you insert input
and output pipeline stages without applying distributed pipelining, the registers stay at the DUT
inputs and outputs.

To insert input or output pipeline register stages:

1 In the HDL Workflow Advisor, select the HDL Code Generation task and select the
Optimizations tab.

2 For Input pipelining, Output pipelining, or both, enter the number of pipeline register stages.

Operation Pipelining

Operation pipelining inserts one or more registers at the output of a specific expression in your
MATLAB code. If you know a specific expression is part of the critical path, you can add a pipeline
register at its output to reduce your critical path.

To learn how to insert a pipeline register at the output of a MATLAB expression, see “Pipeline
MATLAB Expressions” on page 8-8.

8 Optimization

Pipeline MATLAB Expressions

8-8

In this section...

“How To Pipeline a MATLAB Expression” on page 8-8
“Limitations of Pipelining for MATLAB Expressions” on page 8-8

With the coder.hdl.pipeline pragma, you can specify the placement and number of pipeline
registers in the HDL code generated for a MATLAB expression.

If you insert pipeline registers and enable distributed pipelining, HDL Coder automatically moves the
pipeline registers to break the critical path.

How To Pipeline a MATLAB Expression

To insert pipeline registers at the output of an expression in MATLAB code, place the expression in
the coder.hdl.pipeline pragma. Specify the number of registers.

You can insert pipeline registers in the generated HDL code:
* At the output of the entire right side of an assignment statement.

The following code inserts three pipeline registers at the output of a MATLAB expression, a + b
* c:

y = coder.hdl.pipeline(a + b * ¢, 3);
* At an intermediate stage within a longer MATLAB expression.

The following code inserts five pipeline registers after the computation of b * ¢ within a longer
expression,a + b * c:

y = a + coder.hdl.pipeline(b * ¢, 5);
* By nesting multiple instances of the pragma.

The following code inserts five pipeline registers after the computation of b * ¢, and two pipeline
registers at the output of the whole expression,a + b * c:

y = coder.hdl.pipeline(a + coder.hdl.pipeline(b * ¢, 5),2);

Alternatively, to insert one pipeline register instead of multiple pipeline registers, you can omit the
second argument in the pragma:

y = coder.hdl.pipeline(a + b * c);
y = a + coder.hdl.pipeline(b * c);
y = coder.hdl.pipeline(a + coder.hdl.pipeline(b * c));

Limitations of Pipelining for MATLAB Expressions

Note When you use the MATLAB code inside a MATLAB Function block and select the MATLAB
Datapath architecture, these limitations do not apply.

Pipeline MATLAB Expressions

HDL Coder cannot insert a pipeline register at the output of a MATLAB expression if any of the
variables in the expression are:

In a loop.
A persistent variable that maps to a state element, like a state register or RAM.

An output of a function. For example, in the following code, you cannot add a pipeline register for
an expression containing y:

function [y] = myfun(x)
y =X+ 5;
end

In a data feedback loop. For example, in the following code, you cannot pipeline an expression
containing the t or pvar variables:

persistent pvar;
t = u + pvar;
pvar = t + v;

You cannot use coder.hdl.pipeline to insert a pipeline register for a single variable or other no-
op expression. To learn how to insert a pipeline register for a function input variable, see “Port
Registers” on page 8-7.

See Also
coder.hdl.pipeline

More About

“Pipelining MATLAB Code” on page 8-7

8-9

8 Optimization

Distributed Pipelining

8-10

In this section...

“What is Distributed Pipelining?” on page 8-10
“Benefits and Costs of Distributed Pipelining” on page 8-10

“Selected Bibliography” on page 8-10

What is Distributed Pipelining?

Distributed pipelining, or register retiming, is a speed optimization that moves existing delays in a
design to reduce the critical path while preserving functional behavior.

The HDL Coder software uses an adaptation of the Leiserson-Saxe retiming algorithm.

Benefits and Costs of Distributed Pipelining

Distributed pipelining can reduce your design’s critical path, enabling you to use a higher clock rate
and increase throughput.

However, distributed pipelining requires your design to contain a number of delays. If you need to
insert additional delays in your design to enable distributed pipelining, this increases the area and
the initial latency of your design.

Selected Bibliography

Leiserson, C.E, and James B. Saxe. “Retiming Synchronous Circuitry.” Algorithmica. Vol. 6, Number 1,
1991, pp. 5-35.

Optimize MATLAB Loops

Optimize MATLAB Loops

In this section...

“Loop Streaming” on page 8-11

“Loop Unrolling” on page 8-11

“How to Optimize MATLAB Loops” on page 8-11
“Limitations for MATLAB Loop Optimization” on page 8-12

With loop optimization, you can stream or unroll loops in generated code. Loop streaming is an area
optimization, and loop unrolling is a speed optimization. To optimize loops for MATLAB code that is
inside a MATLAB Function block, use the MATLAB Function architecture. When you use the MATLAB
Datapath architecture, the code generator unrolls loops irrespective of the loop optimization setting.

Loop Streaming

HDL Coder streams a loop by instantiating the loop body once and using that instance for each loop
iteration. The code generator oversamples the loop body instance to keep the generated loop
functionally equivalent to the original loop.

If you stream a loop, the advantage is decreased hardware resource usage because the loop body is
instantiated fewer times. The disadvantage is the hardware implementation runs at a lower speed.

You can partially stream a loop. A partially streamed loop instantiates the loop body more than once,
so it uses more area than a fully streamed loop. However, a partially streamed loop also uses less
oversampling than a fully streamed loop.

Loop Unrolling

HDL Coder unrolls a loop by instantiating multiple instances of the loop body in the generated code.
You can also partially unroll a loop. The generated code uses a loop statement that contains multiple
instances of the original loop body and fewer iterations than the original loop.

The distributed pipelining and resource sharing can optimize the unrolled code. Distributed
pipelining can increase speed. Resource sharing can decrease area.

When loop unrolling creates multiple instances, these instances are likely to increase area. Loop
unrolling also makes the code harder to read.

How to Optimize MATLAB Loops

You can specify a global loop optimization by using the HDL Workflow Advisor, or at the command
line.

You can also specify a local loop optimization for a specific loop by using the coder.hdl. loopspec
pragma in the MATLAB code. If you specify both a global and local loop optimization, the local loop
optimization overrides the global setting.

Global Loop Optimization

To specify a loop optimization in the Workflow Advisor:

8-11

8 Optimization

8-12

To specify a loop optimization at the command line in the MATLAB to HDL workflow, specify the

In the HDL Workflow Advisor left pane, select HDL Workflow Advisor > HDL Code
Generation.

In the Optimizations tab, for Loop Optimizations, select None, Unroll Loops, or Stream

Loops.

LoopOptimization property of the coder.Hd1Config object. For example, for a
coder.Hd1Config object, hdlcfg, enter one of the following commands:

hdlcfg.LoopOptimization = 'UnrollLoops'; % unroll loops

hdlcfg.LoopOptimization

'StreamLoops'; % stream loops

hdlcfg.LoopOptimization = 'LoopNone'; % no loop optimization

Local Loop Optimization

To learn how to optimize a specific MATLAB loop, see coder.hdl. loopspec.

Note If you specify the coder.unroll pragma, this pragma takes precedence over
coder.hdl.loopspec. coder.hdl.loopspec has no effect.

Limitations for MATLAB Loop Optimization

HDL Coder cannot stream a loop if:

The loop index counts down. The loop index must increase by 1 on each iteration.
There are two or more nested loops at the same level of hierarchy within another loop.
Any particular persistent variable is updated both inside and outside a loop.

A persistent variable that is initialized to a nonzero value is updated inside the loop.

HDL Coder can stream a loop when the persistent variable is:

Updated inside the loop and read outside the loop.
Read within the loop and updated outside the loop.

You cannot use the coder.hdl.loopspec('stream') pragma:

In a subfunction. You must specify it in the top-level MATLAB design function.
For a loop that is nested within another loop.

For a loop containing a nested loop, unless the streaming factor is equal to the number of
iterations.

See Also
coder.hdl.loopspec

Constant Multiplier Optimization

Constant Multiplier Optimization

In this section...

“What is Constant Multiplier Optimization?” on page 8-13
“Specify Constant Multiplier Optimization” on page 8-13

What is Constant Multiplier Optimization?

The Constant multiplier optimization option enables you to specify use of canonical signed digit
(CSD) or factored CSD (FCSD) optimizations for processing coefficient multiplier operations.

The following table shows the Constant multiplier optimization values.

Constant Multiplier
Optimization Value

Description

None (default)

By default, HDL Coder does not perform CSD or FCSD
optimizations. Code generated for the Gain block retains multiplier
operations.

CSD

When you specify this option, the generated code decreases the
area used by the model while maintaining or increasing clock
speed, using canonical signed digit (CSD) techniques. CSD
replaces multiplier operations with add and subtract operations.

CSD minimizes the number of addition operations required for
constant multiplication by representing binary numbers with a
minimum count of nonzero digits.

FCSD

This option uses factored CSD (FCSD) techniques, which replace
multiplier operations with shift and add/subtract operations on
certain factors of the operands. These factors are generally prime
but can also be a number close to a power of 2, which favors area
reduction.

This option lets you achieve a greater area reduction than CSD, at
the cost of decreasing clock speed.

Auto

When you specify this option, HDL Coder chooses between the
CSD or FCSD optimizations. The coder chooses the optimization
that yields the most area-efficient implementation, based on the
number of adders required.

HDL Coder does not use multipliers, unless conditions are such
that CSD or FCSD optimizations are not possible (for example, if
the design uses floating-point arithmetic).

Specify Constant Multiplier Optimization

To specify constant multiplier optimization:

1 In the HDL Workflow Advisor, select the HDL Code Generation task and select the

Optimizations tab.

8-13

8 Optimization

2 For Constant multiplier optimization, select CSD, FCSD, or Auto.

8-14

HDL Workflow Advisor Reference

+ “HDL Workflow Advisor” on page 9-2
* “MATLAB to HDL Code and Synthesis” on page 9-6

9 HDL Workflow Advisor Reference

HDL Workflow Advisor

4\
=] HDL Workflow Advisor L:?) @a
o Define Input Types] 9 Propose fraction lengths u
| Fixed-Point Conversion Function: f mihdic sfir v (] Froposs word lengihs VERIFIGATION | HELP
: Analyze Default word length: [14 Advanced -
() Select Code Generation Target - -
| - - -
-0 HDL Code Generation DATA GOLLEGTION NAVIGATION TYPE PROPOSAL
=2 HDL Verification 20 ~
v Verify with HDL Test Bench | 21 %#codegen
| Verify with Cosimulation 22 function [y _out, delayed xout] = mlhdlc sfir(x in, h inl, h in2, h in3, h ing)
b Verify with FPGA-in-the-Loop| 23 | ¥ Syvmmetric FIR Filter
24
25 % declare and initialize the delay
26 | persistent udl udZ2 ud3 ud4
27 | if isempty (udl)
28 udl = 0; 2 = 0; ud3 = 0; udd4 = 0; uds = 0; ude = 0; ud? = 0; udé = 0O;
29 | end
30
31
3z
| 33
< 34
~ 35 | ¥ multiplier chain
£l ml = h inl * al* m? = h in? & a2- N
Variables | Function Replacements = Output
Yariable Type Sim Min Sirm Max Whel... Proposed Type Lo.. Max Diff
= ~
w_in double Mo
h_inl double Mo
h_in2 double Mo
h_in3 double Mo
h_ind double Mo
=
y_out double No
delayed_xout double Mo
=
ud double Mo
ud? double Mo W

Overview

The HDL Workflow Advisor is a tool that supports a suite of tasks covering the stages of the ASIC and
FPGA design process, including converting floating-point MATLAB algorithms to fixed-point
algorithms. Some tasks perform code validation or checking; others run the HDL code generator or
third-party tools. Each folder at the top level of the HDL Workflow Advisor contains a group of related
tasks that you can select and run.

Use the HDL Workflow Advisor to:

* Convert floating-point MATLAB algorithms to fixed-point algorithms.

If you already have a fixed-point MATLAB algorithm, set Design needs conversion to Fixed
Point? to No to skip this step.

9-2

HDL Workflow Advisor

* Generate HDL code from fixed-point MATLAB algorithms.
* Simulate the HDL code using a third-party simulation tool.

* Synthesize the HDL code and run a mapping process that maps the synthesized logic design to the
target FPGA.

* Run a Place and Route process that takes the circuit description produced by the previous
mapping process, and emits a circuit description suitable for programming an FPGA.

Procedures

Automatically Run Tasks
To automatically run the tasks within a folder:
1 Click the Run button. The tasks run in order until a task fails.

Alternatively, right-click the folder to open the context menu. From the context menu, select Run
to run the tasks within the folder.

2 If a task in the folder fails:

a Fix the failure using the information in the results pane.
b Continue the run by clicking the Run button.

Run Individual Tasks
To run an individual task:
1 Click the Run button.

Alternatively, right-click the task to open the context menu. From the context menu, select Run to
run the selected task.

2 Review Results. The possible results are:
Pass: Move on to the next task.
Warning: Review results, decide whether to move on or fix.
Fail: Review results, do not move on without fixing.

3 Ifrequired, fix the issue using the information in the results pane.
4 Once you have fixed a Warning or Failed task, rerun the task by clicking Run.

Run to Selected Task
To run the tasks up to and including the currently selected task:

1 Select the last task that you want to run.
2 Right-click this task to open the context menu.
3 From the context menu, select Run to Selected Task.

9-3

9 HDL Workflow Advisor Reference

A4\ HDL Coder Target

[E=5[H=R (=<
E-L_J MATLAB Coder Workflow Target | Coding Style | Clocks & Ports Optimizations | Script Opticns
=] Float-to-Fixed Workflow)
. . . i Target Selection
| Verify Floating-Peint Design) .
- Propose Fixed-Point Types Target: Generic ASIC/FP... ~ |
-{ Generate Fixed-Point Code Language: VHDL -
- Verify Fixed-Point Design
Er--lj MATLAB to HDL Workflow Dutput Settings
-7 Simulation tck HDL conformance
E||:| Synthesis g \erate HDL
EI Create Run to Selected Task
/ [Run Logne syrenes s [T Generate HOL test bench
‘[Run Place and Route
Generate EDA scripts
Run

Note If a task before the selected task fails, the Workflow Advisor stops at the failed task.

Reset a Task
To reset a task:

1 Select the task that you want to reset.

2 Right-click this task to open the context menu.
3 From the context menu, select Reset Task to reset this and subsequent tasks.

Reset All Tasks in a Folder
To reset a task:

1 Select the folder that you want to reset.

2 Right-click this folder to open the context menu.

9-4

HDL Workflow Advisor

3 From the context menu, select Reset Task to reset the tasks this folder and subsequent folders.

9 HDL Workflow Advisor Reference

MATLAB to HDL Code and Synthesis

9-6

In this section...

“MATLAB to HDL Code Conversion” on page 9-6
“Code Generation: Target Tab” on page 9-6

“Code Generation: Coding Style Tab” on page 9-7
“Code Generation: Clocks and Ports Tab” on page 9-8
“Code Generation: Test Bench Tab” on page 9-10
“Code Generation: Optimizations Tab” on page 9-11
“Simulation and Verification” on page 9-12

“Synthesis and Analysis” on page 9-13

MATLAB to HDL Code Conversion

The MATLAB to HDL Workflow task in the HDL Workflow Advisor generates HDL code from fixed-
point MATLAB code, and simulates and verifies the HDL against the fixed-point algorithm. HDL Coder
then runs synthesis, and optionally runs place and route to generate a circuit description suitable for
programming an ASIC or FPGA.

Code Generation: Target Tab
Select target hardware and language and required outputs.

Input Parameters

Target

Target hardware. Select from the list:
Generic ASIC/FPGA
Xilinx
Altera
Simulation

Language
Select the language (VHDL or Verilog) in which code is generated. The selected language is
referred to as the target language.

Default: VHDL

Check HDL Conformance
Enable HDL conformance checking.

Default: Off
Generate HDL
Enable generation of HDL code for the fixed-point MATLAB algorithm.

Default: On
Generate HDL Test Bench
Enable generation of HDL code for the fixed-point test bench.

MATLAB to HDL Code and Synthesis

Default: Off

Generate EDA Scripts
Enable generation of script files for third-party electronic design automation (EDA) tools. These
scripts let you compile and simulate generated HDL code and synthesize generated HDL code.

Default: On

Code Generation: Coding Style Tab
Parameters that affect the style of the generated code.

Input Parameters

Preserve MATLAB code comments
Include MATLAB code comments in generated code.

Default: On
Include MATLAB source code as comments

Include MATLAB source code as comments in the generated code. The comments precede the
associated generated code. Includes the function signature in the function banner.

Default: On

Generate Report
Enable a code generation report.

Default: Off
VHDL File Extension
Specify the file name extension for generated VHDL files.

Default: .vhd
Verilog File Extension
Specify the file name extension for generated Verilog files.

Default: .v
Comment in header
Specify comment lines in header of generated HDL and test bench files.

Default: None

Text entered in this field as a character vector generates a comment line in the header of the
generated code. The code generator adds leading comment characters for the target language.
When newlines or linefeeds are included in the text, the code generator emits single-line
comments for each newline.

Package postfix
HDL Coder applies this option only if a package file is required for the design.

Default: pkg

9 HDL Workflow Advisor Reference

9-8

Entity conflict postfix
Specify the character vector to resolve duplicate VHDL entity or Verilog module names in
generated code.
Default: block
Reserved word postfix
Specify a character vector to append to value names, postfix values, or labels that are VHDL or
Verilog reserved words.
Default: rsvd
Clocked process postfix
Specify a character vector to append to HDL clock process names.

Default: process
Complex real part postfix
Specify a character vector to append to real part of complex signal names.

Default: ' re'
Complex imaginary part postfix
Specify a character vector to append to imaginary part of complex signal names.

Default: ' im'
Pipeline postfix
Specify a character vector to append to names of input or output pipeline registers.

Default: ' pipe'
Enable prefix

Specify the base name as a character vector for internal clock enables and other flow control
signals in generated code.

Default: 'enb’

Code Generation: Clocks and Ports Tab
Clock and port settings

Input Parameters

Reset type
Specify whether to use asynchronous or synchronous reset logic when generating HDL code for
registers.
Default: Asynchronous
Reset Asserted level
Specify whether the asserted (active) level of reset input signal is active-high or active-low.

Default: Active-high

MATLAB to HDL Code and Synthesis

Reset input port
Enter the name for the reset input port in generated HDL code.

Default: reset
Clock input port
Specify the name for the clock input port in generated HDL code.

Default: clk
Clock enable input port
Specify the name for the clock enable input port in generated HDL code.

Default: clk
Oversampling factor

Specify frequency of global oversampling clock as a multiple of the design under test (DUT) base
rate (1).

Default: 1
Input data type
Specify the HDL data type for input ports.

For VHDL, the options are:
* std logic_vector

Specifies VHDL type STD LOGIC VECTOR
* signed/unsigned

Specifies VHDL type SIGNED or UNSIGNED
Default: std logic vector
For Verilog, the options are:

» In generated Verilog code, the data type for all ports is ‘wire’. Therefore, Input data type is
disabled when the target language is Verilog.

Default: wire
Output data type
Specify the HDL data type for output data types.

For VHDL, the options are:
* Same as input data type

Specifies that output ports have the same type specified by Input data type.
* std logic vector

Specifies VHDL type STD LOGIC VECTOR
* signed/unsigned

Specifies VHDL type SIGNED or UNSIGNED

9-9

9 HDL Workflow Advisor Reference

9-10

Default: Same as input data type
For Verilog, the options are:

* In generated Verilog code, the data type for all ports is ‘wire’. Therefore, Output data type is
disabled when the target language is Verilog.

Default: wire

Clock enable output port
Specify the name for the clock enable input port in generated HDL code.

Default: clk enable

Code Generation: Test Bench Tab
Test bench settings.
Input Parameters

Test bench name postfix
Specify a character vector appended to names of reference signals generated in test bench code.

Default: ' tb’
Force clock
Specify whether the test bench forces clock enable input signals.

Default: On
Clock High time (ns)
Specify the period, in nanoseconds, during which the test bench drives clock input signals high
(1).
Default: 5
Clock low time (ns)
Specify the period, in nanoseconds, during which the test bench drives clock input signals low
(0).
Default: 5
Hold time (ns)
Specify a hold time, in nanoseconds, for input signals and forced reset input signals.

Default: 2 (given the default clock period of 10 ns)
Setup time (ns)
Display setup time for data input signals.

Default: 0
Force clock enable
Specify whether the test bench forces clock enable input signals.

Default: On

MATLAB to HDL Code and Synthesis

Clock enable delay (in clock cycles)
Define elapsed time (in clock cycles) between deassertion of reset and assertion of clock enable.

Default: 1
Force reset
Specify whether the test bench forces reset input signals.

Default: On
Reset length (in clock cycles)
Define length of time (in clock cycles) during which reset is asserted.

Default: 2
Hold input data between samples
Specify how long subrate signal values are held in valid state.

Default: On
Initialize testbench inputs

Specify initial value driven on test bench inputs before data is asserted to device under test
(DUT).

Default: Off
Multi file testbench
Divide generated test bench into helper functions, data, and HDL test bench code files.

Default: Off
Test bench data file name postfix
Specify suffix added to test bench data file name when generating multi-file test bench.

Default: ' data’
Test bench reference post fix
Specify a character vector to append to names of reference signals generated in test bench code.

Default: ' ref'
Ignore data checking (number of samples)
Specify number of samples during which output data checking is suppressed.

Default: 0
Use fiaccel to accelerate test bench logging

To generate a test bench, HDL Coder simulates the original MATLAB code. Use the Fixed-Point
Designer fiaccel function to accelerate this simulation and accelerate test bench logging.

Default: On

Code Generation: Optimizations Tab

Optimization settings

9-11

9 HDL Workflow Advisor Reference

Input Parameters

Map persistent array variables to RAMs
Select to map persistent array variables to RAMs instead of mapping to shift registers.

Default: Off

Dependencies:

* RAM Mapping Threshold
* Persistent variable names for RAM Mapping

RAM Mapping Threshold
Specify the minimum RAM size required for mapping persistent array variables to RAMs.

Default: 256
Persistent variable names for RAM Mapping
Provide the names of the persistent variables to map to RAMs.

Default: None
Input Pipelining
Specify number of pipeline registers to insert at top level input ports. Can improve performance
and help to meet timing constraints.
Default: 0
Output Pipelining
Specify number of pipeline registers to insert at top level output ports. Can improve performance
and help to meet timing constraints.
Default: 0
Distribute Pipeline Registers

Reduces critical path by changing placement of registers in design. Operates on all registers,
including those inserted using the Input Pipelining and Output Pipelining parameters, and
internal design registers.

Default: Off
Sharing Factor

Number of additional sources that can share a single resource, such as a multiplier. To share
resources, set Sharing Factor to 2 or higher; a value of 0 or 1 turns off sharing.

In a design that performs identical multiplication operations, HDL Coder can reduce the number
of multipliers by the sharing factor. This can significantly reduce area.

Default: 0

Simulation and Verification

Simulates the generated HDL code using the selected simulation tool.

9-12

MATLAB to HDL Code and Synthesis

Input Parameters

Simulation tool
Lists the available simulation tools.

Default: None
Skip this step
Default: Off

Results and Recommended Actions

Conditions Recommended Action

No simulation tool available on system path. Add your simulation tool path to the MATLAB
system path, then restart MATLAB. For more
information, see “Synthesis Tool Path Setup”.

Synthesis and Analysis

This folder contains tasks to create a synthesis project for the HDL code. The task then runs the
synthesis and, optionally, runs place and route to generate a circuit description suitable for
programming an ASIC or FPGA.

Input Parameters

Skip this step
Default: Off

Skip this step if you are interested only in simulation or you do not have a synthesis tool.
Create Project

Create synthesis project for supported synthesis tool.

Description

This task creates a synthesis project for the selected synthesis tool and loads the project with the
HDL code generated for your MATLAB algorithm.

You can select the family, device, package, and speed that you want.

When the project creation is complete, the HDL Workflow Advisor displays a link to the project in the
right pane. Click this link to view the project in the synthesis tool's project window.

Input Parameters

Synthesis Tool
Select from the list:

* Altera Quartus II

Generate a synthesis project for Altera Quartus II. When you select this option, HDL Coder
sets:

9-13

9 HDL Workflow Advisor Reference

9-14

¢ Chip Family to Stratix II
e Device Name to EP2S60F1020C4

You can manually change these settings.
* Xilinx ISE

Generate a synthesis project for Xilinx ISE. When you select this option, HDL Coder:

* Sets Chip Family to Virtex4

* Sets Device Name to xc4vsx35
* Sets Package Name to ff6. ..
* Sets Speed Value to —. . .

You can manually change these settings.
Default: No Synthesis Tool Specified

When you select No Synthesis Tool Specified, HDL Coder does not generate a synthesis
project. It clears and disables the fields in the Synthesis Tool Selection pane.
Chip Family
Target device family.
Default: None

Device Name
Specific target device, within selected family.

Default: None
Package Name
Available package choices. The family and device determine these choices.

Default: None
Speed Value
Available speed choices. The family, device, and package determine these choices.

Default: None

Results and Recommended Actions

Conditions Recommended Action

Synthesis tool fails to create project. Read the error message returned by synthesis
tool, then check the synthesis tool version, and
check that you have write permission for the
project folder.

Synthesis tool does not appear in dropdown list. |Add your synthesis tool path to the MATLAB
system path, then restart MATLAB. For more

information, see “Synthesis Tool Path Setup”.

Run Logic Synthesis

Launch selected synthesis tool and synthesize the generated HDL code.

MATLAB to HDL Code and Synthesis

Description

This task:

Launches the synthesis tool in the background.

Opens the previously generated synthesis project, compiles HDL code, synthesizes the design, and
emits netlists and related files.

Displays a synthesis log in the Result subpane.

Results and Recommended Actions

Conditions Recommended Action

Synthesis tool fails when running place and Read the error message returned by the synthesis

route. tool, modify the MATLAB code, then rerun from
the beginning of the HDL Coder workflow.

Run Place and Route

Launches the synthesis tool in the background and runs a Place and Route process.

Description

This task:

Launches the synthesis tool in the background.

Runs a Place and Route process that takes the circuit description produced by the previous
mapping process, and emits a circuit description suitable for programming an FPGA.

Displays a log in the Result subpane.

Input Parameters

Skip this step

If you select Skip this step, the HDL Workflow Advisor executes the workflow, but omits the
Perform Place and Route, marking it Passed. You might want to select Skip this step if you
prefer to do place and route work manually.

Default: Off

Results and Recommended Actions

Conditions Recommended Action

Synthesis tool fails when running place and Read the error message returned by the synthesis

route. tool, modify the MATLAB code, then rerun from
the beginning of the HDL Coder workflow.

9-15

HDL Code Generation from Simulink

17

Model Design for HDL Code Generation

* “Signal and Data Type Support” on page 10-2

» “Use Simulink Templates for HDL Code Generation” on page 10-7

* “Generate DUT Ports for Tunable Parameters” on page 10-17

* “Generate Parameterized Code for Referenced Models” on page 10-20

* “Generating HDL Code for Subsystems with Array of Buses” on page 10-21
* “Generate HDL Code for Blocks Inside For Each Subsystem” on page 10-24
* “Model and Debug Test Point Signals with HDL Coder™” on page 10-28

» “Allocate Sufficient Delays for Floating-Point Operations” on page 10-36

* “Optimize Generated HDL Code for Multirate Designs with Large Rate Differentials”
on page 10-41

* “Getting Started with HDL Coder Native Floating-Point Support” on page 10-49
* “Numeric Considerations with Native Floating-Point” on page 10-52

* “ULP Considerations of Native Floating-Point Operators” on page 10-56

* “Latency Values of Floating Point Operators” on page 10-59

* “Latency Considerations with Native Floating Point” on page 10-63

* “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-70
» “Verify the Generated Code from Native Floating-Point” on page 10-76

* “Simulink Blocks Supported with Native Floating-Point” on page 10-80

* “Supported Data Types and Scope” on page 10-83

* “Import Verilog Code and Generate Simulink Model” on page 10-85

* “Supported Verilog Constructs for HDL Import” on page 10-88

» “Verilog Dataflow Modeling with HDL Import” on page 10-93

* “Simulate and Generate HDL Code for the Float Typecast Block” on page 10-104

10 Model Design for HDL Code Generation

Signal and Data Type Support

10-2

In this section...

“Buses” on page 10-2

“Enumerations” on page 10-3

“Matrices” on page 10-3

“Unsupported Signal and Data Types” on page 10-6

HDL Coder supports code generation for Simulink signal types and data types with a few special
cases.

Buses

If your DUT or other blocks in your model have many input or output signals, you can create bus
signals to improve the readability of your model. A bus signal or bus is a composite signal that
consists of other signals that are called elements.

You can generate HDL code for designs that use virtual and nonvirtual buses. For example, you can
generate code for designs that contain:

* DUT subsystem ports connected to buses.

* Simulink and Stateflow® blocks that support buses and HDL code generation.

Supported Blocks with Buses

Bus-capable blocks are blocks that can accept bus signals as input and produce bus signals as
outputs. For a list of bus-capable blocks that Simulink supports, see “Bus-Capable Blocks” (Simulink).
HDL Coder supports code generation for bus-capable blocks in the HDL Coder block library. For
more details, see the "HDL Code Generation" section of each block page. The supported blocks
include:

* Bus Assignment

* Bus Creator

* Bus Selector

* Constant

* Delay

* Multiport Switch

* Rate Transition

* Signal Conversion
* Signal Specification
* Switch

* Unit Delay

* Vector Concatenate
* Zero-Order Hold

In addition, subsystems, models, and these user-defined functions support buses for simulation and
HDL code generation:

Signal and Data Type Support

* Subsystem

* Model references, see “Model Referencing for HDL Code Generation” on page 27-2.
» Stateflow Chart

* MATLAB Function blocks

* MATLAB System blocks

» Vision HDL Toolbox blocks that accept a pixelcontrol bus for control input

Bus Support Limitations

Buses are not supported in the IP Core Generation workflow. In addition, you cannot generate
code for designs that use:

* A Black box model reference connected to a bus.

* Abus input to a Delay block with nonzero Initial condition.

Enumerations
You can generate code for Simulink, MATLAB, or Stateflow enumerations within your design.

Requirements

* The enumeration values must be monotonically increasing.

* The enumeration strings must have unique names and must not use a reserved keyword in the
Verilog or VHDL language.

» Ifyour target language is Verilog, all enumeration member names must be unique within the
design.

Restrictions

Enumerations at the top-level DUT ports are not supported with the following workflows or
verification methods:

* [P Core Generation workflow

* FPGA Turnkey workflow

* Simulink Real-Time FPGA I/O workflow

* Customization for the USRP Device workflow
* FPGA-in-the-loop

* HDL Cosimulation

Matrices

You can use matrix types with these blocks in your design. For more details, see the "HDL Code
Generation" section of each block page.

10-3

10 Model Design for HDL Code Generation

HDL Coder Block Library

Supported blocks

Discontinuities These blocks are supported:
* Dead Zone
* Relay
* Saturation

Discrete These blocks are supported:

* Delay

* Discrete-Time Integrator

* Memory

* Tapped Delay

e Unit Delay

* Unit Delay Enabled Synchronous

* Unit Delay Enabled Resettable Synchronous
* Unit Delay Resettable Synchronous

* Zero-Order Hold

HDL Floating Point Operations

The Rounding Function block is supported.

HDL Operations

All blocks in this library are supported.

HDL RAMs

Blocks in this library are not supported.

HDL Subsystems

Blocks in this library are not supported.

Logic and Bit Operations

These blocks are supported:

* Bit Clear

* Bit Concat

* Bit Reduce

* Bit Rotate

* Bit Set

* Bit Shift

* Bit Slice

» Extract Bits

* Logical Operator
* Relational Operator
* Shift Arithmetic

Lookup Tables

Blocks in this library are not supported.

10-4

Signal and Data Type Support

HDL Coder Block Library

Supported blocks

Math Operations

These blocks are supported:

Abs

Add

Assignment

Bias

Complex to Real-Imag
Gain

Product, including matrix multiplication.
Matrix Concatenate

Math Function

Real-Imag to Complex
Reshape

Sign

Sum

Unary Minus

Increment Stored Integer
Increment Real World
Decrement Stored Integer
Decrement Real World
Sum of Elements

Product of Elements

Model Verification

All blocks in this library are supported.

Model-Wide Utilities

The DocBlock is supported. The Model Info block does not
support matrix data types.

Ports & Subsystems

The Subsystem block is supported.

Signal Attributes

These blocks are supported:

Data Type Conversion
Data Type Duplicate
Probe

Rate Transition
Signal Conversion
Signal Specification

Signal Routing

These blocks are supported:

Mux

Multiport Switch
Selector

Switch

10-5

10 Model Design for HDL Code Generation

10-6

HDL Coder Block Library Supported blocks
Sources These blocks are supported:
* Constant

¢ Enumerated Constant
* Inport

Sinks These blocks are supported:

* Display

* Qutport

* Scope

* To Workspace
* To File

e XY Graph

User-Defined Functions The MATLAB Function block is supported.

The code generator does not support matrix types at the interfaces of the Subsystem that you
generate HDL code for. Use a Reshape block to convert the matrix input to a 1-D array at the
interface. Inside the Subsystem, use another Reshape block that converts the 1-D array back to the
matrix type with the dimensionality that you specified.

Unsupported Signal and Data Types

* Arrays stored in row-major layout are not supported for HDL code generation
* Variable-size signals are not supported for code generation.

See Also

Related Examples
. “Generating HDL Code for Subsystems with Array of Buses” on page 10-21

More About
. “Signal Types” (Simulink)
. “About Data Types in Simulink” (Simulink)

. “Composite Signals” (Simulink)
. “Use Enumerated Data in Simulink Models” (Simulink)
. “Enumerated Data” (Stateflow)

Use Simulink Templates for HDL Code Generation

Use Simulink Templates for HDL Code Generation

In this section...
“Create Model Using HDL Coder Model Template” on page 10-7
“HDL Coder Model Templates” on page 10-7

HDL Coder model templates in Simulink provide you with design patterns and best practices for
models intended for HDL code generation. Models you create from one of the HDL Coder model
templates have their configuration parameters and solver settings set up for HDL code generation. To
configure an existing model for HDL code generation, use hdlsetup.

Create Model Using HDL Coder Model Template

To model hardware for efficient HDL code generation, create a model using an HDL Coder model
template.

1 Open the Simulink Start Page. In the MATLAB Home tab, select the Simulink button.
Alternativelty, at the command line, enter:
simulink

2 Inthe HDL Coder section, you see templates that are preconfigured for HDL code generation.
Selecting the template opens a blank model in the Simulink Editor. To save the model, select File
> Save As.

3 To open the Simulink Library Browser and then open the HDL Coder Block Library, select the
Library Browser button in the Simulink Editor. Alternatively, at the command line, enter

slLibraryBrowser

To filter the Simulink Library Browser to show the block libraries that support HDL code
generation, use the hd11ib function:

hdllib

HDL Coder Model Templates
Complex Multiplier

The Complex Multiplier template shows how to model a complex multiplier-accumulator and
manually pipeline the intermediate stages. The hardware implementation of complex multiplication
uses four multipliers and two adders.

The template applies the following best practices:

* In the Configuration Parameters dialog box, in HDL Code Generation > Global Settings, Reset
type is set to Synchronous.

* To improve speed, Delay blocks, which map to registers in hardware, are at the inputs and outputs
of the multipliers and adders.

» To support the output data of a full-precision complex multiplier, the output data word length is
manually specified to be (operand word length*2) + 1.

For example, in the template, the operand word length is 18, and the output word length is 37.

10-7

10 Model Design for HDL Code Generation

SL_Coenglex_Mubiplier

::l:’@' efix3T_En3d

O2e 541 *
-EE3+ 311N
HOL_Comples_hullipher
Capyrighl 2014-2016 The Math'Works, Inc.
o |ea En17
sfixld_{ Mix18_Ent7 {z)| _ /" *_re
) = o — - sfix36_En34 3 |s36_Ensd
m | lsa Ent x z
%_im =J
sfix18_En17
) o L] Mix36_En3d |sfn36_En3a
sfixta_E[_ |efie1B_En1y % z
¥ =
¥ Im
[- i
sfx18_En]7
sfiss Ensa [~ 3 Jst3s Ensd
" =
sfix36_Ens4 afix36_Endd
w [Em6 1 _

MATLAB Arithmetic

slix37_E| 4 |&fix37. €]
G
z

::Dﬁs elix3T_En3d
'—z

The MATLAB Arithmetic template contains MATLAB arithmetic operations that infer DSP48s in

hardware.

10-8

Use Simulink Templates for HDL Code Generation

Copyright 2014-2016 The Math¥iorks, Inc.

[Pafuntited » [Pa|EML_DSP4s_Patterns

Co— Cr—,

ul ul

o 4 Cr—sl2 4 v

._,—’ u2 fcn QOut3 % |—’ u3 fcn Qutd
mi_mul12 (b

ml_muladd
In10 n13 L

1 ul
R T e o
fﬂ PH{us_fen outs uZ fen)

ml_mulsub ml_mul_acc

u
ati
u

CO—fa
In5 Y 4 v .-

o— = o
—r ml_add18

For example, the ml_mul_acc MATLAB Function block shows how to write a multiply-accumulate
operation in MATLAB. hdlfimath on page 29-28 applies fixed-point math settings for HDL code
generation.

10-9

10 Model Design for HDL Code Generation

function y = fcn(ul, u2)

design of a 6x6 multipler
same reset on inputs and outputs
followed by an adder

o° o o°

nt = numerictype(0,6,0);
nt2 = numerictype(0,12,0);
fm = hdlfimath;

persistent ul reg u2 reg mul reg add reg;
if isempty(ul reg)
ul reg = fi(0, nt, fm);

u2 reg fi(0, nt, fm);
mul reg = fi(0, nt2, fm);
add reg = fi(0, nt2, fm);

end

mul = mul reg;
mul reg = ul reg * u2 reg;

add = add_reg;

add reg(:) = mul+add;
ul reg = ul;

u2 reg = u2;

y = add;

ROM

The ROM template is a design pattern that maps to a ROM in hardware.
The template applies the following best practices:

* At the output of the lookup table, there is a Delay block with ResetType = none.
* The lookup table is structured such that the spacing between breakpoints is a power of two.

Using table dimensions that are a power of two enables HDL Coder to generate shift operations
instead of division operations. If necessary, pad the table with zeros.

* The number of lookup table entries is a power of two. For some synthesis tools, a lookup table that
has a power-of-two number of entries maps better to ROM. If necessary, pad the table with zeros.

[P&|untitled »

Yy
(%]
¥
r‘w.lI

(%]
¥

]

Scope

Gain Delay »+

P

h

.
P

Subtract

i]
ﬂﬂ » uintd »In1 Outl

LUT_BlockRAM_ReadOnly

10-10

Use Simulink Templates for HDL Code Generation

Pafuntitied B [Pa|LUT_BlockRAM_ReadOnly B [BaHDL ROM

1-D TIK]
uinta Lint16 Lint16
o, 7] >
In1 Ot
ResetMoneDelay
Direct Lookup

Table (n-D)
¥=(0:99);

Scale_by_3 LUT=3*x
pad=2*nextpowZ(length(Scale_by_3 LUT)HengthiScale_by_3 LUT);
Scale_by_3_LUT_pad=[Scale_by_3_LUT.zeros{pad,1]];

Register

The Register template shows how to model hardware registers:
* In Simulink, using the Delay block.
* In MATLAB, using persistent variables.
This design pattern also shows how to use cast to propagate data types automatically.

unh’ﬂed 4

>]

;f;\i) Scope

As=ertion

|-|r||-|'r| > Convert

Counter
Free-Running

UnitDelay

10-11

10 Model Design for HDL Code Generation

unﬁﬂed [3 LlnitDEIay

CO— ¢ }—D

In fen eml_d
Unit Delay
1
CEor— - /(2
In2 z sl d
Unit Delay

The MATLAB code in the MATLAB Function block uses a persistent variable to model the register.

function y = fcn(u)
% Unit delay implementation that maps to a register in hardware

persistent u_d;

if isempty(u_d)
% defines initial value driven by unit delay at time step 0
ud = cast(0, 'like', u);

end

% return delayed input from last sample time hit
u d;

<
]

)
“©

store the current input
ud=u;

SRL

The SRL template shows how to implement a shift register that maps to an SRL16 in hardware. You
can use a similar pattern to map to an SRL32.

10-12

Use Simulink Templates for HDL Code Generation

unh’ﬂedl 4
Lg
0 - addr
Jflﬂ Constant >
Counter SRL EML Scope
Free-Running -
L—»
addr
d_out P
2
dyn_shift_reg_SL Scopet

[Pafuntitled1 » [Pa]srL_EML

(1} o Acdr

addr
| G B
f
Delayr p tdelay e dout

din

Tapped Delay select_tap

To map to SRL16/32:

- Set Re=etType = none forthe tapped delay

-Use ML fcn block to create mux logic

- Flatten hierarchy for the subsysem to inline the ML code

- Do not use "include cument input in output vector” option for the tapped delay

In the shift register subsystem, the Tapped Delay implements the shift operation, and the MATLAB
Function, select tap, implements the output mux.

In select_tap, the zero-based address, addr increments by 1 because MATLAB indices are one-
based.

10-13

10 Model Design for HDL Code Generation

10-14

function dout = fcn(addr, tdelay)
%#codegen

addrl = fi(addr+1,0,5,0);
dout = tdelay(addrl);

In the generated code, HDL Coder automatically omits the increment because Verilog and VHDL are
zero-based.

The template also applies the following best practices for mapping to an SRL16 in hardware:
* For the Tapped Delay block:

* In the Block Parameters dialog box, Include current input in output vector is not enabled.
* In the HDL Block Properties dialog box, ResetType is set to none.
» For the Subsystem block, in the HDL Block Properties dialog box, FlattenHierarchy is set to on.

Simulink Hardware Patterns
The Simulink Hardware Patterns template contains design patterns for common hardware operations:

* Serial-to-parallel shift register
* Detect rising edge

* Detect falling edge

* SRlatch

* RS latch

unﬁﬂedz 4

(20

Subsystem

Use Simulink Templates for HDL Code Generation

untitied » Subsystem »

Serial Paralel

In Outt
shift_reg

D Rising D Faling
out2 In4

Outd

detect_rising_edge detect_falling_edge

Q 3 CCr—>R Q 5
e

Outs

i

In5 SR_laich In7 RS_latch

For example, the design patterns for rising edge detection and falling edge detection:

untitied » Subsystern » detect_rising_edge

D
1 Rising
Z
Prev
NOT AND
unh’ﬁed » Subsystem » dehect_falling_edge
o >
D
-1
NOT Fall
1 aling
» 2 >
Prev
AND

10-15

10 Model Design for HDL Code Generation

State Machine in MATLAB

The State Machine in MATLAB template shows how to implement Mealy and Moore state machines
using the MATLAB Function block.

[Pa]untitied3 »

Wf——

|-
Random NumQ

Ll

Relational
Operator

Display

0

Constant moo[e_fg'n

Scope

Sl

Random Num1

:

Display1

1

Constant1

mealy_fsm | |

L

Scopet

To learn more about best practices for modeling state machines, see “Model a State Machine for HDL
Code Generation” on page 3-4.

See Also
hdlsetup | makehdl

More About

. “Create Simulink Model for HDL Code Generation”

. “Design Guidelines for the MATLAB Function Block” on page 29-28
. “Hardware Modeling with MATLAB Code”

10-16

Generate DUT Ports for Tunable Parameters

Generate DUT Ports for Tunable Parameters

In this section...

“Prerequisites” on page 10-17

“Create and Add Tunable Parameter That Maps to DUT Ports” on page 10-17
“Generated Code” on page 10-18

“Limitations” on page 10-18

“Use Tunable Parameter in Other Blocks” on page 10-19

Tunable parameters that you use to adjust your model behavior during simulation can map to top-
level DUT ports in your generated HDL code. HDL Coder generates one DUT port per tunable
parameter.

You can generate a DUT port for a tunable parameter by using it in one of these blocks:

* Gain

* Constant

* MATLAB Function

* MATLAB System

* Chart

» Truth Table

» State Transition Table

These blocks with the tunable parameter can be at any level of the DUT hierarchy, including within a
model reference.

You cannot use HDL cosimulation with a DUT that uses tunable parameters in any of these blocks. If
you use a tunable parameter in a block other than these blocks, code is generated inline and does not
map to DUT ports. To use the value of a tunable parameter in a Chart or Truth Table block, see “Use
Tunable Parameter in Other Blocks” on page 10-19.

You can define and store the tunable parameters in the base workspace or a Simulink data dictionary.

However, a Simulink data dictionary provides more capabilities. For details, see “What Is a Data
Dictionary?” (Simulink).

Prerequisites

* The Simulink compiled data type for all instances of a tunable parameter must be the same.

* Simulink blocks that use tunable parameters with the same name must operate at the same data
rate.

To learn more about Simulink compiled data types, see “Control Block Parameter Data Types”
(Simulink).

Create and Add Tunable Parameter That Maps to DUT Ports

To generate a DUT port for a tunable parameter:

10-17

10 Model Design for HDL Code Generation

10-18

1 Create a tunable parameter with StorageClass set to ExportedGlobal.

For example, to create a tunable parameter, myParam, and initialize it to 5, at the command line,
enter:

myParam = Simulink.Parameter;
myParam.Value = 5;
myParam.CoderInfo.StorageClass = 'ExportedGlobal';

Alternatively, using the Model Explorer, you can create a tunable parameter and set Storage
Class to ExportedGlobal. See “Create Data Objects from Built-In Data Class Package
Simulink” (Simulink).

2 Inyour Simulink design, use the tunable parameter as the:
* Constant value in a Constant block.

* Gain parameter in a Gain block.
* MATLAB function argument in a MATLAB Function block.

Generated Code

The following VHDL code is an example of code that HDL Coder generates for a Gain block with its
Gain field set to a tunable parameter, myParam. You see that the code generator creates a DUT port
and adds a comment to indicate that the port corresponds to a tunable parameter.

ENTITY s IS
PORT(Inl : IN std logic_vector (15 DOWNTO 0); -- sfix16 En5
myParam : IN std logic_vector (15 DOWNTO 0); -- sfix16_En5 Tunable port
Outl : OUT std logic _vector(31 DOWNTO 0) -- sfix32 Enl0
);
END s;

ARCHITECTURE rtl OF s IS

-- Signals

SIGNAL myParam signed : signed(15 DOWNTO 0); -- sfix16 En5

SIGNAL Inl signed : signed(15 DOWNTO 0); -- sfix16 En5

SIGNAL Gain outl : signed(31 DOWNTO 0); -- sfix32 Enl0
BEGIN

myParam _signed <= signed(myParam);

Inl signed <= signed(Inl);

Gain_outl <= myParam signed * Inl signed;
Outl <= std logic_vector(Gain outl);

END rtl;

Limitations

Make sure that the “Use trigger signal as clock” on page 16-43 check box is left cleared by default.

Generate DUT Ports for Tunable Parameters

Use Tunable Parameter in Other Blocks

To use the value of a tunable parameter in a Chart or Truth Table block:

1 Create the tunable parameter and use it in a Constant block. on page 10-17
2 Add an input port to the block where you want to use the tunable parameter.
3 Connect the output of the Constant block to the new input port.

See Also

Related Examples
. “Generate Parameterized Code for Referenced Models” on page 10-20

10-19

10 Model Design for HDL Code Generation

Generate Parameterized Code for Referenced Models

10-20

In this section...

“Parameterize Referenced Model for HDL Code Generation” on page 10-20
“Restrictions” on page 10-20

To generate parameterized code for referenced models, use model arguments. You can use model
arguments in a masked or unmasked Model block.

HDL Coder generates a single VHDL entity or Verilog module for the referenced model, even if the
DUT has multiple instances of the referenced model. In the generated code, each model argument is
a VHDL generic or a Verilog parameter.

Parameterize Referenced Model for HDL Code Generation
1 In the referenced model, create one or more model arguments.

To learn how to create a model argument, see “Specify a Different Value for Each Instance of a
Reusable Model” (Simulink).
In the referenced model, use each model argument parameter in a Gain or Constant block.

3 In the DUT, for each model reference, in the Model arguments table, enter values for each
model argument.

Alternatively, create a model mask for the referenced model. In the DUT, for each model
reference, enter values for each model argument.

4 Generate code for the DUT.

Restrictions

Model argument values:

e Must be scalar.
* Cannot be complex.
e Cannot be enumerated data.

See Also

Related Examples

. “Generate Reusable Code for Atomic Subsystems” on page 27-17
. “Generate DUT Ports for Tunable Parameters” on page 10-17
More About

. “Specify a Different Value for Each Instance of a Reusable Model” (Simulink)
. “Model Referencing for HDL Code Generation” on page 27-2

Generating HDL Code for Subsystems with Array of Buses

Generating HDL Code for Subsystems with Array of Buses

In this section...

“How HDL Coder Generates Code for Array of Buses” on page 10-21
“Array of Buses Limitations” on page 10-23

unt 1

Constant

int32
2

Constant1

wnt1
3

Constant2

inta2

Constant3

4 b=

An array of buses is an array whose elements are buses. Each element in an array of buses must be
nonvirtual and must have the same data type.

The array of buses represents structured data compactly. The array:

* Reduces the model complexity

* Reduces maintenance by organizing and routing signals in your Simulink model for vectorized
algorithms

For more information, see “Combine Buses into an Array of Buses” (Simulink).

You can generate HDL code for virtual and nonvirtual blocks that Simulink supports with an array of
buses. For more information, see “Use Arrays of Buses in Models” (Simulink).

How HDL Coder Generates Code for Array of Buses

HDL Coder expands the array of buses in your Simulink model into the corresponding scalar signals
in the generated code.

This Simulink model has an array of buses signal at the DUT interface.

]

U

Display

) -5. h\i B"ﬂ

Display1

i

DuT

Fesssswsapinl OuiFrasssavifly
L]
L]
-
L]
L]
-
o o

Display3

\ector TE e =
Concatenate 2 F_-.

Selactort

|

Displayd

The array of buses combines two nonvirtual bus elements, each having scalars a and b of types
uintl6 and int32 respectively.

10-21

10 Model Design for HDL Code Generation

-

HE =< [H | & B

S Bus Editor - Manage Bus Objects in the Base Workspace

X Fllter:[by Bus Name

4 E Base Workspace
4 = Busl

- d

uintl6 real

— b int32 real

— a
- b

MName DataType Complexity Dimensions DimensionsMode

Fixed
Fixed

= =
- -
Simulink.Bus: Busl
Properties -
Name: Busl
Code generation options
Data scope: | Auto v] E
Header file:
Alignment: -1 A
Description:
4 i | »
3

The resulting HDL code expands the array of buses into scalars, and contains four scalar input and

output ports.

Bus1 (2)
::::: 2 :::::

Generate Code

—

In1

Out1

D (1)
In1 _ Out1
GO—
In2 Qut2

uint16
D)
In3 Out3
Ind Outd

In the generated code, the array of bus expansion results in four scalar signals at the input and

output ports. For the first bus object, the input ports are In_ 1 a and In_ 1 b. For the second bus
object, they are In 2 aand In 2 b. At the output, for the first bus object, they are Out 1 a and
Out 1 b. For the second bus object, they are Out 2 a and Out 2 b.

ENTITY DUT IS

PORT(Inl 1 a : IN
Inl1b : IN
Inl 2 a : IN
Inl2b : IN

10-22

std logic vector
std logic vector
std logic vector
std logic_vector

(15 DOWNTO 0); -- uintl6
(31 DOWNTO 0); -- int32
(15 DOWNTO 0); -- uintl6
(31 DOWNTO 0); -- int32

Generating HDL Code for Subsystems with Array of Buses

Outl 1 a : OUT std logic vector(15 DOWNTO 0
Qutl 1 b : OUT std logic vector(31 DOWNTO 0
Qutl 2 a : OUT std logic vector(1l5 DOWNTO 0
Qutl 2 b : OUT std logic vector(31 DOWNTO 0
);

END DUT;

);
);
);
)

- uintlé6
- int32
- uintlé6
- int32

HDL Coder generates code in accordance with the order in which you specify the bus elements and
the array elements in your Simulink model. If you specify the VHDL target language for your
Simulink model that contains a bus object with arrays, HDL Coder preserves the arrays in the
generated code, and does not expand into scalars.

Array of Buses Limitations

Do not use the array of buses inside other data types. You cannot use a bus signal that contains an

array of buses.

MATLAB System and MATLAB Function blocks that contain System Objects are not supported

with an array of buses.

See Also

More About

“Signal and Data Type Support” on page 10-2

“Signal Types” (Simulink)

“About Data Types in Simulink” (Simulink)

“Composite Signals” (Simulink)

“Use Enumerated Data in Simulink Models” (Simulink)
“Enumerated Data” (Stateflow)

10-23

10 Model Design for HDL Code Generation

Generate HDL Code for Blocks Inside For Each Subsystem

For Each

For Each

10-24

This example shows how to use blocks inside a For Each Subsystem in your Simulink™ model, and
then generate HDL code.

Why Use a For Each Subsystem?

To repeatedly perform the same algorithm on individual elements or subarrays of the input signals,
use the For Each Subsystem block. The set of blocks within the Subsystem replicate the algorithm
that is applied to individual elements or equally divided subarrays of the input signals. Using the For
Each Subsystem block, you do not have to create and connect replicas of a Subsystem block to model
the same algorithm. The For Each Subsystem:

* Supports vector processing, which reduces the simulation time of your model. You can process
individual elements or subarrays of an input signal simultaneously.

* Improves code readability by using a for-generate loop in the generated HDL code. The for-
generate loop reduces the number of lines of code, which can otherwise result in hundreds of lines
of code for large vector signals.

* Supports HDL code generation for all data types, Simulink™ blocks, and predefined and user-
defined system objects.

* Supports optimizations on and inside the block, such as resource sharing and pipelining. The
parallel processing capability of the For Each Subsystem block combined with the optimizations
that you specify produces high performance on the target FPGA device.

Modeling With the For Each Subsystem

Open the foreach subsystem examplel model. You see this simple algorithm modeled inside a
For Each Subsystem block.

@ >
> * ol " .'—‘r;\‘ LA
Pl + L..-d”
GB

When you simulate the model, you see that the input signals Inl and In3 are partitioned into
subarrays. To see this partitioning, double-click the For Each block. The block parameters Partition
Dimension and Partition Width specify the dimension through which the input signal is partitioned
and the width of each partition slice respectively. Based on the input signal sizes and the partitioning
that you specify, the For Each Subsystem determines the number of iterations that it requires to
compute the algorithm.

In this example, the input signals In1 and In3 of size 8 are partitioned into four subarrays, each of
size 2. The input signal In2 of size 2 is not partitioned. To compute the algorithm, the For Each

Generate HDL Code for Blocks Inside For Each Subsystem

Subsystem requires four iterations, with each iteration repeating the algorithm on each of the four
subarrays of In1 and In3.

The For Each Subsystem simplifies modeling of vectorized algorithms. This figure shows how you can
model the same algorithm by creating multiple subsystem instances. This model can become
graphically complex and difficult to maintain.

In1

ufixfifi_En31 [1x]
In2 Cutd — -

In3

[1:2]

Subsystam_instance1
uint 16 [1x2]

uint 16 [1x2]
In1

wint16 [1x2] || (1]
|

ufixfii_End1 [1x2]

int16 [1x2] In2 Out1
uint16 [1x2) +|‘—12‘-ET
! | - In3
[:]
uint16 [1x2) Subsystem_instance2
D
In2
— Inl
uint16 [1x2] =]
1 ufixfi6_En31 [1:2] 2
Lint16 [1x2] | —pIn2 Outt
uint16 [1x8) [x2]
uint16 [1x2)
— In3
uint16 [1x2) =2

i

ubsystam_nstance3
t1

In1
(]

ufix_En31 [1x2]

o In2 Cutt
[1xz

In3

(1]

Subsystem_instanced

Using Complex Data Signals

The block does not support complex data types as inputs for HDL code generation. To input a
complex signal, you can convert this signal to an array of signals, and then input to the block.

To perform the same algorithm on both real and imaginary parts of the signal:

1 Separate the signal into real and imaginary parts by using a Complex to Real-Imag block.
2 (Create a vector signal that consists of the real and imaginary parts by using a Mux block.

You can then input this vector to the For Each Subsystem block and replicate the same computation
on both the real and imaginary parts. At the output of the For Each Subsystem, you can convert the
vector output back to a complex signal. Use a Demux block to separate the real and imaginary scalar
parts, and then input the scalars to the Real-Imag to Complex block.

10-25

10 Model Design for HDL Code Generation

10-26

Generate HDL Code

To generate HDL code, in the foreach subsystem examplel model, right-click the
Subsystem Foreach block and select HDL Code > Generate HDL for Subsystem.

To see the generated HDL code for the Subsystem Foreach block, in the MATLAB™ Command
Window, click the Subsystem Foreach.vhd file. In the VHDL code snippet, you see this for-
generate loop in the HDL code.This loop creates four subsystem instances, with each instance
performing the algorithm on size 2 subarrays of inputs In1 and In3.

BEGIN
—— <€£82>/For Each Subsystem
GEN LABEL: FOR k IN O TO 3 GENERATE
u For Each Jubsystem : For Each Jubsystem
PORT MAFP| eclk = clk,
reset => reset,
enlky => clk enshle,

Inl == Inl(2*k T2 2% (k+1) - 1), -—-— uintls [Z]

Ins == Inz, —— uintle [Z]

In3 == In3(2*k T2 2% (k+1) - 1), —— uintlé [Z]

Cucl =x For Each Jubsystewm outl (2 k To 2% (k+1]) - 1)

1
END GENERATE:

Certain optimizations that you specify can change the contents of the subsystems that the For Each
Subsystem instantiates. In such cases, the code generator does not use for-generate loops in the HDL
code. The HDL code does not contain for-generate loops, if you have:

* Bus or complex input signals.
» Certain optimizations enabled on the subsystem, such as resource sharing and streaming.

* Vector inputs that get partitioned into nonscalar signals in the Verilog code. To obtain for-generate
loops in the Verilog code, partition the vector signal to scalars.

Optimize the For Each Subsystem Algorithm

To optimize the algorithm contained within the For Each Subsystem, you can enable optimizations
such as resource sharing and streaming on the DUT that contains the For Each Subsystem. For
example, by using the resource sharing optimization, you can share multiple Subsystem instances
that are created by the For Each Subsystem. This optimization reuses the algorithm modeled by the
Subsystem across multiple instances and reduces the area usage on the target device.

Note: When you enable optimizations on the For Each Subsystem, the generated HDL code does not
contain for-generate loops.

This example shows how to use the resource sharing optimization on the For Each Subsystem. To
share resources, select the Subsystem block that contains the For Each Subsystem and then specify
the Sharing Factor. In this example, right-click the Subsystem Foreach block and select HDL
Code > HDL Block Properties. Set the Sharing Factor to 4, because the For Each Subsystem
generates four Subsystem instances. Then, generate HDL code for the Subsystem Foreach block.

Generate HDL Code for Blocks Inside For Each Subsystem

To see the effect of the resource sharing optimization, at the command-line, enter
gm_foreach subsystem examplel to open the generated model. In the generated model, you see
that the optimization shared the four subsystem instances generated by the For Each Subsystem into

one Subsystem For Each Subsystem Instancel.

(Duinné- [1x8] D2

In1

e

@ulnt16[1x2]l}2 [uint{& [1x8] DZ

|1‘~ﬁ ind

ini

ot

o [uint16 [1221 01

Serializer_Subnetwork

T
i

®uint16 [1x8] D2

1 ind
outl

P ini

Lint16 [1x2) D1

]

Serializer_Subnetwol

i1

In2

ufie2 01

ind
outl

l [1x8]

count

cir_0 3

P ini

Lint16 [1x2) D1

1]

Serializer_Subnetwol

k2

In3

1]

Qut1

ufixG4_En30 [1x2] D1

inQ out

ufixG4_En30 {3) D2
op————3(1)

Outl

(2]

For Each Subsystem_instance 10_deserializer

Faor Each Subsystem_instance1

If you double-click the For Each Subsystem Instancel block, you see the algorithm computed
for the size 2 subarrays of inputs Inl and In3.

: uint16 [1x2] D1

In1

wint16 [1x2] D1 [1xg)| X
2
()= g e

In2

wint3z2 [1x2] 01

uint3z2 [1x2] D1

Product

[1x2]

Delay1

uint16 [1x2] D1
=

In3

[Ixﬁ

[1x2]

Add

Lint32 [1x2] D1

ufixG4_En30 [1x2] D1
K- p{ 1
D

ut1

2|
Gain

To learn more about the resource sharing optimization, see Resource Sharing.

See Also

For Each Subsystem

10-27

10 Model Design for HDL Code Generation

Model and Debug Test Point Signals with HDL Coder™

This example shows how you can mark signals as test points in your Simulink™ model and, after HDL
code generation, debug the signals at the top level using the generated model or a test bench.

Why Use Test Points?

Test points are signals that you can use to easily debug and observe the simulation results at various
points in your Simulink™ model. You can observe signals designated as test points with a Floating
Scope block in a model. In Simulink™, you can designate any signal in a model as a test point.

After code generation, you can observe test point signals at the DUT output ports and further debug
the generated code in downstream workflows. This capability makes debugging your design easier
because the code generator can propagate test point signals deep within the subsystem hierarchy to
the DUT output ports.

Generate
synthesizable HDL
code with test

Create HDL- Designate test Enable DUT point ports Debug test
compatible point signals in port generation point signals
Simulink model your model for test points

10-28

Generate IP core
with test point
ports mapped to
interfaces

Create HDL-Compatible Model

Before you designate signals as test points and generate HDL code, make sure that the model you
create is compatible for HDL code generation. See “Create Simulink Model for HDL Code
Generation”.

For this example, open the hdlcoder simulink test points model that has been prepared for
HDL code generation. The DUT is an Enabled Subsystem that calculates two coefficients based on
inputs from a Selection Logic and a Comparator.

load system('hdlcoder test points')
open_system('hdlcoder test points/DUT/Mal Counter')
set param('hdlcoder test points', 'SimulationCommand', ‘'update');

Model and Debug Test Point Signals with HDL Coder™

eat
wntl ol
@ " uintl
1 "I uinte I wintE:
D e -
boodaan -
2 1 g cpt_s
pv_e - :
Comparator Unit Delay cpt
ufiz 1 uintl
o
ufi17_En1G
| cpt c_im ;p.@
c_im
21
. b fixl7_Ents
Selection Logic OR rooRaan | wookaan placc ¢ imp wfiz17_En
c_imp
Logical acc Delay acc

Calculate Coefficients

|-
2

14
S |]

Caonstant 0 Relational 0 it

; ufix
- boolean |
boolean

Logical rst

Designate Signals as Test Points
To debug internal signals in this model, mark them as test points in either of these ways:

* In the Simulink Editor, to open the Signal Properties dialog box, right-click the signal, and select
Properties. Then, select Test Point.

* At the command line, get the handle to the output port of a block, and then set the port parameter
TestPoint to 'on'.

For example, enter these commands to designate the output signal from the Logical acc block that
performs the OR operation as a test point.

portHandles = get param('hdlcoder test points/DUT/MaJl Counter/Logical acc', 'portHandles');
outportHandle = portHandles.Outport;
set param(outportHandle, 'TestPoint', 'on');

If a block has more than one output port, specify the outport handle that you want to designate as
testpoint. For example, to designate the second output of a Demux block as a test point, enter this
command:

set param(outportHandle(2), 'TestPoint','on');

Simulink™ displays an indicator on each signal for which you enable the Test point setting. If you
navigate the model, you see three additional test points. These test points are inside the Selection
Logic subsystem, the Comparator Subsystem, and the Calculate Coefficients Subsystem blocks.

To learn more, see “Configure Signals as Test Points” (Simulink).

10-29

10 Model Design for HDL Code Generation

10-30

Enable DUT Output Port Generation for Test Points

Before you generate HDL code, to debug signals that are designated as test points, enable HDL DUT
port generation for the signals. When you generate code for the model, HDL Coder™ propagates
these signals to the DUT as an additional output port.

To enable DUT output port generation for the hdlcoder simulink test points model:

* In the Configuration Parameters dialog box, on the HDL Code Generation > Global Settings >
Ports tab, select Enable HDL DUT port generation for test points.

* At the command line, use the EnableTestpoints property.

hdlset param('hdlcoder test points', 'EnableTestpoints','on'")

To learn more about this parameter, see “Enable HDL DUT port generation for test points” on page
16-44.

After you enable DUT port generation, you can run either of these workflows:
* Generate HDL code. To deploy the code onto a target FPGA, use the Generic ASIC/FPGA
workflow in the HDL Workflow Advisor.

* Map test point ports to target platform interfaces, and generate an HDL IP core by using the IP
Core Generationor Simulink Real-Time FPGA I/0 workflows that use Xilinx Vivado or
Altera Quartus II as the synthesis tools.

HDL Code Generation and FPGA Targeting

If you want to see the mapping between test point ports in the HDL code and the test point signals in
your model, enable generation of the code generation report. The report displays the test point ports
with links to the corresponding test point signals in your Simulink™ model.

For example, to enable report generation for the hdlcoder simulink test points model:

* In the Configuration Parameters dialog box, on the HDL Code Generation pane, select Generate
resource utilization report.
» To specify this setting at the command line, use the ResourceReport property.

hdlset param('hdlcoder test points', 'ResourceReport','on')

To learn more about report generation, see “Create and Use Code Generation Reports” on page 25-
2.

To generate HDL code:

* Right-click the DUT Subsystem and select HDL Code > Generate HDL for Subsystem.
* At the command line, run makehdl on the DUT Subsystem.
To deploy the code onto a target platform, use the Generic ASIC/FPGA workflow. In the HDL

Workflow Advisor, on the Set Target Device and Synthesis Tool task, for Target workflow, select
Generic ASIC/FPGA, specify the Synthesis tool, and then run the workflow.

When generating code, HDL Coder™ opens the Code Generation report. The Code Interface Report
section contains links to the test point ports in the QOutput Ports section.

Model and Debug Test Point Signals with HDL Coder™

Output ports

Port Name Datatype Bits
ce_out boolean 1

c_im ufix17_Enl6 17
c_imp ufixl7_Enlé 17
cot_s uint8 8

Ip Sum C outl ufix17_Enlé 17
tp_Relational_outl boolean 1

tp_Sum outl uint8 8

Ip Logical acc outl boolean 1

ip_Relational 0 outl boolean 1

When you click the links in the test point ports, the code generator highlights the corresponding
signals that you designated as test points in your Simulink™ model. Therefore, you can use the report
to trace back from the test point port in the generated code to the test point signals in your
Simulink™ model.

To see the test point ports in the generated HDL code, open the DUT . v file.

output [16:0] c_imp; £/f afixlT Enlé

output [T:0] ept =y /) uints

output [16:0] tp_Sum C outl: £ ufixlT Enlée Testpoint port
output tp Relational outl; ;S Testpoint port

output [T:0] tp_Sum ocutl; S/ uintg Testpoint port

output tp Logical acc outl:; /S Testpolnt port

cutput tp Relational 0 outl; /¢ Testpoint port

You can see the test point ports at the top level module declaration. These ports have the prefix tp
and a comment to indicate that they correspond to test point ports. If you specify VHDL as the target
language, you can see the test point ports in the entity declaration.

IP Core Generation and SoC Targeting
To generate an HDL IP core, open the HDL Workflow Advisor. In the Advisor:

1 On the Set Target Device and Synthesis Tool task, for Target workflow, select IP Core
Generation, and specify a Target platform that uses Xilinx Vivado or Altera Quartus
IT as the Synthesis tool. If you use the Simulink Real-Time FPGA I/0 workflow, specify a
Target platform that uses Xilinx Vivado as the Synthesis tool

2 On the Set Target Reference Design task, you can specify the HDL Coder™ default reference
designs, or a custom reference design that you want to integrate the HDL IP core into. If you do
not specify unique names for test point signals, running this task can fail. To fix this error, in the
Result subpane, select the link to generate unique names for test point signals. To verify that the
task passes, rerun the task.

3 On the Set Target Interface task, you see the test point ports in the Target platform interface
table. You can map the ports to AX14, AXI4-Lite, or External Port interfaces. After you run this

10-31

10 Model Design for HDL Code Generation

task, the code generator stores this testpoint interface mapping information on the DUT. To see
this information, in the HDL Block Properties for the DUT Subsystem, on the Target
Specification tab, look for the TestPointMapping block property. You can reload this
information for the DUT across subsequent runs of the workflow.

4 On the the Generate RTL Code and IP Core task, right-click and select Run to Selected Task
to generate the IP core. The code generator opens an IP Core Generation report that displays the
mapping of test point ports to interfaces.

Target platform interface table:

Port Name Port Type Data Type Target Platform Interfaces Bit Range / Address / FPGA Pin
cpt_e Inport ufixl AXI4-Late x"100"
pv_eg Inport boolean AXI4-Lite x"104"
mvt Inport boolean AXI4-Lite x"108"
sync_e Inport uintd AXT4-Lite x"110"
sat Inport uintd DIP Switches [0:7] [0:7]
Enable In Inport boolean AXI4-Late x"11C"
c_im Cutport ufixl7 Enl6é External Port

c_imp Outport ufixl7 Enl6é External Port

cpt_s Outport uintd AXI4-Lite x"10C"
TestPoint 3 Test point boolean AXI4-Late x"114"
TestPoimnt Test pomnt ufixl7 Enlé External Port

TestPoint 1 Testpoint boolean AXT4-Late x"118"
TestPoint_2 Test point uint8 LEDs General Purpose [0-7] [0-7]

When you click the links in the test point ports, the code generator highlights the corresponding
signals that you designated as test points in your Simulink™ model.

If you open the generated HDL source file, you see the test point signals connected to the IP core
wrapper.

MaJCounte ip axi lite u MadCounte_ip axi lite inst (...

.read TestPoint 3 (tp TestPoint 3 s=sig), // ufixl

.read TestPoint 1(tp TestPoint 1 sig), S o ufixl
)z
MaJCounte_ip dut u MaJCounte ip dut_inst (...
.tp TestPoint (tp TestPoint sig), | // ufixl7 Enle
.tp_TestPoint 1 (cp TestPoint 1 sig), S o ufixl
.tp_TestPoint Z (tp_TestPoint_ 2 sig), [/ ufixd
.tp TestPoint 3 (tp_TestPoint_ 3 sig) // ufixl

Run the workflow to generate the Software Interface model and integrate the IP core into the target
reference design that you specified in the Set Target Reference Design task.

10-32

Model and Debug Test Point Signals with HDL Coder™

To learn more about the IP Core Generation workflow, see “Custom IP Core Generation” on page
40-4 and “Custom IP Core Report” on page 40-6.

Debug Test Point Signals
After you generate HDL code or generate an IP core, you can debug the test point signals.

If you generated HDL code for your model or ran the Generic ASIC/FPGA workflow, to debug the
test point signals, generate a HDL test bench, or use the generated model. To open the generated
model, at the command line, enter gm_hdlcoder test points.

wnt16

convert

: uint16

dala_e

Con verl dala_a H
ufix1y_EniG
e iz |7 uifin 1 c im - »
poctean | CONCEt ! convert cpt_e - (3)

» boolean L ufini1 paa
Convert pv

Convert pv_a

ufizi?_Enl6
c_im — | 2]
boolea e g
2 F - L pa
boolean

pv_&
] - uintd

&

boalean oolean cpl_s

boolean
(5 }——» boolean Bt Delay cpt

5_mwl
- P ulixi?_Enié

Convarl 5_mvi

tp_Surm_C_out1

Uit Lints .
(: —m convert B y—
uintB

{P ooolean

sync_in b T T tp_Relational_out1 —l_
>
uints uints
I* convert I st 9 uinta —
uintE

Sum_out1 -
sal_in = R - v
Convert sat
boolean hoolean boolean {P :.:-:-Ieaf "
l- boolean p Enable_|ntp_Logical_acc_out
Contred_In
Convearl_coniral
ouT

In the generated model, you see the test points at the DUT output ports connected to a Scope block
that is commented out. To observe the simulation results for these signals, uncomment the Scope
block, and then run the simulation. If you navigate the generated model, you can see that the code
generator creates an output port at the point where you designated the signal as a test point. HDL
Coder™ then propagates these ports to the DUT as additional output ports.

If you run the IP Core Generation workflow to the Generate Software Interface Model task,
the code generator opens the Software Interface model.

10-33

10 Model Design for HDL Code Generation

Enable_In

10-34

ufix17_En16

ufix17 Enl6

To observe the data on test point signals from the ARM processor, uncomment the Scope block, and
then run the Software Interface model.

Considerations

* Test point ports are considered similar to other output ports in the code generation process. Test
point port generation works with all optimizations such as resource sharing, streaming, and
distributed pipelining. To learn about various optimizations, see “Speed and Area Optimization”.

* Ifyou generate a validation model, you see that the code generator does not compare the test
point signals with the test point ports at the output. You can still observe the test point signals by
uncommenting the Scope block and by running the simulation. To learn more about generated
model and validation model, see “Generated Model and Validation Model” on page 24-5.

* Ifyou generate a cosimulation model, you see the test point ports connected to a Terminator
block. To observe the test points, remove the Terminator blocks, and connect the output ports to a
Scope block, and then run cosimulation. You can also observe the waveforms in the HDL simulator
that you run cosimulation with. To learn more about cosimulation, see “Generate a Cosimulation
Model” on page 27-30.

* If you open the generated model, you see the Scope block commented out for performance
considerations.

* You cannot specify the port ordering for the DUT test point ports. HDL Coder™ determines the
port ordering when you generate code.

* Target workflow must be Generic ASIC/FPGA, IP Core Generation, or Simulink Real-
Time FPGA I/O0.

o Ifyouuse IP Core Generationor Simulink Real-Time FPGA I/0 workflows, the
Synthesis tool must be Xilinx Vivado or Altera Quartus II.Xilinx ISE is not
supported.

Model and Debug Test Point Signals with HDL Coder™

* Ifyouuse IP Core Generationor Simulink Real-Time FPGA I/0 workflows, you map the
test point ports to AXI4, AXI4-Lite, or External Port interfaces. You cannot map the ports to AXI4-
Stream or AXI4-Stream Video interfaces.

See Also

More About

. “Configure Signals as Test Points” (Simulink)
. “Enable HDL DUT port generation for test points” on page 16-44
. “Generated Model and Validation Model” on page 24-5

10-35

10 Model Design for HDL Code Generation

Allocate Sufficient Delays for Floating-Point Operations

In this section...

“Problem” on page 10-36
“Cause” on page 10-36

“Solution” on page 10-37

Problem

Sometimes, when generating code from your floating-point algorithm in Simulink, HDL Coder
generates an error that it is unable to allocate sufficient number of delays.

Cause

This error message generally occurs when you have Simulink™ blocks performing floating-point
operations inside a feedback loop. These blocks have a latency. HDL Coder™ is unable to allocate
delays to compensate for the latency, because the code generator needs to add delays and balance
them to maintain numerical accuracy.

If you open this example model RunningSum. s1x, you see a Simulink™ model that uses single data

types.
single single
1 | data out -—]
E data " sumHDOL_sl =
M doubls N boodean hoolaan =
valid walidOut_&l
idoubde boodaan wni 16
TTTT ——— [bookean | =—
NENEN rsi numel_sl

CumSum_sl

To generate HDL code for the CumSum_S1 Subsystem, right-click the subsystem and select HDL
Code > Generate HDL for Subsystem. During code generation, HDL Coder™ generates an error:

Unable to allocate delays to compensate for the 11 delays introduced by Add in
native floating-point mode. Consider either increasing the oversampling factor,
setting the 'Latency Strategy' to 'Zero', or adding the necessary output
pipelines via HDL block properties for other blocks in the model to accommodate
for the latency introduced by this block.

By using the path to the block mentioned in the error message, navigate to the Add block in the
model. This block is inside a feedback loop.

10-36

Allocate Sufficient Delays for Floating-Point Operations

single
+ single 1 [single
o g 1

@ D:0daan
S

CrversamplingFactor=11

¥
|

single
)

sUm

data |+ SCCAT -

h
=

T ik
u——|..1

The Add block has a latency of 11. When generating code, HDL Coder™ cannot allocate 11 delays for
the block, because it cannot add matching delays to other paths.

This model serves as an example to illustrate the various strategies to solve this problem.

Solution

Strategy 1: Global Oversampling

This modeling paradigm uses the clock-rate pipelining optimization to oversample your design to a
clock-rate much faster than the DUT sample rate. To enable this optimization, specify a global
oversampling factor for your Simulink model. The floating-point delays then operate at the faster
clock-rate and can be allocated successfully. For more information, see “Clock-Rate Pipelining” on
page 24-52.

1

Specify an oversampling factor that is equal to or greater than the latency of the floating-point
operators that are unable to allocate delays. For the RunningSum model, specify an
oversampling factor at least equal to 12. To learn about the latency values of the floating-point
operators, see “Simulink Blocks Supported with Native Floating-Point” on page 10-80.

To specify the oversampling factor:

a In the Apps tab, select HDL Coder. The HDL Code tab appears.

b Click Settings. In the HDL Code Generation > Global Settings tab, set Oversampling
factor to 12.

Enable hierarchy flattening on the DUT and make sure that subsystems inside the DUT inherit
this setting. For the RunningSum model, select the CumSum_s1 subsystem and click HDL Block
Properties on the HDL Code tab, and then set FlattenHierarchy to on.

10-37

10 Model Design for HDL Code Generation

Strategy 2: Local Oversampling

To model your design at the data rate and selectively increase the sample rate of blocks for which
HDL Coder™ is unable to allocate delays, use local oversampling. These blocks then operate at the
faster clock rate and can accommodate the required number of delays.

If you open the RunningSum 0Smanual model and navigate to the Add block, it shows how you can
increase the sample rate of the Add block and allocate delays.

|sin;||e

13 > | B+ single [- Jsingle
Tata L [» —\xsingle §
: | —» |
e EE] bhoolean hoolean
(E]) —— 712
nabile
single
L
— |bcc|ean
{2 % ™ | »
set
|sin;||e
use of repeat and zoh blocks to deal with floating-point latency in
Il.rl feedback loop instead of oversampling the whole design

10-38

* The blocks that are within the boundary of the Repeat and Zero Order Hold blocks operate at the
clock rate that is 12 times faster than the sample rate of the model.

* The subsystem has a Delay block of length 12 at the output of the Add block. When generating
code, the Add block absorbs this Delay block, which compensates for the latency of the operator.
To balance delays, the subsystem contains Delay blocks of length 12 in other paths.

You can now generate HDL code for the CumSum_s1 subsystem. To generate HDL code for the
CumSum_S1 Subsystem, right-click the subsystem and select HDL Code > Generate HDL for
Subsystem.

Strategy 3: Delay Blocks

Use this modeling paradigm to model your entire design at the Simulink data rate. For blocks that are
unable to accommodate the required number of delays, add a Delay block with a sufficient Delay
length at the output of the blocks. Specify a Delay length that is equal to the latency of the floating-
point operator. Make sure that you add matching delays in other paths.

For the RunningSum model, you can add a Delay block of length 12 at the output of the Add block.
When generating code, the Add block absorbs this delay, because the block has a latency of 12.

For more information, see “Latency Considerations with Native Floating Point” on page 10-63.
Strategy 4: Use Custom Latency

You can use the Latency Strategy for various blocks to specify a custom latency value and absorb
the additional delays. Using this strategy can optimize your design for trade-offs between:

Allocate Sufficient Delays for Floating-Point Operations

data

> F
r}: —
EEWgee _l
@ D202 an J

single
+ single] single
o g 1

* Clock frequency and power consumption.
* Oversmapling factor and sampling frequency.

To learn more about the trade-offs and blocks for which you can specify a custom latency, see
LatencyStrategy.

Note: When you use the custom latency strategy, make sure that the Subsystem that
contains the block for which native floating-point is unable to allocate delays is not a
conditional subsystem. That is, the Subsystem must not contain trigger, reset, or enable
ports.

To see how using a custom latency can resolve the delay allocation issue, open the model
RunningSum_Custom.slx.

COrversamplingFactor=12

single

[
| +

FCooum —

The model is similar to the original RunningSum model but does not have the Enable block. Using the
Enable block can prevent the custom latency strategy from absorbing delays. Specify a custom
latency of one for the Add block. The Add block can then absorb the Unit Delay adjacent to the Add
block.

You can now generate HDL code for the CumSum_sl subsystem.
Strategy 5: Zero Latency

You can use the zero latency strategy setting for blocks in your design for which native floating point

is unable to allocate delays. By default, blocks in your design inherit the native floating-point settings
that you specify in the Configuration Parameters dialog box. To specify a zero latency strategy setting
for a block, in the HDL Block Properties dialog box for that block, on the Native Floating Point tab,

set LatencyStrategy to Zero.

For the RunningSum example, set the LatencyStrategy of the Add block to Zero. To choose the
native floating point library and specify zero latency strategy, at the command line, enter:

fc = hdlcoder.createFloatingPointTargetConfig('NativeFloatingPoint");
hdlset param('RunningSum/CumSum sl/Subsystem/Add', 'LatencyStrategy', 'Zero');

10-39

10 Model Design for HDL Code Generation

10-40

Note To obtain good performance on the target FPGA device, it is not recommended to set Latency
Strategy to Zero from the Configuration Parameters dialog box.

See Also
FPToleranceStrategy | FPToleranceValue | createFloatingPointTargetConfig

Related Examples
. “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

More About

. “Getting Started with HDL Coder Native Floating-Point Support” on page 10-49
. “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-70

Optimize Generated HDL Code for Multirate Designs with Large Rate Differentials

Optimize Generated HDL Code for Multirate Designs with Large
Rate Differentials

In this section...

“Issue” on page 10-41
“Description” on page 10-41
“Recommendations” on page 10-43

Issue

When generating HDL code from your multirate algorithm in Simulink, HDL Coder might generate a
large number of pipeline registers that can prevent the HDL design from fitting into an FPGA. This
issue occurs due to modeling patterns that might result in large rate differentials. You can address
this issue by using modeling techniques to manage sample time ratios.

Description

This issue occurs when your Simulink™ model has a significantly large difference in sample rates or
uses certain block implementations or optimizations that result in different clock-rate paths, such as:

* Multicycle block implementations

* Input and output pipelining

» Distributed pipelining

* Floating-point library mapping

* Native floating-point HDL code generation

» Fixed-point math functions such as reciprocal, sqrt, or divide

* Resource sharing

* Streaming

The additional pipelines result in a latency overhead that requires the insertion of matching delays
across multiple signal paths operating at different rates. If the ratio of the fastest to the slowest clock
rate is quite large, the code generator can potentially introduce a large number of registers in the

resulting HDL code. The large number of pipeline registers can increase the size of the generated
HDL files, and can prevent the design from fitting into an FPGA.

To see an example of how this issue occurs, open this Simulink™ model.

open_system('hdlcoder multirate high differential')

N/
Display
single(1) | 1
L
Displayi

hdlcoder_multirate_high_diffarential

10-41

10 Model Design for HDL Code Generation

#HE
#HE
#HE
#HF
#HF
fidd

When you compile the model and double-click the hdlcoder multirate high differential
Subsystem, you can see that the model has a floating-point Gain block, a multicycle operator, in the
fast clock-rate region.

n single D1 single O “

Sample Tirme Legend e

hdlcoder_multirate_high_differential single(1) single D2 H/ > :
Sample Times for "hdlcoder_multirate_high_differential’

Color Annotation Description Value

[D1 Discrete 1 10.0000e-006 (period)

[| o2 Discrete 2 1 {period)
H Hybrid N/A

|:| Show discrete value as 1/Period. Print

Help

Generate HDL code for the hdlcoder multirate high differential Subsystem and check the
output log.
Generating HDL for 'hdlcoder multirate high differential/hdlcoder multirate high differential'.

Using the config set for model hdlcoder multirate high differencial for EDL code generation parameters.
Starting HDL check

The code generation and optimization options you have chosen have introduced additional pipeline delays.
The delay balancing feature has automatically inserted matching delays for compensation.
The DUT requires an initial pipeline setup latency. Each output port experiences these additional delays.

[13]
[11]

Cutput port 0: 100000 cycles.
Qutput port 1: 1 cycles.

Lidd
#HF
#HF
#HF
#HF
¥
#HE
#HE

Begin VHDL Code Generation for 'hdlcoder multirate_high differential'.
Working on hdlcoder_multirate_high differential/hdlcoder_multirate_high differential/nfp mul comp as hdlsrc\hdlcoder multirate_high differentiallnfp mul comp.vhd.

Working on hdlcoder multirate_high differential tc as hdlsrc\hdlcoder multirate high differential\hdlcoder multirate high differential tc.vhd.

Working on hdlcoder_multirate_high differential/hdlcoder_multirate_high differential as hdlsrc\hdlcoder multirate_high differentiall\hdlcoder multirate high differential.vhd.
Generating package file hdlsrc\hdlcoder multirate high differentiall\hdlcoder multirate high differential pkg.vhd.
Creating HDL Code Generation Check Report hdlcoder multirate high differential report.html

HDL check for 'hdlcoder multirate high differential’ complete with 0 errors, 0 warnings, and 0 messages.
HDL code generation complete.

Open the generated model. At the command line, enter

gm hdlcoder multirate high differential. When you compile the model and double-click
the hdlcoder multirate high differential Subsystem, the model looks as displayed by the
sample time legend.

10-42

Optimize Generated HDL Code for Multirate Designs with Large Rate Differentials

Sample Time Legend *
irate_high_differential gm_hdicoder_multirate_high_differential |4
Sample Times for 'gm_hdlcoder_multirate_high_differential’
_ |single D2] =ingle D2 —
Id - .y h
Color Annotation Description Value . q ——._;)
[| D1 Discrete 1 10.0000e-006 (period) delayMatch1
] D2 Discrete 2 1 (period)
H Hybrid M/A
|:| Show discrete value as 1/Period. Print
® NFPF |single D1 single D1
felp p| mul - p 74— "-

single D1 Gain delayMatch

single D1
(1) p 22

The large output latency on the fast clock rate region of the design is introduced by the code
generator to balance delays across multiple output paths of the system. This large latency increases
the size of the generated HDL files and reduces the efficiency of the generated code.

Recommendations
Recommendation 1: Use a Single-Rate Model

Most applications that you target the HDL code for might not require such a large rate differential. In
that case, it is recommended that you use a single-rate model. In this example, you can change the
sample rate of the Constant block inside the hdlcoder multirate high differential
Subsystem to be the same as that of the base model.

Open this model that has the sample time of the Constant block changed to 10E - 06, which is the
same sample time as the base sample time of the model.

open_system('hdlcoder singlerate')

N
Drisplayd

single(1) | 1
Constant 3 > I:l
Dhsplays

hdlcoder_singlerata

When you compile the model and double-click the hdlcoder singlerate Subsystem, you see that
the signal paths in the model operate at the same sample time of 10E- 06.

10-43

10 Model Design for HDL Code Generation

single

single D1 single 01 single D1
.—' 2 72 T, single(pi) 72 4,."]

Sample Time Legend >
;) single D1
hdlcoder_singlerate single(1) @
Sample Times for 'hdlcoder_singlerate"
Color Annotation Description Value
[] FiM Fixed in Minor Step [0,1]
[] D1 Discrete 1 10.0000e-006 (period)
|:| Show discrete value as 1/Period. Print

Help

$54
#5#
i3
i
252
§H

Generate HDL code for the hdlcoder singlerate Subsystem and check the output log.

Generating HDL for 'hdlcoder singlerate/hdleocder singlerate’.

Using the config set for model hdleoder singlerace for HDL code generacion paramecers.

Starting HDL check.

The code generation and cptimization opticna you have chosen have introduced additicnal pipeline delays.

The delay balancing feature has automatically inserted matching delays for compensation.
The DUT requires an initial pipeline sectup latency. Each ocucput port experiences these additional delays.

£52
E§F

Qutput port 0: 6 cycles.
Output port 1l: 6 cycles.

£52
E i3
i5E
£42
i
£52
#F#

Begin VHDL Code Generation for "hdlcoder singlerate’.
Working on hdlcoder singlerate/hdlcoder singlerate/nfp mul comp as hdlsarchhdlocder singleratehnfp mul comp.vhd.

Working on hdlcoder singlerate/hdlcoder singlerate as hdlsrchhdicoder singleratehhdlcoder singlerace.vhd.

Generating package file hdlsreh\hdlcoder singleratehdlcoder singlerate phkg.vhd.
Creating HDL Code Generation Check Report hdlcoder singlerate report.html

HDL chack for 'ndlcaﬁer_s;ngle:ate' complate Wwith 0 errors, 0 warnings, and 0 messages.
HDL code generation complete.

You see that the output latency has decreased significantly. Now open the generated model. At the

MATLAB™ command line, enter gm_hdlcoder_singlerate. When you compile the model and
double-click the hdlcoder singlerate Subsystem, the model looks as displayed by the sample
time legend.

10-44

Optimize Generated HDL Code for Multirate Designs with Large Rate Differentials

Sample Time Legend >

gm_hdlcoder_singlerate

single 01
Sample Times for "gm_hdlcoder_singlerate’ -C-

Color Annotation Description Value
[D1 Discrete 1 10.0000e-006 (period)

[] show discrete value as 1/Period. Print single D1
C-
Help Gain_const — | NFP |=ingle D1
— i mul —".
_) . Gain
single D _o |single D1
“ z*

The generated HDL code is now optimal and uses few registers. Therefore, you can deploy the design
to target FPGA platforms.

Recommendation 2: Reduce the Rate Differential

If you want to use a multirate model, it is recommended that you reduce the rate differential. Rate
differential corresponds to the ratio of the fastest to the slowest clock rate in your design. If your
target application requires two signal paths such that one signal path runs in time units of
nanoseconds (ns) and the other signal path runs in time units of microseconds (us), you can choose to
retain the multirate paths in your model. Be aware that delay balancing can introduce a significantly
large number of registers to balance the signal paths.

In this example, you can change the sample rate of the Constant block inside the
hdlcoder multirate high differential Subsystem to reduce the rate differential.

Open this model that has the sample time of the Constant block changed to 0.01.

open_system ('hdlcoder multirate medium differential"')

1 o1
Display2

single(1) | 1
Displayld

hdlcodar_multirate_medium_differential

When you compile the model and double-click the hdlcoder multirate medium differential
Subsystem, you see that the rate differential between the two signal paths is equal to 1000.

10-45

10 Model Design for HDL Code Generation

D1 D1 D1 D1
72 b—— | single(pi) z2

Sample Time Legend >

) _jDz —
hdlcoder_multirate_medium_differential single(1) e 2 ;l

Sample Times for "hdlcoder_multirate_medium_differential’

Color Annotation Description Value

[] FiM Fixed in Minor Step [0,1]

[] D1 Discrete 1 10.0000e-006 (period)

[] D2 Discrete 2 0.01 [period)
H Hybrid N A

|:| Show discrete value as 1/Period. Print

Help

Generate HDL code for the hdlcoder multirate medium differential Subsystem and check
the output log.

Genereting HDL for ‘hdlcoder multirace medium differential/hdlcoder multirace medium differential’.

$$# Using che config met for model hdlooder mulcirate medium differential for HDL code generation parameters.
Sctarving HDL check.

##%# The code generation and optimization options you have chosen have introduced additional pipeline delays.
§## The delay balancing feature has autematically inserced matching delays for compensacion.

The DUT xequires an initisl pipeline setup lacency. Each output port experiences these additional delays.
%% Output port 0: 1000 cycles.

Fi-.t Qutput port 1: 1 cycles.

Begin VHDL Code Generation for 'hdleoder multirate medium differential'.

Working on hdlcoder multirate medium differencial/hdlecoder multirate_medium differential/nfp mul comp as hdlsrcihdicoder multirate medium differentialinfp mul comp.whd.
Working on hdlcoder multirate medium differential tc as hdlsrchhdl r multirate medium diffex: ial\hdlcoder multirate medium differential t thd .

##4 Working on hdlcoder multirate medium differencial/hdlcoder multirate_medium differential as hdlsrc\hdlecoder multirace medium differentialihdlcoder multirate medium differencial.whd.
Generating package file hdlscc\hdlcoder multirate medium differentiallhdicoder multirete medium differential pkg.vhd.

##%# Creating HDL Code Generation Check Repeort hdlcoder multirace medium differential
HDL check for 'hdlcoder_multirace medium differential' complete with O errors, 0 warnings, and 0 messages.
$## HDL code generation complete.

reporc.html

Open the generated model. At the MATLAB™ command line, enter

gm_hdlcoder multirate medium differential. When you compile the generated model and
double-click the hdlcoder multirate medium differential Subsystem, the model is as
displayed by the sample time legend.

10-46

Optimize Generated HDL Code for Multirate Designs with Large Rate Differentials

yedium_differential gm_hdlcoder_multirate_medium_differential | 4

Sample Times for 'gm_hdlcoder_multirate_medium_differential’

Color Annotation Description Value C - s 2'1 e e ;: 2 ,J
I D1 Discrete 1 10.0000e-006 (period)
[

4

delayMatch

D2 Discrete 2 0.01 (period)
H Hybrid N/ &
[C] show discrete value as 1/Period. Print C- single D1
Gain_const - o1
» single single
- o w28
single D1 5 |single D1 Gain delayMatch
(1 p Z -

The model has a large number of registers, approximately 1000, in the fast clock rate path. The
additional cost of registers is expected when you have a control logic that runs at a sample rate that
is 1000 times faster than the sample rate of the system. When you deploy the generated code to a
target platform, be aware of the constraints in hardware resources on the target platform. This
recommendation offers a trade-off between generating optimal HDL code and targeting practical
FPGA applications that might require an extremely large rate differential.

Recommendation 3: Map Pipeline Delays to RAM

To optimize the number of registers that your design uses on the target FPGA device, you can use the
Map Pipeline Delays to RAM setting. This setting is a trade-off of the pipeline registers that are
inserted in the HDL code with RAM resources to save area footprint on the target FPGA device. You
can enable this setting in the HDL Code Generation > Optimizations > General tab of the
Configuration Parameters dialog box.

You can also specify this setting at the command line by using the MapPipelineDelaysToRAM
property with hdlset param or makehdl. You can view the property value by using hdlget param.
Use either of these methods.

* Pass the property as an argument to the makehdl function.

makehdl('hdlcoder multirate high differential/hdlcoder multirate high differential', ...
'MapPipelineDelaysToRAM', 'on')

* When you use hdlset param, you can set the parameter on the model, and then generate HDL
code by using makehd1l.
hdlset param('hdlcoder multirate high differential', ...

'MapPipelineDelaysToRAM', 'on')
makehdl('hdlcoder multirate_high_differential/hdlcoder multirate_high_differential')

Use this setting in combination with the previous recommendations to further improve the efficiency
of the generated HDL code and for deploying the code to the target platform.

See Also
createFloatingPointTargetConfig

10-47

10 Model Design for HDL Code Generation

Related Examples
. “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

More About

. “Getting Started with HDL Coder Native Floating-Point Support” on page 10-49
. “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-70

10-48

Getting Started with HDL Coder Native Floating-Point Support

Getting Started with HDL Coder Native Floating-Point Support

In this section...

“Numeric Considerations and IEEE-754 Standard Compliance” on page 10-49
“Data Type Considerations” on page 10-50

Native floating-point support in HDL Coder enables you to generate code from your floating-point
design. If your design has complex math and trigonometric operations or has data with a large
dynamic range, use native floating-point.

In your Simulink model:

* You can have single-precision and double-precision floating-point data types and operations.

* You can have a combination of integer, fixed-point, and floating-point operations. By using Data
Type Conversion blocks, you can perform conversions between single-precision and fixed-point
data types.

The generated code:

* Complies with the IEEE-754 standard of floating-point arithmetic.
* Is target-independent. You can deploy the code on any generic FPGA or an ASIC.

* Does not require floating-point processing units or hard floating-point DSP blocks on the target
ASIC or FPGA.

HDL Coder supports:

* Math and trigonometric functions

* Large subset of Simulink blocks

* Denormal numbers

* Customizing the latency of the floating-point operator

Numeric Considerations and IEEE-754 Standard Compliance

HDL Coder generates code in compliance with the IEEE 754-2008 standard of floating-point
arithmetic.

In the IEEE 754-2008 standard, the single-precision floating-point number is 32-bits. The 32-bit
number encodes a 1-bit sign, an 8-bit exponent, and a 23-bit mantissa.

31 30 23 22 0
S Exponent Mantissa

1 8 23

This graph is the normalized representation for floating-point numbers. You can compute the actual
value of a normal number as:

10-49

10 Model Design for HDL Code Generation

i 23 .
value = (= 1)"9"* (1 + X byz_ 2 2~ 127)
i=1

1=

The exponent field represents the exponent plus a bias of 127. The size of the mantissa is 24 bits. The
leading bit is a 1, so the representation encodes the lower 23 bits.

To generate code that complies with the IEEE-754 standard, HDL Coder supports:

* Round to nearest rounding mode

* Denormal numbers

* Exceptions such as NaN (Not a Number), Inf, and Zero

* Customization of ULP (Units in the Last Place) and relative accuracy

For more information, see “Numeric Considerations with Native Floating-Point” on page 10-52.

Data Type Considerations

With native floating-point support, HDL Coder supports code generation from Simulink models that
contain floating-point signals and fixed-point signals. You might want to model your design with
floating-point types to:

* Implement algorithms that have a large or unknown dynamic range that can fall outside the range
of representable fixed-point types.

* Implement complex math and trigonometric operations that are difficult to design in fixed point.
* Obtain a higher precision and better accuracy.

Floating-point designs can potentially occupy more area on the target hardware. In your Simulink
model, it is recommended to use floating-point data types in the algorithm data path and fixed-point
data types in the algorithm control logic. This figure shows a section of a Simulink model that uses
Single and fixed-point types. By using Data Type Conversion blocks, you can perform conversions
between the single and fixed-point types.

| (A Commmnd single sfix16_En11
D_Voltage | - Convert |
dvoltage
Data_Type3d
o sfix32_En27 single ~ e
DM single ——®»D_Current
"~ dCurrent
P Data_Type1
! Sin single sfix16_En11
sfin3Z2_En27 single Q_Voltage 1 Convert
QF—— single —#Q_Current qoltage
-»{Cos qCurrent Data_Typed
Data_TypeZ
Park_Transform DQ_Current_Control

10-50

Getting Started with HDL Coder Native Floating-Point Support

See Also

Modeling Guidelines
“Modeling with Native Floating Point” on page 20-61

Functions
createFloatingPointTargetConfig

Properties
FPToleranceStrategy | FPToleranceValue

Related Examples
. “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

More About

. “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-70
. “Simulink Blocks Supported with Native Floating-Point” on page 10-80

10-51

10 Model Design for HDL Code Generation

Numeric Considerations with Native Floating-Point

10-52

In this section...

“Round to Nearest Rounding Mode” on page 10-52
“Denormal Numbers” on page 10-52

“Exception Handling” on page 10-53

“Relative Accuracy and ULP Considerations” on page 10-53

Native floating-point technology can generate HDL code from your floating-point design. Floating-
point designs have better precision, higher dynamic range, and a shorter development cycle than
fixed-point designs. If your design has complex math and trigonometric operations, use native
floating-point technology.

HDL Coder generates code that complies with the IEEE-754 standard of floating-point arithmetic.
HDL Coder native floating-point supports:

* Round to nearest rounding mode

* Denormal numbers

* Exceptions such as NaN (Not a Number), Inf, and Zero

* Customization of ULP (Units in the Last Place) and relative accuracy

Round to Nearest Rounding Mode

HDL Coder native floating-point uses the round to nearest even rounding mode. This mode resolves
all ties by rounding to the nearest even digit.

This rounding method requires at least three trailing bits after the 23 bits of the mantissa. The MSB
is called Guard bit, the middle bit is called the Round bit, and the LSB is called the Sticky bit. The
table shows the rounding action that HDL Coder performs based on different values of the three
trailing bits. x denotes a don’t care value and can take eithera O ora 1.

Rounding bits Rounding Action

Oxx No action performed.

100 A tie. If the mantissa bit that precedes the Guard bit is a 1, round
up, otherwise no action is performed.

101 Round up.

11x Round up.

Denormal Numbers

Denormal numbers are numbers that have an exponent field equal to zero and a nonzero mantissa
field. The leading bit of the mantissa is zero.

. 23 .
value = (= 1)59"% (0 + 3 byy_ 2 H*27126
i=1

Denormal numbers have magnitudes less than the smallest floating-point number that can be
represented without leading zeros in the mantissa. The presence of denormal numbers indicates loss

Numeric Considerations with Native Floating-Point

of significant digits that can accumulate over subsequent operations and eventually result in
unexpected values.

The logic to handle denormal numbers involves counting the number of leading zeros and performing
a left shift operation to obtain the normalized representation. Addition of this logic increases the area
footprint on the target device and can affect the timing of your design.

When using native floating-point support, you can specify whether you want HDL Coder to handle
denormal numbers in your design. By default, the code generator does not check for denormal
numbers, which saves area on the target platform.

Exception Handling

If you perform operations such as division by zero or compute the logarithm of a negative number,
HDL Coder detects and reports exceptions. The table summarizes the mapping from the encoding of
a floating-point number to the value of the number for various kinds of exceptions. x denotes a don’t
care value and can take eithera O ora 1.

Sign |Exponent Significand |Value Description
X 0xFF 0x00000000 value = (- 1)500 Infinity
X O0xFF A nonzero value = NaN Not a Number
value
X 0x00 0x00000000 |value =0 Zero
X 0x00 A nonzero sign 23 _i|Denormal
value value = (- 1) *(0+ _Zlb23_,‘2
1 =
) 126
X 0x00 < E < OxFF |x Normal

. 23 .
value = (— 1)*9"*(1 + Zlb23 27

1=

)* 2(9 - 127)

Relative Accuracy and ULP Considerations

The representation of infinitely real numbers with a finite number of bits requires an approximation.
This approximation can result in rounding errors in floating-point computation. To measure the
rounding errors, the floating-point standard uses relative error and ULP (Units in the Last Place)
error.

ULP

If the exponent range is not upper-bounded, Units in Last Place (ULP) of a floating-point number x is
the distance between two closest straddling floating-point numbers a and b nearest to x. The
IEEE-754 standard requires that the result of an elementary arithmetic operation such as addition,
multiplication, and division is correctly round. A correctly rounded result means that the rounded
result is within 0.5 ULP of the exact result.

An ULP of one means adding a 1 to the decimal value of the number. The table shows the
approximation of pi to nine decimal digits and how the ULP of one changes the approximate value.

10-53

10 Model Design for HDL Code Generation

10-54

Floating-point Value in decimal |IEEE-754 representation for Single uLP
number Types

3.141592741 1078530011 0/10000000/10010010000111111011011 0
3.141592979 1078530012 0/10000000(10010010000111111011100 1

The gap between two consecutively representable floating-point numbers varies according to
magnitude.

Floating-point number |Value in decimal |IEEE-754 representation for Single ULP
Types

1234567 1234613304 0/10010011]00101101011010000111000 0

1234567.125 1234613305 0/10010011]00101101011010000111001 1

Relative Error

Relative error measures the difference between a floating-point number and the approximation of the
real number. Relative error returns the distance from 1.0 to the next larger number. This table shows
how the real value of a number changes with the relative accuracy.

Floating-point Value in IEEE-754 representation for ULP (Relative error

number decimal Single Types

8388608 1258291200 0/10010110| 0 1
00000000000000000000000

8388607 1258291198 0/10010101}| 1 2.3841858e-07
11111111111111111111110

1 1065353216 0|01111111] 0 1.1920929e-07
00000000000000000000000

2 1073741824 0/10000000| 1 2.3841858e-07
00000000000000000000000

The magnitude of the relative error depends on the real value of the floating-point number.

In MATLAB, the eps function measures the relative accuracy of the floating-point number. For more
information, see eps.

See Also

Modeling Guidelines
“Modeling with Native Floating Point” on page 20-61

Functions
createFloatingPointTargetConfig

Properties
FPToleranceStrategy | FPToleranceValue

Related Examples
. “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

Numeric Considerations with Native Floating-Point

More About

. “ULP Considerations of Native Floating-Point Operators” on page 10-56
. “Getting Started with HDL Coder Native Floating-Point Support” on page 10-49
. “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-70

10-55

10 Model Design for HDL Code Generation

ULP Considerations of Native Floating-Point Operators

In this section...
“Adherence of Native Floating Point Operators to IEEE-754 Standard” on page 10-56
“ULP Values of Floating Point Operators” on page 10-56

“Considerations” on page 10-57

The representation of infinitely real numbers with a finite number of bits requires an approximation.
This approximation can result in rounding errors in floating-point computation. To measure the
rounding errors, the floating-point standard uses relative error and ULP (Units in the Last Place)
error. To learn about relative error, see “Relative Accuracy and ULP Considerations” on page 10-53.

If the exponent range is not upper-bounded, Units in Last Place (ULP) of a floating-point number x is
the distance between two closest straddling floating-point numbers a and b nearest to x. The
IEEE-754 standard requires that the result of an elementary arithmetic operation such as addition,
multiplication, and division is correctly round. A correctly rounded result means that the rounded
result is within 0.5 ULP of the exact result.

Adherence of Native Floating Point Operators to IEEE-754 Standard

Native floating point technology in HDL Coder follows IEEE standard of floating-point arithmetic.
Basic arithmetic operations such as addition, subtraction, multiplication, division, and reciprocal are
mandated by IEEE to have zero ULP error. When you perform these operations in native floating-
point mode, the numerical results obtained from the generated HDL code match the original Simulink
model.

Certain advanced math operations such as exponential, logarithm, and trigonometric operators have
machine-specific implementation behaviors because these operators use recurring taylor series and
remez expression based implementations. When you use these operators in native floating-point
mode, there can be relatively small differences in numerical results between the Simulink model and
the generated HDL code.

You can measure the difference in numerical results as a relative error or ULP. A nonzero ULP for
these operators does not mean noncompliance with the IEEE standard. A ULP of one is equivalent to
a relative error of 10™-7. You can ignore such relatively small errors by specifying a custom
tolerance value for the ULP when generating a HDL test bench. For example, you can specify a
custom floating-point tolerance of one ULP to ignore the error when verifying the generated code.
For more information, see FPToleranceStrategy and FPToleranceValue.

ULP Values of Floating Point Operators

The table enumerates the ULP of floating-point operators that have a nonzero ULP. In addition to
these operators, the HDL Reciprocal block has a ULP of five.

10-56

ULP Considerations of Native Floating-Point Operators

Math Functions

Simulink Blocks Units in the Last Place (ULP) error
exp

log
log10
10™u
pow

[N PN BTN N T Y

hypot

Trigonometric Functions

Simulink Blocks Units in the Last Place (ULP) error

sin

CoS

tan

asin

acos

atan

atan2

sinh

cosh
tanh

asinh

acosh

atanh

N WININN R RR,O NN W NN

sincos

Considerations

For certain floating-point input values, some blocks can produce simulation results that vary from the
MATLAB simulation results. To see the difference in results, before you generate code, enable
generation of the validation model. In the Configuration Parameters dialog box, on the HDL Code
Generation pane, select the Generate validation model check box.

* Ifyou perform computations that involve complex numbers and an exception such as Inf or NaN,
the HDL simulation result with native floating point can potentially vary from the Simulink
simulation result. For example, if you multiply a complex input with Inf, the Simulink simulation
result is Infi whereas the HDL simulation result is NaN+Infi.

» If you compute the square root or logarithm of a negative number, the HDL simulation result with
native floating point is 0. This result matches the simulation result when you verify the design
with a SystemVerilog DPI test bench. In Simulink, the result obtained is NaN. According to the
IEEE-754 standard, if you compute the square root or logarithm of a negative number, the result is
that number itself.

10-57

10 Model Design for HDL Code Generation

10-58

» If the input to the Direct Lookup Table (n-D) is of floating-point data type, but the elements of the
table use a smaller data type, the generated HDL code can be potentially incorrect. For example,
the input is of single type and the elements use uint8 type. To obtain accurate HDL simulation
results, use the same data type for the input signal and the elements of the lookup table.

* Ifyou use the Cosine block with the inputs -7.729179E28 or 7.729179E28, the generated HDL
code has a ULP of 4. For all other inputs, the ULP is 2.

* When you use a Math Function block to compute mod(a,b) or rem(a,b), where a is the dividend
and b is the divisor, the simulation result in native floating-point point mode varies from the
MATLAB simulation result in these cases:

" Ifbis integer and % > 232, the simulation result in native floating-point mode is zero. For such

significant difference in magnitude between the numbers a and b, this implementation saves
area on the target FPGA device.

If % is close to 223, the simulation result in native floating-point mode can potentially vary from
the MATLAB simulation results.

See Also

Modeling Guidelines
“Modeling with Native Floating Point” on page 20-61

Functions
createFloatingPointTargetConfig

Properties
FPToleranceStrategy | FPToleranceValue

Related Examples
. “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

More About

. “Numeric Considerations with Native Floating-Point” on page 10-52

. “Getting Started with HDL Coder Native Floating-Point Support” on page 10-49

. “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-70

Latency Values of Floating Point Operators

Latency Values of Floating Point Operators

In this section...

“Math Operations” on page 10-59
“Trigonometric and Exponential Operations” on page 10-60

“Comparisons and Conversions” on page 10-61

HDL Coder native floating-point support can generate HDL code from your floating-point design. HDL
Coder supports several Simulink blocks and math and trigonometric functions in native floating-point
mode. These tables show the default latency values of these floating-point operations. You can
customize these latency values. You can also customize the latency settings for most blocks and
design for trade-offs between latency and Fmax by specifying custom latency values. To learn more,
see “Latency Considerations with Native Floating Point” on page 10-63.

You can see the latency of these floating point operators in MATLAB by entering these commands.

nfpconfig = hdlcoder.createFloatingPointTargetConfig('NativeFloatingPoint');
nfpconfig.IPConfig

Math Operations

This table shows the list of basic math operations that are supported with native floating-point in HDL
Coder and their latency information. The basic math operations include addition, subtraction,
multiplication, and so on. You can use most of these blocks with both single and double data types.
If you do not see an entry of double data type corresponding to a block, it means that the block does
not support double types.

10-59

10 Model Design for HDL Code Generation

Basic Math Operators

Simulink Blocks Data Type Minimum Output Maximum Output
Latency Latency
Add Double 6 11
Single 6 11
Subtract Double 6 11
Single 6 11
Product Double 6 9
Single 6 8
Divide Double 31 61
Single 17 32
Math Function Double 30 60
Single 16 31
Multiply-Add Single 12 19
Rounding Function Single 5 5
Unary Minus Double = =
Single - -
Sign Single - -
Abs Double - -
Single - -

This table shows the math functions that are supported with native floating-point in HDL Coder and
their latency information. You can select the function using the Function setting of the Math
Function block. You can use these blocks with single data types. Double types are unsupported for
the blocks.

Math Functions

Simulink Blocks Minimum Output Latency Maximum Output Latency
HDL Reciprocal 14 21
Rem 15 24
Mod 16 26
Sqrt 16 28
Reciprocal Sqrt 16 30
Hypot 17 33

Trigonometric and Exponential Operations

This table shows the trigonometric operations that are supported with native floating-point in HDL
Coder and their latency information. You can select the function using the Function setting of the

Trigonometric Function block. You can use these blocks with single data types. Double types are
unsupported for the blocks.

10-60

Latency Values of Floating Point Operators

Trigonometric Functions

Simulink Blocks Minimum Output Latency Maximum Output Latency
Sin 27 27
Cos 27 27
Tan 33 33
Sincos 27 27
Asin 17 23
Acos 17 23
Atan 36 36
Atan2 42 42
Sinh 18 30
Cosh 17 27
Tanh 25 43
Asinh 94 94
Acosh 93 93
Atanh 67 67

This table shows the exponential operations that are supported with native floating-point in HDL
Coder and their latency information. You can select the function using the Function setting of the
Math Function block. You can use these blocks with single data types. Double types are
unsupported for the blocks.

Exponent/Logarithm/Power

Simulink Blocks Minimum Output Latency Maximum Output Latency
Exp 16 26
Pow 33 54
Pow10 16 26
Log 20 27
Log10 17 27

Comparisons and Conversions

This table shows operations related to comparing of numbers and data type conversions that are
supported with native floating-point in HDL Coder and their latency information. You can use these
blocks with both single and double data types except for the MinMax block. This block does not
support double data types. For the Data Type Conversion block, you can convert between double
and single data types, and between single and other fixed-point data types.

10-61

10 Model Design for HDL Code Generation

10-62

Comparisons and Conversions

Simulink Blocks Data Type Minimum Output Maximum Output
Latency Latency
Data Type Conversion |Double 3 6
Single 6 6
Relational Operator Double 1 3
Single 1 3
MinMax Single 3 3
See Also

Modeling Guidelines
“Modeling with Native Floating Point” on page 20-61

Functions
createFloatingPointTargetConfig

Properties
FPToleranceStrategy | FPToleranceValue

Related Examples
. “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

More About
. “Getting Started with HDL Coder Native Floating-Point Support” on page 10-49
. “Simulink Blocks Supported with Native Floating-Point” on page 10-80

Latency Considerations with Native Floating Point

Latency Considerations with Native Floating Point

HDL Coder™ native floating-point technology can generate HDL code from your floating-point design.
Native floating-point operators have a latency. When you generate HDL code, the code generator
figures out this latency and adds matching delays to balance parallel paths.

View Latency of a Floating-Point Operator

Open the hdlcoder nfp delay allocation Simulink™ model. The model uses single data
types and computes the square root. The model has a parallel path to illustrate how the code
generator balances delays.

load system('hdlcoder nfp delay allocation')
open_system('hdlcoder nfp delay allocation/DUT")

D

Y

To generate HDL code:

1 Right-click the DUT Subsystem and select HDL Code > Generate HDL for Subsystem.

2 To see the generated model after HDL code generation, at the command line, enter
gm_hdlcoder nfp delay allocation.

single
o Mo D
Sqrt
o 28 D
delayMatch

The NFP Sqrt block is the floating-point operator corresponding to the Sqrt block in your model, and
has a latency of 28. The code generator determines this latency and adds a matching delay of length
28 in the parallel path. To see the latency of the square root operation, double-click the NFP Sqrt
block. The Delay length of the Sqrt pd1 block corresponds to the operator latency.

10-63

10 Model Design for HDL Code Generation

You can customize the latency of your design. Use custom latency settings to design for trade-offs
between latency and throughput. You can then optimize your design implementation on the target
FPGA device for area and speed. Customize the latency by using:

» Latency Strategy setting: Specify whether to map your entire Simulink™ model or individual
blocks in your model to maximum, minimum, or zero latency of the floating-point operator.

* Custom Latency: You can specify a custom latency for certain blocks that you use in your
Simulink™ model. The custom latency setting can take values from zero to the maximum latency
of the floating-point operator.

* Oversampling factor: Increasing the Oversampling factor operates the design at a faster clock
rate and absorbs the clock-rate pipelines with the latency of the floating-point operator.

* Delay blocks in the model: If your Simulink model has a latency, HDL Coder™ can absorb some or
all of the latency with the native floating-point implementation.

Latency Strategy Setting for Model
You can specify the latency strategy setting for an entire model or for individual blocks in your model.
To specify this setting for a model:

1 Inthe hdlcoder nfp delay allocation model, right-click the DUT Subsystem and select
HDL Code > HDL Coder Properties.

2 Onthe HDL Code Generation > Global Settings > Floating Point Target tab, for Library,
select Native Floating Point, and then for Latency Strategy, select MAX, MIN, or ZERO.

Additional settings
General Ports Coding style Coding standards Diagnostics Floating Point Target
Floating Point IP Library:

Library: |Mative Floating Point -

Library Settings:

Latency Strategy: |[MAX | - |
MaX
Handle Denorn
MIMN
ZERO
Algorithm Choice:
Mantissa Multiply Strategy: |Full Multiplier -

To specify this setting from the command line:

* Create a hdlcoder.FloatingPointTargetConfig object for native floating point by using the
hdlcoder.createFloatingPointTargetConfig function.

nfpconfig = hdlcoder.createFloatingPointTargetConfig('NATIVEFLOATINGPOINT");
hdlset param('hdlcoder nfp delay allocation', 'FloatingPointTargetConfiguration', nfpconfig);

10-64

Latency Considerations with Native Floating Point

» Specify the latency strategy by using the LatencyStrategy property of the nfpconfig
object.

nfpconfig.LibrarySettings.LatencyStrategy = 'MAX'

nfpconfig =
FloatingPointTargetConfig with properties:

Library: 'NativeFloatingPoint'
LibrarySettings: [1x1 fpconfig.NFPLatencyDrivenMode]
IPConfig: [1x1 hdlcoder.FloatingPointTargetConfig.IPConfig]

To see the latency information, generate HDL code and then open the generated model. To open the
generated model, enter the command gm_hdlcoder nfp delay allocation.

Custom Latency Strategy for Blocks

For blocks in your Simulink™ model, you can selectively customize the latency strategy. By default,
the blocks inherit the latency strategy setting you specify for the model. For certain blocks, you can
specify a custom latency value that is between zero and the maximum latency of the floating-point
operator.

By specifying a custom latency, you can customize your design for trade-offs between:

* Clock frequency and power consumption: A higher latency value increases the maximum clock
frequency (Fmax) that you can achieve, which increases the dynamic power consumption.

* Oversampling factor and sampling frequency: A combination of higher latency value and higher
oversampling factor increases the Fmax that you can achieve but reduces the sampling frequency.

To learn more about this setting and how to specify the latency strategy for a block, see
LatencyStrategy.

For example, if you have an Add block in the parallel path in your model, you can specify a custom
latency value of 2 for the Add block by entering these commands.

load system('hdlcoder nfp delay allocation custom')

open_system('hdlcoder nfp delay allocation custom')

hdlset param('hdlcoder nfp delay allocation custom/DUT/Add', 'LatencyStrategy', 'Custom')
hdlset param('hdlcoder nfp delay allocation custom/DUT/Add', 'NFPCustomLatency',2)

e P 1 1 .":C]

DuUT

10-65

10 Model Design for HDL Code Generation

10-66

To see the latency information, generate HDL code and then open the generated model. To open the
generated model, enter the command gm _hdlcoder nfp delay allocation custom. In the
generated model, you see that the NFP Add block has a latency of 2.

S
+

Add_pd1

I

Oversampling Factor

When you design the blocks in your Simulink™ model at the data rate, specify an Oversampling
factor greater than one. The Oversampling factor inserts pipeline registers at a faster clock rate,
which improves clock frequency and reduces area usage. To learn more about clock-rate pipelining,
see Clock Rate Pipelining.

To see the effect of Oversampling factor on the model, in the hdlcoder nfp _delay allocation
model:

Add a Delay block with Delay length 1 at the output of the Sqrt block.
Right-click the DUT and select HDL Code > HDL Coder Properties.

On the HDL Code Generation > Global Settings pane, enter a value of 40 for Oversampling
factor.

Model Referencing ~| Clock settings

Simulation Target

» Code Generation Reset type: Asynchronous -

P Coverage Clock input port: clk
¥ HDL Code Generation

- Reset input port: reset
Global Settings
Target and Optimizations Oversampling factor: |40
Test Bench
EDA Tool Scripts v | Additional settings

After HDL code generation, the generated model shows the NFP Sqrt block operating at a clock rate
that is 40 times faster than the Sqrt block in your model. The NFP Sqrt block absorbed the Delay
block in your Simulink™ model. The Delay block now operates at the clock rate. This implementation
saves area by absorbing the additional latency, and improves timing by operating at the faster clock
rate.

Latency Considerations with Native Floating Point

single D1 ~ |single D1
1) » o

. . . Ok .
<ingle D1 single D2 single D1 |Sygep fsingle D1 single D2
400 5 T
z! }—’.n After HDL code i mm

inrepeat Sqrt Dalay1

b® Generation »_2)

Original model Generated model

Delay Absorption in the Model

If your Simulink™ model has a Delay block with sufficient Delay length adjacent to an operator, HDL
Coder™ absorbs the delays as part of the operator latency.

Note: To absorb delays, make sure that you group the delays adjacent to the block.

If the Delay length is equal to the latency of the floating-point operator, HDL Coder™ absorbs the
delays and does not introduce any additional latency.

In the hdlcoder nfp delay allocation model:

Double-click the Delay block at the output of the Sqrt block and change the Delay length to 28.
Generate HDL code for the DUT Subsystem.

After HDL code generation, at the command line, enter
gm_hdlcoder nfp delay allocation to open the generated model.

X .) single NFP
| ~ I I 1 > L e
G S BRI S e Y After HDL code Co st
ll: Sqrt
.
»(2) Generation »(2)
Original model Generated model

In the generated model, you see that the NFP Sqrt block absorbs the Delay block adjacent to the
Sqrt block in your original model. This delay absorption occurs because the operator latency is equal
to the Delay length. The code generator therefore avoids the additional latency in your model.

If the Delay length is less than the operator latency, HDL Coder™ absorbs the available delays and
balances parallel paths by adding matching delays.

In the hdlcoder nfp delay allocation model:

Double-click the Delay block at the output of the Sqrt block and change the Delay length to 21.
Generate HDL code for the DUT Subsystem.

After HDL code generation, at the command line, enter
gm_hdlcoder nfp_delay allocation to open the generated model.

10-67

10 Model Design for HDL Code Generation

single ~ |single single single
D * Vi > 21 » 1) After HDL code (1) » N »(1)
> o
»(2) Generation ol 27 NED

delayMatch

Original model Generated model

You see that the NFP Sqrt block absorbed a Delay of length 21 and added a matching delay of length
7 in the parallel path because the square root operation requires 28 delays.

If the delay length is greater than the operator latency, the code generator absorbs a certain number
of delays equal to the latency and the excess delays appear outside the operator.

In the hdlcoder nfp delay allocation model:

1 Double-click the Delay block at the output of the Sqrt block and change the Delay length to 34.
2 Generate HDL code for the DUT Subsystem.

3 After HDL code generation, at the command-line, enter
gm_hdlcoder nfp delay allocation to open the generated model.

. — . . single | NFP 6
(I)smgle N single o 734 single %@ {1 ; > ot —— @
After HDL code San
Generation
Original model Generated model

The NFP Sqrt block absorbed 28 delays because the square root operation has a latency of 28. The
excess latency of 6 is outside the operator.

See Also

Modeling Guidelines
“Modeling with Native Floating Point” on page 20-61

Functions
createFloatingPointTargetConfig

Properties
FPToleranceStrategy | FPToleranceValue

10-68

Latency Considerations with Native Floating Point

Related Examples
. “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

More About

. “Getting Started with HDL Coder Native Floating-Point Support” on page 10-49
. “Latency Values of Floating Point Operators” on page 10-59
. “Simulink Blocks Supported with Native Floating-Point” on page 10-80

10-69

10 Model Design for HDL Code Generation

Generate Target-Independent HDL Code with Native Floating-

Point

In this section...

“How HDL Coder Generates Target-Independent HDL Code” on page 10-70
“Enable Native Floating Point and Generate Code” on page 10-71

“View Code Generation Report” on page 10-72

“Analyze Results” on page 10-73

“Limitation” on page 10-75

HDL Coder native floating-point technology can generate target-independent HDL code from your
floating-point design. You can synthesize your floating-point design on any generic FPGA or ASIC.
Floating-point designs have better precision, higher dynamic range, and a shorter development cycle
than fixed-point designs. If your design has complex math and trigonometric operations, use native
floating-point technology.

How HDL Coder Generates Target-Independent HDL Code

This figure shows how HDL Coder generates code with the native floating-point technology.

w0 smngle

Product

—cingiems] PTC | iaome] UNPACK —Cs £ i)
S| N S IEEE

_"‘-\\
—singlchh-intSQb- UNPACK —@.E.M;‘a—h- L LD

10-70

= A Vo
F'iﬁmgumm _@E_r'@-p PACK —ints—smgle-l"'

R
XOR
— -] s
N e)
Add Adpust Adjust
— 5| Exponents > Exponent ™ Exponent [- ™
. =
Multiply . |
Blv—e| Magnitudes [MNormalze | Round (= MNormalze Civi—

Generate Target-Independent HDL Code with Native Floating-Point

The Unpack and Pack blocks convert the floating-point types to the sign, exponent, and mantissa. In
the figure, S, E, and M represent the sign, exponent, and mantissa respectively. This interpretation is
based on the IEEE-754 standard of floating-point arithmetic.

The Floating-Point Algorithm Implementation block performs computations on the S, E, and M.
With this conversion, the generated HDL code is target-independent. You can deploy the design on
any generic FPGA or an ASIC.

Enable Native Floating Point and Generate Code
You can generate code in the Configuration Parameters dialog box or at the command line.

To specify the native floating-point settings and generate HDL code in the Configuration Parameters
dialog box:
1 Inthe Apps tab, select HDL Coder. The HDL Code tab appears.

2 Click Settings. In the HDL Code Generation > Floating Point pane, for Library, select
Native Floating Point.

&% Configuration Parameters: sfir_fixed/Configuration (Active) — O pd
Solver Floating Point IP Library:

Data Import/Export
Math and Data Types
» Diagnostics

Library: |Mative Floating Point -

Hardware Implementation S

Model Referencing Latency Strategy: |MAX -
Simulation Target

; Handle Denormals
» Code Generation

> Coverage Algorithm Choice:

¥ HDL Code Generation
Target Mantissa Multiply Strategy: |Auto -
Optimization

Floating Point
Global Settings
Report

Test Bench

EDA Tool Scripts

OK Cancel Help Apply

3 Specify the Latency Strategy to map your design to maximum or minimum latency or no latency.

If you have denormal numbers in your design, select Handle Denormals. Denormal numbers
are numbers that have an exponent field equal to zero and a nonzero mantissa field. See “Handle
Denormals” on page 15-5.

10-71

10 Model Design for HDL Code Generation

5 Ifyour design has multipliers, to specify how you want HDL Coder to implement the
multiplication operation, use the Mantissa Multiplier Strategy. See “Mantissa Multiplier
Strategy” on page 15-6.

6 To share floating-point resources, on the HDL Code Generation > Optimizations > Resource

Sharing tab, make sure that you select Floating-point IPs. The number of blocks that get
shared depends on the SharingFactor that you specify for the subsystem.

7 Click Apply. In the HDL Code tab, click Generate HDL Code.

To generate HDL code at the command line, use the
hdlcoder.createFloatingPointTargetConfig function. You can use this function to create an
hdlcoder.FloatingPointTargetConfig object for the native floating-point library.

nfpconfig = hdlcoder.createFloatingPointTargetConfig('NATIVEFLOATINGPOINT"');
hdlset param('sfir single', 'FloatingPointTargetConfiguration', nfpconfig);

Optionally, you can specify the latency strategy and whether you want HDL Coder to handle denormal
numbers in your design:

Ionl;
"MAX";

nfpconfig.LibrarySettings.HandleDenormals
nfpconfig.LibrarySettings.LatencyStrategy

To learn how you can verify the generated code, see “Verify the Generated Code from Native
Floating-Point” on page 10-76.

View Code Generation Report

To view the code generation reports of floating-point library mapping, before you begin code
generation, enable generation of the Resource Utilization Report and Optimization Report. To enable
the reports, on the HDL Code tab, click Settings > Report Optionsin the Configuration Parameters
dialog box, on the HDL Code Generation pane, enable Generate resource utilization report and
Generate optimization report. See also “Create and Use Code Generation Reports” on page 25-

2.

To see the list of native floating-point operators that HDL Coder supports and the floating-point
operators to which your Simulink blocks mapped to, in the Code Generation Report, select Native
Floating-Point Resource Report.

Native Floating-Point Resource Report for sfir_single

Summary of single precision native floating-point operators

adders 7
multipliers 4

A detailed report shows the various resources that the floating-point blocks use on the target device
that you specify. See also “Create and Use Code Generation Reports” on page 25-2.

10-72

Generate Target-Independent HDL Code with Native Floating-Point

Detailed Report

Module nfp_add_comp

(Latency = "Max")

Multipliers 0
Adders/Subtractors 3
Registers 91
Total 1-Bit Registers 839
RAMs 0
Multiplexers 109
Static Shift operators 0
Dynamic Shift operators 2

To see the native floating-point settings that you applied to the model and whether HDL Coder
successfully generated HDL code, in the Code Generation Report, select Target Code Generation.

Analyze Results

Floating point operators have a latency. If your Simulink model does not have delays, when you
generate HDL code, the code generator figures out the operator latency and delay balances parallel
paths. Consider this Simulink model that has two single inputs and gives a single output.

single single
P

Illlllmngm ! in
ini : . single
4
single out
2

in2

single single
» cos

-

The MATLAB Function block in the Simulink model contains this code.

function y = fcn(u, w)

s#codegen
yl = (u+w) * 20;
y2 = w"16;
y3 = (u-w) / 10;

y =yl +y2-y3;

10-73

10 Model Design for HDL Code Generation

single single single single
NFrI';‘ ol NFP p 71
) ™ sq trig

int

Ini

10-74

D N ﬁ H (7)) Main | State Attributes |

When you generate HDL code, the code generator maps the blocks in your Simulink model to
synthesizable native floating-point operators. To see how the code generator implemented the
floating-point operations, open the generated model. The blocks NFP math, NFP Sqrt, and NFP trig
correspond to the floating-point implementation of the Reciprocal Sqrt, Reciprocal, sin, and cos
blocks respectively in your original model.

3

Reciprocal Sguare Root sin delayMatch

u
single single
j B (1)

- W out
single

single MNEP |single MNEP |single
2 F——>mam MATLAB Function

in2

]

Reciprocal recip Cos

Every floating-point operator has a latency. The code generator inserted an additional matching delay
because the latency of the Reciprocal Sqrt is 30 and latency of Reciprocal is 31. The operator latency
is equal to the Delay length of the Delay block inside that NFP block. For example, if you double-click
the NFP sqrt block, you can get the latency by looking at the Delay length of the Delay block. See

“Latency Values of Floating Point Operators” on page 10-59.

n single L_ single Zm single u

Vi

Reciprocal Square Root_pd1

When you use MATLAB Function blocks with floating-point data types, HDL Coder uses the MATLAB
Datapath architecture. This architecture treats the MATLAB Function block like a regular
Subsystem block. When you generate code, the code generator maps the basic operations such as
addition and multiplication to the corresponding native floating-point operators. Open the MATLAB
Function subsystem to see how the code generator implemented the MATLAB Function block.

Bleck Parameters: Reciprocal Sqrt_pdl @
Delay -
Delay input signal by a specified number of samples.

m

Outi Data

Reciprocal Sqrt Reciprocal Sqrt_pd1
P 9 P art_pd Source Value

Delay length: 17
Initial condition: 0.0

4 | I I

9 [ok || cancel || Help Apply

Generate Target-Independent HDL Code with Native Floating-Point

To learn more about the generated model, see “Generated Model and Validation Model” on page 24-
5.

Limitation

To generate HDL code in native floating-point mode, use discrete sample times. Blocks operating at a
continuous sample time are not supported.

See Also

Modeling Guidelines
“Modeling with Native Floating Point” on page 20-61

Functions
createFloatingPointTargetConfig

Properties
FPToleranceStrategy | FPToleranceValue

Related Examples
. “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

More About

. “Getting Started with HDL Coder Native Floating-Point Support” on page 10-49
. “Simulink Blocks Supported with Native Floating-Point” on page 10-80

10-75

10 Model Design for HDL Code Generation

Verify the Generated Code from Native Floating-Point

10-76

In this section...

“Specify the Tolerance Strategy” on page 10-76
“Verify the Generated Code with HDL Test Bench” on page 10-77
“Verify the Generated Code with Cosimulation” on page 10-77

“Limitation” on page 10-79

HDL Coder native floating-point technology can generate target-independent HDL code from your
floating-point design. You can synthesize your floating-point design on any generic FPGA or ASIC.
Floating-point designs have better precision, higher dynamic range, and a shorter development cycle
than fixed-point designs. If your design has complex math and trigonometric operations, use native
floating-point technology.

When representing infinitely real numbers with a finite number of bits, there can be rounding errors
with the correct rounding range of values that the IEEE-754 standard specifies. To measure the
rounding errors, you can specify the floating-point tolerance check based on relative error or
ulp error. For more information about these rounding errors, see “Relative Accuracy and ULP
Considerations” on page 10-53.

Specify the Tolerance Strategy

Before generating the testbench, specify the floating-point tolerance check for verifying the
generated code.

To specify the tolerance check in the Configuration Parameters dialog box:

1 Inthe Apps tab, select HDL Coder. The HDL Code tab appears.

2 Click Settings. In the HDL Code Generation > Testbench pane, for Floating point tolerance
check based on, specify relative errororulp error.

Test bench data file name postfix: _data
Test bench reference postfix: _ref
Use file I/O to read/write test bench data:

Ignore output data checking (number of samples): 0

Floating point tolerance check based on: lulp error -]

relative error
Tolerance Value:

Simulation library path:

[Generate Test Banch]

Verify the Generated Code from Native Floating-Point

3

Enter the Tolerance Value and click Apply. If you choose relative error, the defaultisa
tolerance value of 1e-07. If you choose ulp error, the default tolerance value is zero. To learn
more, see “Numeric Considerations with Native Floating-Point” on page 10-52.

To specify the tolerance strategy at the command-line, use:

1

Specify the floating point tolerance check setting by using FPToleranceStrategy.

hdlset param('sfir single', 'FPToleranceStrategy', 'Relative'); % check for floating-point t
hdlset param('sfir single', 'FPToleranceStrategy', 'ULP'); % check for floating-point 1
Based on the FPToleranceStrategy setting, enter the tolerance value by using

FPToleranceValue.

hdlset param('FP test 16a', 'FPToleranceValue',6 1e-06);
hdlset param('FP test 16a', 'FPToleranceValue',6 1);

if using relative error, enter a
if using ULP error, enter toleranc

%
%

Verify the Generated Code with HDL Test Bench

To generate an HDL test bench for verifying the generated code:

1

3

In the Configuration Parameters dialog box, on the HDL Code Generation > Test Bench pane,
in the Test Bench Generation Output section, select HDL test bench.

In the Configuration section, make sure that Use file I/O to read/write test bench data is
enabled. To generate a test bench that uses constants instead of file I/O, clear Use file 1/0 to
read/write test bench data.

Click Apply, and then click Generate Test Bench.

To learn more about how HDL test bench generation works, see “Test Bench Generation” on page 6-5.

Verify the Generated Code with Cosimulation

To generate a cosimulation model for verifying the generated code:

1

In the Configuration Parameters dialog box, on the HDL Code Generation > Test Bench pane,
for Cosimulation model for use with, select the cosimulation tool.

Click Apply, and then click Generate Test Bench.

After test bench generation, save the cosimulation model. In the model, double-click the
Compare subsystem.

10-77

10 Model Design for HDL Code Generation

Double click to turn 'OFF' all Assertions

Double click to turn 'on/off' all scopes

@ P cosim
in1 dut

from1 Assert_Out1

4 Ifyou double-click the Assert Out1l block, the block parameters show the ToleranceValue that
you specify.

5 To look inside the Assert Out1l block, click the mask. If you specify the floating-point tolerance
check based on ulp error, the model shows a ULPChecker block.

cosim
dut ref
—+— 4’
err
cosim compare: Out1
L 1 } L]
cosim L »n1
dut ref
C2) o l—b In2 Out1 @
dut ULPChecker AssertEq

The ULPChecker has a MATLAB Function block that shows how HDL Coder accounts for the
ULP error when checking for numerical accuracy.

If you specify the floating-point tolerance check based on relative error, the model shows a
RelErrCheck block.

10-78

Verify the Generated Code from Native Floating-Point

cosim
dut ref
=0 ———p
cosim err
(1) L] compare: Out1
cosim L i1
dut ref
2 . »! 1z Outt P—C]
dut RelErrCheck AssertEq

RelerrCheck has a MATLAB Function block that shows how HDL Coder accounts for the
relative error when checking for numerical accuracy.

6 In the Simulink Editor for the model, start simulation. At the end of cosimulation, check the
compare: 0Outl scope.

The scope compares the difference between the result signal from the cosimulation block and the
reference signal from the DUT.

See also “Generate a Cosimulation Model” on page 27-30.

Limitation

When verifying the generated code, constructs that use IEEE standards prior to VHDL-2008 are not
supported with native floating-point.

See Also

Modeling Guidelines
“Modeling with Native Floating Point” on page 20-61

Functions
createFloatingPointTargetConfig

Properties
FPToleranceStrategy | FPToleranceValue

Related Examples
. “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

More About

. “Getting Started with HDL Coder Native Floating-Point Support” on page 10-49
. “Numeric Considerations with Native Floating-Point” on page 10-52
. “Simulink Blocks Supported with Native Floating-Point” on page 10-80

10-79

10 Model Design for HDL Code Generation

Simulink Blocks Supported with Native Floating-Point

10-80

In this section...

“HDL Floating Point Operations Library” on page 10-80
“Supported Simulink Blocks in Math Operations Library” on page 10-80
“Supported Simulink Blocks in Other Libraries” on page 10-81

“Simulink Block Restrictions” on page 10-82

HDL Coder native floating-point can generate target-independent HDL code from your floating-point
design. You can synthesize your floating-point design on any generic FPGA or ASIC. Floating-point
designs have better precision, higher dynamic range, and a shorter development cycle than fixed-
point designs. If your design has complex math and trigonometric operations, use native floating-
point technology.

HDL Coder supports several Simulink blocks including math and trigonometric blocks with native
floating-point technology.

HDL Floating Point Operations Library

In the HDL Floating Point Operations library, HDL Coder supports all blocks that have single
and double data types in the Native Floating Point mode.

Note Certain blocks such as Discrete-Time Integrator and Discrete PID Controller are supported in
Native Floating Point mode only when they use zero latency strategy. These blocks contain
inherent feedback loops and using a nonvalue for the latency strategy can result in the code
generator being unable to allocate delays. For more information, see “Allocate Sufficient Delays for
Floating-Point Operations” on page 10-36.

Supported Simulink Blocks in Math Operations Library

In the Math Operations library, these blocks are supported:

Block Name Supported with single data |Supported with double
types data types
Abs Yes Yes
Add Yes Yes
Assignment Yes Yes
Bias Yes Yes
Complex to Real-Imag Yes Yes
Divide Yes Yes
Dot Product Yes Yes
Gain Yes Yes
Math Function Yes No
MinMax Yes Yes

Simulink Blocks Supported with Native Floating-Point

Block Name Supported with single data |Supported with double
types data types
Product Yes Yes
Product of Elements Yes Yes
Real-Imag to Complex Yes Yes
Reciprocal Sqrt Yes Yes
Reshape Yes Yes
Sqrt Yes Yes
Subtract Yes Yes
Sum Yes Yes
Sum of Elements Yes Yes
Trigonometric Function Yes No
Unary Minus Yes Yes
Vector Concatenate Yes Yes

Supported Simulink Blocks in Other Libraries

The table shows the list of supported blocks in other HDL Coder block libraries.

Block Library

Supported blocks with single and double data types

Discrete

The supported blocks include Zero Order Hold and the set
of delay blocks including Integer Delay and Tapped Delay.

HDL Operations

All blocks are supported.

HDL RAMs

All blocks are supported.

HDL Subsystems

All blocks are supported.

Logic and Bit Operations

All blocks are supported.

Lookup Tables Table data of Direct Lookup Table (n-D) and n-D Lookup
Table blocks are supported with floating-point data types.
The inputs must not use floating-point types.

Model Verification All blocks are supported.

Model-Wide Utilities All blocks are supported.

Ports & Subsystems

Enable, reset, input, and output ports, model references,
and subsystem blocks are supported.

Signal Attributes All blocks are supported.

Signal Routing All blocks are supported.

Sources The supported blocks include Inport, Constant, and Ground
blocks.

Sinks All blocks are supported.

User-Defined Functions

MATLAB Function blocks are supported.

10-81

10 Model Design for HDL Code Generation

10-82

Simulink Block Restrictions

In native floating-point mode, the code generator does not support these blocks or block
architectures:

Biquad Filter.

Switch block with input to the control port as a floating-point type.
Sum of Elements with complex input types.

MATLAB System blocks.

Dot Product in complex mode with Architecture as Tree or Linear.
Discrete FIR Filter with Architecture other than Fully Parallel.
Dead Zone and Dead Zone Dynamic.

Polar to Cartesian.

For the Data Type Conversion block:

* Stored Integer (SI) mode for Input and output to have equal setting is not supported.
* The Saturate on integer overflow check box must be left cleared.

See Also

Modeling Guidelines
“Modeling with Native Floating Point” on page 20-61

Functions
createFloatingPointTargetConfig

Properties
FPToleranceStrategy | FPToleranceValue

Related Examples

“Single Precision Floating Point Support: Field-Oriented Control Algorithm”

More About

“Getting Started with HDL Coder Native Floating-Point Support” on page 10-49
“Numeric Considerations with Native Floating-Point” on page 10-52
“Generate Target-Independent HDL Code with Native Floating-Point” on page 10-70

Supported Data Types and Scope

Supported Data Types and Scope

In this section...

“Supported Data Types” on page 10-83
“Unsupported Data Types” on page 10-84

“Scope for Variables” on page 10-84

Supported Data Types

HDL Coder supports the following subset of MATLAB data types.

Types Supported Data Types Restrictions
Integer e uint8, uintl6, uint32, In Simulink, MATLAB Function block ports
uint64 must use numeric types sfix64 or ufix64
« int8, int16, int32, inte4 |for 64-bit data.
Real * double HDL code generated with double or
.+ single single data types can be used for
simulation, but is not synthesizable.

When you have floating-point data types, to

generate synthesizable HDL code, use:

* HDL Coder native floating-point when
you want to deploy the generated code
on any generic ASIC or FPGA. To learn
more, see “Getting Started with HDL
Coder Native Floating-Point Support” on
page 10-49.

* FPGA floating-point target libraries
when you want to map the Simulink
model to an Intel or Xilinx FPGA. To
learn more, see “Generate HDL Code
for FPGA Floating-Point Target
Libraries” on page 31-11.

Character char
Logical logical
Fixed point * Scaled (binary point only) fixed- |Fixed-point numbers with slope (not equal
point numbers to 1.0) and bias (not equal to 0.0) are not
+ Custom integers (zero binary supported.
ote) Maximum word size for fixed-point
numbers is 128 bits.
Vectors e unordered {N} The maximum number of vector elements
« row {1, N} allowed is 2°32.
¢ column {N, 1} Before a variable is subscripted, it must be
fully defined.

10-83

10 Model Design for HDL Code Generation

10-84

Types Supported Data Types

Restrictions

Matrices {N, M}

Matrices are supported in the body of the
design algorithm, but are not supported as
inputs to the top-level design function.

Do not use matrices in the testbench.

Structures struct

Arrays of structures are not supported.

For the FPGA Turnkey and IP Core
Generation workflows, structures are
supported in the body of the design
algorithm, but are not supported as inputs
to the top-level design function.

Enumerations enumeration

Enumeration values must be monotonically
increasing.

If your target language is Verilog, all
enumeration member names must be
unique within the design.

Enumerations at the top-level DUT ports
are not supported with the following
workflows or verification methods:

* IP Core Generation workflow

* FPGA Turnkey workflow

* FPGA-in-the-Loop

e HDL Cosimulation

Unsupported Data Types

The following data types are not supported:

* Cell array
+ Inf

Scope for Variables

Global variables are not supported for HDL code generation.

Import Verilog Code and Generate Simulink Model

Import Verilog Code and Generate Simulink Model

In this section...

“HDL Import” on page 10-85

“HDL Import Requirements” on page 10-85
“How to Import HDL Code” on page 10-85
“Model Location” on page 10-86

“Errors and Warnings” on page 10-86

“Limitations of Verilog HDL Import” on page 10-86

Use HDL import to import synthesizable HDL code into the Simulink modeling environment. HDL
import parses the input HDL file and generates a Simulink model. The model is a block diagram
environment that visually represents the HDL code in terms of functionality and behavior. By
importing the HDL code into Simulink, you can verify the functionality of the HDL code by compiling
and running simulation on the model in a model-based simulation environment. You can also debug
internal signals by logging the signals as test points.

HDL Import

Round-trip code generation with HDL import is not recommended. Do not use HDL import to import
the HDL code that was previously generated from a Simulink model by using the HDL Coder
software. The Simulink model that you create is typically at a higher abstraction level. The model
generated by HDL import might be at a lower abstraction level. The HDL code you generate from this
model might not be usable for production code.

To generate production HDL code, develop your algorithm by using Simulink blocks, MATLAB code,
or Stateflow charts. Then, use HDL Coder to generate code.

HDL Import Requirements

To generate a Simulink model, make sure that the HDL file you import:

* Is free of syntax errors.
» Is synthesizable.
» Uses supported Verilog constructs for the import.

How to Import HDL Code

To import the HDL code, at the MATLAB Command Window, run the importhdl function. For
example, to import a Verilog file example.v, at the command line, enter:

importhdl('example.v"')

The function parses the HDL input file that you specified and generates the corresponding Simulink
model, and provides a link to open the model.

The constructs that you use in the HDL code can infer simple Simulink blocks such as Add and
Product to RAM blocks such as Dual Rate Dual Port RAM. For examples that illustrate various
Simulink models that are inferred, see importhdl.

10-85

10 Model Design for HDL Code Generation

Model Location

The generated Simulink model is named after the top module in the input HDL file that you specify.
The model is saved in the hdlimport/TopModule path relative to the current working folder. For
example, if you input a file named bitselectlhs.v to the importhdl function that has bitselect
as the top module name, the generated Simulink model has the name bitselect.slx, and is saved

in the hdlimport/bitselect path relative to the current folder.

Mame
= hdlimport
= bitselect
[*&| bitselect.sh
| bitselectlhsw

Errors and Warnings

When you run the importhdl function, HDL import verifies the syntax and semantics of the input
HDL code. Semantic verification checks for module instantiation constructs, unused ports in the
module definition, the sensitivity list of an always block, and so on. If HDL import fails, importhdl

provides an error message and a link to the file name and line number.
For example, consider this Verilog code for a bitselect module:
module kitselect(a,c):

input [1:0] a;
output [1:0] c;

c[0] = O;
assign c[l] = a[2]:

endmodule

When you run the importhdl function, HDL import generates an error message:

Parser Error: bitselectlhs.v:6:2: error: Syntax Error near '['..

The error message indicates that there is a syntax error in line 6. To fix this error, change the syntax

to an assignment statement.

assign c[0] = 0;

Limitations of Verilog HDL Import

HDL import does not support:

10-86

Import Verilog Code and Generate Simulink Model

Importing of VHDL files.
Importing of Verilog files from a read-only folder.

Generation of the preprocessing files in a read-only file system that parse the HDL code you input
to the importhd1l function.

Attribute instances and comments, which are ignored.
(#)delay values, such as #25, which are ignored.
Enumeration data types.

More than one clock signal.

Modules that are multirate.

Recursive module instantiation.

Multiport Switch inference with more than 1024 inputs. If you specify more than 1024 inputs to a
Multiport Switch block that gets inferred from the Verilog code, Verilog import generates an error.
The error is generated because the Simulink modeling environment does not support more than
1024 inputs for the block.

ROM detection from the Verilog code.

Importing of HDL files that use unsupported Verilog constructs. See “Supported Verilog
Constructs for HDL Import” on page 10-88.

Importing of HDL files that use unsupported dataflow modeling patterns. See “Unsupported
Verilog Dataflow Patterns” on page 10-95.

See Also

Functions
checkhdl | makehdl

Related Examples

“Generate Simulink® Model From CORDIC Atan2 Verilog® Code”

More About

“Supported Verilog Constructs for HDL Import” on page 10-88
“Verilog Dataflow Modeling with HDL Import” on page 10-93

10-87

10 Model Design for HDL Code Generation

Supported Verilog Constructs for HDL Import

10-88

In this section...

“Module Definition and Instantiations” on page 10-88
“Data Types and Vectors” on page 10-89

“Identifiers and Comments” on page 10-89
“Assignments” on page 10-90

“Operators” on page 10-90

“Conditional and Looping Statements” on page 10-91
“Procedural Blocks and Events” on page 10-91

“Other Constructs” on page 10-91

Use HDL import to import synthesizable HDL code into the Simulink modeling environment. To
import the HDL code, use the importhdl function. Make sure that the constructs used in the HDL
code are supported by HDL import.

These tables list the supported Verilog constructs that you can use when you import your HDL code.
If you use an unsupported construct, HDL import generates an error when parsing the input HDL file.
Verilog HDL import can sometimes ignore the presence of certain constructs in the HDL code. To
learn more, see the Comments section of the table.

Module Definition and Instantiations

Verilog Constructs Supported? Comments

Library declaration No -

Configuration No -

declaration

Module declaration Yes Multiple sample rates and multiple clock inputs are

not supported.

Module parameter port |Yes -

list

Port declarations Yes INOUT ports are not supported.

Module without ports No -

Local parameter Yes -

declaration

Parameter declaration Yes You can use parameters and constants that have a

maximum size of 64 bits. By default, the parameter

size is 32 bits.

Supported Verilog Constructs for HDL Import

Verilog Constructs

Supported?

Comments

Module instantiation

Yes

e Unconnected ports in the instantiated modules
are removed when importing the Verilog code.

* Recursive module instantiation is not supported.

Instead, if your top module instantiates modules
that are defined in recursive subfolders,
importhdl parses all Verilog files. For example,
in this figure, importhdl can parse both

DFF Instantiation.v and
TFF_Instantiation.v that are instantiated in
DFF.v.

Data Types and Vectors

Verilog Constructs Supported? Comments
Net declaration (Wire, Yes -

Supply0, Supply1)

Real declaration No -

String declaration No -

Vector declaration Yes -

Array support and array |Yes -

indexing

Reg declaration Yes -

Integer declaration Yes -
Identifiers and Comments

Verilog Constructs Supported? Comments
Lexical tokens Yes -
(Whitespace, operator,

comment)

Identifiers (Simple, Yes -

Escaped)

System Functions Yes -

($signed, $unsigned)

10-89

10 Model Design for HDL Code Generation

Verilog Constructs Supported? Comments

Attribute instances No HDL import ignores these constructs.
Comments No HDL import ignores these constructs.
Numbers (Decimal, Yes -

Binary, Hexadecimal, and

Octal)

Compiler directives Yes -

(" define, undef, "ifndef,

“else if)

Assignments

Verilog Constructs Supported? Comments

Continuous assignment |Yes =

Blocking assignment Yes --

Nonblocking assignment |Yes -

Procedural assignment |Yes -

(Always block)

Operators

Verilog Constructs Supported? Comments

Arithmetic operators (+, |Yes
5 KR, <<<, >>>)

Logical operators (<<, |Yes

>>, 1, &&, ||, ==,1=)
Relational operators (>, |Yes -
<, >=, <=’ ==, !:)

Bitwise operators (~, &, |Yes

AN /\~)
’ ’ ’

Unary operators (+, -) Yes

Supported for restricted data types

Power operators Yes

Supported for restricted data types

Conditional operators Yes

(?:)

Concatenation Yes -
Bit Select Yes -
Reduction operators (&, |Yes -
~&, |, ~|, ~, ~7, or °~)

For an example that illustrates how to use different operators, see “Generate Simulink Model from

Verilog Code for Various Operators”.

10-90

Supported Verilog Constructs for HDL Import

Conditional and Looping Statements

Verilog Constructs Supported? Comments

If-else statement Yes -

Conditional operators (?:) Yes -

For loop Yes -

Loop Generate construct Yes Supports loop generate

constructs such as for-generate,
case-generate, and if-generate

constructs.
Conditional Generate construct |No -
Generate region No -
Genvar declaration No -
Case statement Yes casex and casez statements are

also supported.

Procedural Blocks and Events

Verilog Constructs Supported? Comments

Task declaration No -

Initial construct (ROM No -

modeling)

Sequential blocks Yes -

Block declarations Yes -

Event control statements Yes -

Function calls Yes HDL import does not support
recursive function calls.

Task enable No -

Always construct Yes -

Function declaration Yes -

Other Constructs

Verilog Constructs Supported? Comments
Gate instantiation No -
Specparams No -
Specify block No -

Semantic verification (unused |Yes -
ports, correct module
instantiation)

10-91

10 Model Design for HDL Code Generation

10-92

Verilog Constructs Supported? Comments

Clock bundle identification Yes Multiple sample rates and
multiple clock signals are not
supported.

Register inference Yes -

Compare to Constant block Yes -

inference

Gain block inference Yes -

RAM inference Yes -

ROM inference No -

Counter inference No -

Drive strength No -

See Also

Functions
checkhdl | makehdl

Related Examples

. “Generate Simulink® Model From CORDIC Atan2 Verilog® Code”

More About

. “Import Verilog Code and Generate Simulink Model” on page 10-85

. “Verilog Dataflow Modeling with HDL Import” on page 10-93

Verilog Dataflow Modeling with HDL Import

Verilog Dataflow Modeling with HDL Import

In this section...

“Supported Verilog Dataflow Patterns” on page 10-93
“Unsupported Verilog Dataflow Patterns” on page 10-95

Use HDL import to import synthesizable HDL code into the Simulink modeling environment. To
import the HDL code, use the importhdl function. Make sure that the constructs used in the HDL
code are supported by HDL import.

These tables list the supported VerilogHDL dataflow patterns that you can use when importing the
HDL code. If your code uses an unsupported dataflow model such as code that infers a latch,
importhdl generates an error message with a link to the file name and line number. You can then
update the code as illustrated in the preceding examples.

Supported Verilog Dataflow Patterns

Verilog Dataflow Model Example Verilog Code

Blocking assignments in sequential For example, this Verilog code uses a sequential
always blocks and nonblocking assignment for the variable temp in a combinational
assignments in combinational always always block.

blocks.

module dataconv(clk,a,b,c);

input clk; integer i;
input wire [7:0] a, b;
output wire [7:0] c;

reg [1:0] temp [0:7];

always @(*) begin
for (i=0;i<=7;i=i+1) begin
temp[i] <= a[i] + b[il];
end
end

assign c = temp;

endmodule

10-93

10 Model Design for HDL Code Generation

10-94

Verilog Dataflow Model

Example Verilog Code

Multiple assignments to the same signal.
You can use partial and complete
assignments to that signal.

This example shows the Verilog code that performs both
partial assignment and complete assignment to the
variable outl reg.

module testPartialAndCompleteAssign
(input [2:0] inl, in2,
input cond, clk,
output [2:0] outl);

reg [2:0] outl reg;

always@(posedge clk) begin
if(cond) begin

outl reg[0] = 1'bO;
outl reg[l] = 1'bO;
outl reg[2] = 1'bO;

end
else begin
out reg = inl & in2;
end
end
assign outl = outl reg;

endmodule

Multiple assignments to the same
variable in the true or false path of a
Switch block that gets inferred.

For example, this Verilog code performs multiple
assignments to the variable out1l inside both the if and
else conditions of the always block.

module testSwitchMuxing
(input [2:0] inl,
input cond,
output reg [2:0] outl);

always@(*) begin
if (cond) begin
outl = inl;
end
else begin

endmodule

Verilog Dataflow Modeling with HDL Import

Verilog Dataflow Model

Example Verilog Code

Bit select, part select, and array
indexing operations with signals. A
Multiport Switch is inferred when array
indexing is performed at the RHS. An
array indexing operation on the LHS is
inferred as an Assign block.

For example, this Verilog code uses multiple assignments
to the variable out1l in the false branch, which is not
supported.

module ArrayIndexing
(Inl, In2, In3, In4,
Sell, Sel2,
Outl, Out2, OQut3);

parameter w = 7;

input [w:0] Inl, In2, In3, In4;
input [1:0] Sell, Sel2;

output [w:0] Outl;

output [1:0] Out2;

output Qut3;

wire [w:0] v[3:0];

assign v[0] = Inl;
assign v[1] = In2;
assign v[2] = In3;
assign v[3] = In4;

//Array indexing with signal Sell
assign Outl = v[Sell];

//Part select on array index with signal Sel2
assign Out2 = v[Sel2][7:2];

//Bit select on array index with signal Sel
assign Out3 = v[Sel2][4];

endmodule

Unsupported Verilog Dataflow Patterns

These dataflow constructs are unsupported when you import the Verilog code. The Description and
Example Scenarios column describes each scenario with an example and illustrates how you can

avoid this scenario.

10-95

10 Model Design for HDL Code Generation

10-96

Verilog Dataflow Model

Description and Example Scenarios

Latch detection from the Verilog code.

Presence of latches in the HDL code can result in
algebraic loops in the generated Simulink model and result
in model compilation failures. To avoid latch inference,
specify all branches in if-else conditions and in case
statements.

For example, when you import this Verilog code, the if-
condition is inferred as a Switch block. The block has a
true path that is specified in the code. The output of the
Switch block is fed back directly as input to the false path
which results in an algebraic loop.

module testAlgebraiclLoop(input cond,
input [2:0] inl,
output reg [2:0] outl);

// causes latch inference - unsupported
always@(*) begin
if (cond) begin
outl = inl;
end
end

// Specify else branch to avoid latch inference
// always@(*) begin

// if (cond) begin

// outl = inl;

// end

// else begin

// outl = inl + 1;
// end

// end

endmodule

Verilog Dataflow Modeling with HDL Import

Verilog Dataflow Model Description and Example Scenarios

Performing operations on clock, reset, |When you define signals using names such as clk, rst,
or clock enable signals in the Verilog and enb, HDL import infers these signals to be the clock,
code. global reset, and clock enable signals.

For example, this Verilog code uses an explicit assignment
with the clock signal clk. This construct is not supported.

module testOperationOnClkBundle
(input [2:0] inl,
input clk,
output reg [2:0] outl,
output out2);

reg [2:0] outl reg;

always@(posedge clk) begin
outl reg <= inl;
end

assign out2 = clk && 1'b1;

endmodule

Make sure that your Verilog code does not perform
operations on any of the signals in the clock bundle. In
addition, for signals that you use for performing
computations in your code, make sure that the signal
names do not match any of the names that are inferred as
clock, reset, or enable signals. See the clockBundle
name-value pair of the importhdl function for possible
signal names that are inferred as signals in the clock
bundle.

10-97

10 Model Design for HDL Code Generation

10-98

Verilog Dataflow Model

Description and Example Scenarios

Sensitivity of clock or reset signal to
different clock edges or different reset
edges inside the same module.

You cannot have one always block with the clock signal
sensitive to the positive edge and the other always block
with the clock signal sensitive to the negative edge inside
the same module.

For example, this Verilog code uses the positive and
negative edges of the same clock, which is not supported.

module testMultipleClockEdges
(input [2:0] inl, in2,
input clk,
output [2:0] outl, out2);

reg [2:0] outl reg, out2 reg;

/* clk sensitivity to posedge */
always@(posedge clk) begin

outl reg <= inl && in2;

end

/* clk sensitivity to neegedge */
always@(negedge clk) begin

out2 reg <= inl || in2;
end
assign outl = outl reg;
assign out2 = out2 reg;

endmodule

Make sure that your Verilog code does not use both edges
of the clock or reset signal in the same module. Use either

posedge or negedge of the clock.

Verilog Dataflow Modeling with HDL Import

Verilog Dataflow Model

Description and Example Scenarios

Realization of synchronous and
asynchronous circuits inside the same
module.

You cannot use Verilog code realizes both circuits in the
same module as shown in the code below. Use different
modules for realization of asynchronous and synchronous
circuits.

module testSynchronousAsynchronous
(input [2:0] inl, in2,
input clk, reset,
output [2:0] outl, out2);

reg [2:0] outl reg, out2 reg;

/* synchronous always block */
always@(posedge clk) begin
outl reg <= inl && in2;
end

/* asynchronous always block */
always@(posedge clk or posedge reset)

begin
out2 reg <= inl || in2;
end
assign outl = outl reg;
assign out2 = out2 reg;

endmodule

10-99

10 Model Design for HDL Code Generation

10-100

Verilog Dataflow Model

Description and Example Scenarios

Initialization of multiple RAMs that are
inferred in the same module.

For example, this Verilog code infers sample store® and
sample storel as RAMs. This construct is not
supported. Separate each RAM inference into a single
module.

module testMultipleRAMs
(input [2:0] inl, in2,
input clk, reset,
output reg [2:0] read data®, read datal);

reg [2:0] outl reg, out2 reg;

/* Inference of RAM sample store@® */
always@(posedge clk) begin
if (write enable) begin
sample store@[write address] <= write data;
end
read data® = sample storeO[read address0]
end

/* Inference of RAM sample storel */
always@(posedge clk) begin
if (write enable) begin
sample storel[write address] <= write data;
end
read datal = sample storeO[read addressl]
end

endmodule

Verilog Dataflow Modeling with HDL Import

Verilog Dataflow Model

Description and Example Scenarios

Usage of certain constructs when
reading initial values from an initial
block.

An initial block does not support constructs other than
assignment statements or for loops with assignments. The
RHS of the assignment statement must use only

For example, this Verilog code uses an if-else condition to
assign a value to the variable dout a and assigns a
variable write data to dout c, which are not supported.

module testInitial
(input cond,
input [3:0] write data
output reg [3:0] dout a, dout b, doutc);

parameter AddrWidth = 3;

integer i;
reg [3:0] ram [7:0];

initial begin

endmodule

for (i=0; i<=2**AddrWidth - 1; i=i+1) begin

ram[i] = 0O;
end
dout b = 0;

// if-else condition - not supported
if (cond) begin

dout a = 0;
end
else begin
dout a = 4;
end
end

// Variable assignment to RHS - not suppq
dout a = write data;

// Use assignment statements instead for
// dout_a and dout c

// dout _a = 4;
// dout c = 32;
// end

// end

10-101

rted

10 Model Design for HDL Code Generation

Verilog Dataflow Model Description and Example Scenarios

All dimensions of signals not referenced |Use all dimensions of a signal in the input Verilog code. If

at time of usage. you specify an additional dimension, it creates an indexed
bit select.

For example, this Verilog code creates an 8-bit variable
temp. The assignment inside the always block generates
an error because it does not use both dimensions of the
variable.

module dataconv(clk,a,b,c);

input clk;
input wire [1:0] a, b;
output wire [1:0] c;

reg [7:0] temp reg [1:0][1:0];

// temp reg is not indexed
// with both dimensions - not supported
always @(posedge clk) begin
temp reg [0] <= a[0] + b[O];
temp reg [1] <= a[l] + b[1];
end

// Use both dimensions when indexing a variable
// always @(posedge clk) begin

// temp reg [0][0] <= a[0@] + b[O];
// temp_reg [0][1] <= a[@] + b[1];
// temp reg [1][0] <= a[l] + b[O];
// temp reg [1][1] <= a[l] + b[1];
// You can also perform indexed bit select
// temp_reg [1][0][1] = 1'DbO;

// end

assign c = temp reg;

endmodule

See Also

Functions
checkhdl | makehdl

Related Examples
. “Generate Simulink® Model From CORDIC Atan2 Verilog® Code”

10-102

Verilog Dataflow Modeling with HDL Import

More About

. “Import Verilog Code and Generate Simulink Model” on page 10-85
. “Supported Verilog Constructs for HDL Import” on page 10-88

10-103

10 Model Design for HDL Code Generation

Simulate and Generate HDL Code for the Float Typecast Block

This example shows how you can use the Float Typecast block to extract the sign, exponent, and
mantissa bits from a floating-point input, and then convert the bits back to a floating-point output
after performing any computations.

Open the hdlcoder float typecast example model.

open_system('hdlcoder float typecast example')

.D

¥

D

HOL_CUT

Copyright 2020 The MathWorks, Inc.

The model multiplies the floating-point input by two to produce the floating-point output. To multiply

the input, the algorithm increments the exponent by one. Open the HDL DUT subsystem.

open_system('hdlcoder float typecast example/HDL DUT")

— uini3;

Extract sign, exponent and mantissa from |IEEE-754 Single-Precision value

o

) p cingie

Float Typecast

Medify exponent, concatenate components, and typecast bits back to single data type

|I_I

v

Slice
(31 downto 31)|

Extract Sign

|

L]

Sign

sgn I
axponent + 1 - ol . -
nghe — w32

Adding 1to
exponent multiplies
ariginal value by 2.

- Concat | cinghe — uin
maniiss,

Float Typecast1

L}

Slice
(30 downto 23)|
S St El

Exponent

+

Exponent + 1

Slice
(22 downto 0)

Extract Mantiz=a

=

Mantissa

10-104

D

Simulate and Generate HDL Code for the Float Typecast Block

The model is already configured for HDL compatibility by using the hdlsetup function. Simulate the

model.

sim('hdlcoder float typecast example')
open_system('hdlcoder float typecast example')

Y
I

¥
¥

HOL_DUT

Copyright 2020 The Math\Works, Inc.

Before you generate HDL code, enable the Native Floating Point mode.

nfpconfig = hdlcoder.createFloatingPointTargetConfig('NATIVEFLOATINGPOINT"');
hdlset param('hdlcoder float typecast example',
'"FloatingPointTargetConfiguration', nfpconfig);

Generate HDL code for the HDL DUT subsystem.

makehdl('hdlcoder float typecast example')

10-105

Code Generation Options in the HDL
Coder Dialog Boxes

11 cCode Generation Options in the HDL Coder Dialog Boxes

Set HDL Code Generation Options

In this section...

“HDL Code Generation Options in the Configuration Parameters Dialog Box” on page 11-2
“HDL Code Tab in Simulink Toolstrip” on page 11-3

“HDL Code Options in the Block Context Menu” on page 11-4

“The HDL Block Properties Dialog Box” on page 11-5

HDL Code Generation Options in the Configuration Parameters Dialog
Box

The following figure shows the top-level HDL Code Generation pane in the Configuration
Parameters dialog box. To open this dialog box, in the Apps gallery, click HDL Coder. The HDL Code
tab appears. In the Prepare section, click Settings.

&% Configuration Parameters: sfir_fixed/Configuration (Active) — O >
Solver Set Basic Options

Data Import/Export
Math and Data Types
* Diagnostics Language: WHDL | -
Hardware Implementation
Model Referencing
Simulation Target

¢ Code Generation
* Coverage Generate HDL code

¥ HDL Code Generation [| Generate validation model
Target
Optimization Restore Model Defaults Run Compatibility Checker
Floating Point
Global Settings
Report
Test Bench
EDA Tocl Scripts

Generate HOL for: |sfir_fixed/symmetric_fir | -

Folder: hdlsrc Browse...

Code generation output

Generate

OK Cancel Help Apply

11-2

Set HDL Code Generation Options

Note When the HDL Code Generation pane of the Configuration Parameters dialog box appears,
clicking the Help button displays general help for the Configuration Parameters dialog box.

HDL Code Tab in Simulink Toolstrip

The Simulink Toolstrip contains contextual tabs that appear only when you need to access them. To
access the HDL Code tab, open the HDL Coder app from the Apps tab on the Simulink Toolstrip.

SIMULATION DEBUG MODELING FORMAT APPS HDLCODE x i
L2 X3
= _ (1]
(EE &) @ Code for 2= lavigate io Code LI “’g
Wiorkflow HDL Block HDL Code Seftings | OneD_DCTS { Generate @ Open Report Generaie Share
Advisor Properties = Advisor - HDL Code Testbench -
ASEISTANCE | MODELING PREPARE GENERATE CODE REVIEW RESULTS VERIFY SHARE e

The HDL Code tab provides shortcuts to the HDL code generation options. You can also use this tab
to initiate code generation.

Options include:

Workflow Advisor: Open the HDL Workflow Advisor.

HDL Block Properties: Open the HDL-compatible block library in the Simulink Library Browser
or open the HDL Block Properties dialog box for a block that you select in your model.

Note After you open the HDL-compatible block library, to restore the Library Browser to the

default view, in the Library Browser, click the 2 button.
HDL Code Advisor: Open the HDL Code Advisor for the model or the selected Subsystem.
Settings: Open the HDL Code Generation pane in the Configuration Parameters dialog box.

* Report Options: Open the HDL Code Generation > Report pane.

* Remove HDL Configuration from Model: The HDL configuration component is internal data
that HDL Coder creates and attaches to a model. This component lets you view the HDL Code
Generation pane in the Configurations Parameters dialog box, and use the HDL Code
Generation pane to set HDL code generation options. To remove the HDL Code Generation
configuration component to or from a model, select this option. For more information, see “Add
or Remove the HDL Configuration Component” on page 25-25.

Code for: Select the top-level Subsystem or model for which you want to generate HDL code. This
option corresponds to the Generate HDL for option in the HDL Code Generation pane of the
Configuration Parameters dialog box.

Generate HDL Code: Initiate HDL code generation; equivalent to the Generate HDL Code
check box in the HDL Code Generation > Global Settings > Advanced tab of the
Configuration Parameters dialog box.

Navigate to Code: Select a block in your model and navigate to the HDL code generated for that
block. To use this setting, you must have generated a traceability report.

Open Report: Opens the Code Generation Report if this report exists on the path. Otherwise, this
button opens the HDL Check Report.

Generate Test Bench: Initiate test bench code generation; equivalent to the Generate Test
Bench button in the Configuration Parameters dialog box. To use this button, you If you do not

11-3

11 cCode Generation Options in the HDL Coder Dialog Boxes

select a subsystem in the Generate HDL for menu, the Generate Test Bench menu option is not
available.

If you have HDL Verifier™ installed, you can generate a HDL cosimulation model or a
SystemVerilog DPI component.

* Share: Generate a protected model that you can share with a third party without revealing the
intellectual property of the model.

HDL Code Options in the Block Context Menu

When you right-click a block that HDL Coder supports, the context menu for the block includes an
HDL Code submenu. The code generator enables items in the submenu according to:

* The block type: for subsystems, the menu enables some options that are specific to subsystems.
* Whether or not code and traceability information has been generated for the block or subsystem.

Note You can also access the options in the context menu from the HDL Code tab in the Simulink
Toolstrip. To access this tab, open the HDL Coder app from the Apps tab.

The following summary describes the HDL Code submenu options.

Option Description Availability

Check Subsystem Runs the HDL compatibility checker |Available only for subsystems.
Compatibility (checkhdl) on the subsystem.

Generate HDL for Runs the HDL code generator Available only for subsystems.
Subsystem (makehdl) and generates code for

the subsystem.

HDL Coder Properties |Opens the Configuration Parameters |Available for blocks or subsystems.
dialog box, with the top-level HDL
Code Generation pane selected.

HDL Block Properties |Opens a block properties dialog box |Available for blocks or subsystems.
for the block or subsystem. See “Set
and View HDL Model and Block
Parameters” on page 21-51 for
more information.

HDL Workflow Advisor |Opens the HDL Workflow Advisor |Available only for subsystems.
for the subsystem.

Navigate to Code Activates the HTML code generation |[Enabled when both code and a
report window, displaying the traceability report have been
beginning of the code generated for |generated for the block or

the selected block or subsystem. For |subsystem.

more information, see “Navigate
Between Simulink Model and HDL
Code by Using Traceability” on page
25-4,

11-4

Set HDL Code Generation Options

The HDL Block Properties Dialog Box

HDL Coder provides selectable alternate block implementations for many block types. Each
implementation is optimized for different characteristics, such as speed or chip area. The HDL
Properties dialog box lets you choose the implementation for a selected block.

Most block implementations support a number of implementation parameters that let you control
further details of code generation for the block. The HDL Properties dialog box lets you set
implementation parameters for a block.

The following figure shows the HDL Properties dialog box for a block.

HDL Properties: Add9 %

General Mative Floating Point

Implementation

Architecture Linear A

Implementation Parameters

ConstrainedOutputFipeline | 0 |

InputPipeline 0 |

OutputPipeline | 0 |

Cancel Help Apply

There are a number of ways to specify implementations and implementation parameters for individual
blocks or groups of blocks. See “Set and View HDL Model and Block Parameters” on page 21-51.

11-5

HDL Code Generation Pane: General

* “HDL Code Generation Top-Level Pane Overview” on page 12-2
* “Target” on page 12-3

12 HDL Code Generation Pane: General

HDL Code Generation Top-Level Pane Overview

12-2

The top-level HDL Code Generation pane contains buttons that initiate code generation and
compatibility checking, and sets code generation parameters.

Buttons in the HDL Code Generation Top-Level Pane

The buttons in the HDL Code Generation pane perform functions related to code generation. These
buttons are:

Generate: Initiates code generation for the system selected in the Generate HDL for menu. See
also makehdl.

Run Compatibility Checker: Invokes the compatibility checker to examine the system selected in
the Generate HDL for menu for compatibility problems. See also checkhdl.

Browse: Lets you navigate to and select the target folder to which generated code and script files are
written. The path to the target folder is entered into the Folder field.

Restore Model Defaults: Sets model parameters to their default values.

Target

Target

In this section...

“Generate HDL for” on page 12-3
“Language” on page 12-3

“Folder” on page 12-4

“Restore Model Defaults” on page 12-5
“Run Compatibility Checker” on page 12-5

“Generate” on page 12-5

This section contains parameters in the HDL Code Generation pane of the Configuration
Parameters dialog box. By using these parameters, you can specify the Subsystem that you want to
generate HDL code for, the target HDL language, and the target folder into which code is generated.

Generate HDL for

Select the subsystem or model from which code is generated. The list includes the path to the root
model and to subsystems in the model. When you specify this parameter and click the Generate
button, HDL Coder generates code for the Subsystem that you specify. By default, the HDL code is
generated in VHDL language and into the hdlsrc folder.

Settings
Default: The top level subsystem in the root model is selected.

Command-Line Information

Property: HDLSubsystem

Type: character vector

Value: A valid path to your subsystem

Default: Path to the top level subsystem in root model

For example, you can generate HDL code for the symmetric fir subsystem inside the sfir fixed
model using either of these methods.

* Specify the subsystem using the property HDLSubsystem as an argument to makehd1l.

makehdl('sfir fixed', 'HDLSubsystem', 'sfir fixed/symmetric fir')
* Pass in the path to the subsystem as an first argument to makehd1.

makehdl('sfir fixed/symmetric fir')

See also makehd1.

Language

Select the language (VHDL or Verilog) in which code is generated. The selected language is referred
to as the target language. When you specify the Language and click the Generate button, HDL
Coder generates code in that language for the Subsystem that is specified by the Generate HDL for
parameter. By default, the HDL code is generated in VHDL language and into the hdlsrc folder.

The generated HDL code complies with these standards:

12-3

12 HDL Code Generation Pane: General

* VHDL-1993 (IEEE® 1076-1993) or later
* Verilog-2001 (IEEE 1364-2001) or later

Settings
Default: VHDL

VHDL

Generate VHDL code.
Verilog

Generate Verilog code.

Command-Line Information
Property: TargetLanguage
Type: character vector
Value: 'VHDL' | 'Verilog'
Default: 'VHDL'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, to generate Verilog code for the symmetric fir subsystem inside the sfir fixed
model, use either of these methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric fir', 'TargetLanguage', 'Verilog')
* Use hdlset param to set the parameter on the model. Then generate HDL code using makehdl.

hdlset param('sfir fixed', 'TargetLanguage', 'Verilog')
makehdl('sfir fixed/symmetric fir')

See also makehdl.

Folder

Enter a path to the folder into which code is generated. Alternatively, click Browse to navigate to and
select a folder. The selected folder is referred to as the target folder. When you specify the Folder
and click the Generate button, HDL Coder generates code into that folder for the Subsystem that is
specified by the Generate HDL for parameter. By default, the HDL code is generated in VHDL
language and into the hdlsrc folder.

Settings

Default: The default target folder is a subfolder of your working folder, named hdlsrc. HDL Coder
writes the generated files into this subfolder. The folder name can be a complete path name, specified
as a character vector.

Command-Line Information
Property: TargetDirectory

Type: character vector

Value: A valid path to your target folder

12-4

Target

Default: 'hdlsrc'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, to generate HDL code into a custom target folder for the symmetric fir subsystem
inside the sfir fixed model, use either of these methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric fir', 'TargetDirectory','C:/Temp/hdlsrc')
* Use hdlset param to set the parameter on the model. Then generate HDL code using makehdl.

hdlset param('sfir fixed', 'TargetDirectory','C:/Temp/hdlsrc"')
makehdl('sfir fixed/symmetric fir')

See also makehd1.

Restore Model Defaults

This button resets the model-level HDL settings to the default values. The block settings are not
changed. To clear the block settings, use hdlrestoreparams.

Note If you clear the model-level settings, you cannot restore the previous settings. To restore the
settings, close the model without saving and then reopen the model.

Command-Line Information
Function: hdlrestoreparams
Type: character vector

Value: model name

Default: '

Run Compatibility Checker

This setting checks whether the Subsystem that you specify by using Generate HDL for is
compatible for HDL code generation. The setting generates a HDL Check Report that displays errors,
warnings, and messages. See “Check Subsystem for HDL Compatibility” on page 20-19.

Command-Line Information
Function: checkhdl

Type: character vector

Value: subsystem or model name
Default: '

See Also

checkhdl

Generate

This setting generates HDL code for the Subsystem that you specify by using Generate HDL for. If
the Subsystem is not HDL-compatible, the code generator displays errors in the HDL Check Report.

12-5

12 HDL Code Generation Pane: General

12-6

Command-Line Information
Function: makehdl

Type: character vector

Value: subsystem or model name
Default: '

See Also

makehdl

HDL Code Generation Pane: Target

* “Target Overview” on page 13-2
* “Tool and Device” on page 13-3
» “Target Frequency” on page 13-8

13 HDL Code Generation Pane: Target

Target Overview

The Target pane enables you to specify the target hardware settings.

13-2

Tool and Device

Tool and Device

In this section...

“Synthesis Tool” on page 13-3
“Family” on page 13-4
“Device” on page 13-5
“Package” on page 13-5

“Speed” on page 13-6

This section contains parameters in the Tool and Device section of the HDL Code Generation >
Target pane of the Configuration Parameters dialog box. By using the parameters in this section, you
can specify the synthesis tool, and then select the Family, Device, Package, and Speed for your
synthesis target.

Synthesis Tool

Specify the synthesis tool for targeting the generated HDL code. To use HDL Coder with one of the
supported third-party FPGA synthesis tools, add the tool to the system path using the
hdlsetuptoolpath function. When you specify the Synthesis Tool, HDL Coder populates the
Family, Device, Package, and Speed with default values for that tool.

Settings
Default: No synthesis tool specified

The options are:

No synthesis tool specified

Select this option if you do not want to perform logic synthesis. You can generate HDL code from
your design.

Xilinx Vivado
Specify Xilinx Vivado as the synthesis tool.
Xilinx ISE
Specify Xilinx ISE as the synthesis tool.
Altera Quartus II
Specify Altera Quartus II as the synthesis tool.
Microsemi Libero SoC
Specify Microsemi® Libero®SoC as the synthesis tool.

If your synthesis tool is not one of the Synthesis tool options, see “Synthesis Tool Path Setup”.

Command-Line Information

Property: SynthesisTool

Type: character vector

Value: '' | 'Xilinx Vivado''Xilinx ISE''Altera Quartus II'
Default: '’

13-3

13 HDL Code Generation Pane: Target

13-4

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can specify Altera Quartus II asthe SynthesisTool when you generate HDL
code for the symmetric fir subsystem inside the sfir fixed model using either of these
methods.

* Pass the property as an argument to the makehdl function.
makehdl('sfir fixed/symmetric_ fir',
'SynthesisTool', 'Altera Quartus II')
* When you use hdlset param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset param('sfir fixed', 'SynthesisTool', 'Altera Quartus II')
makehdl('sfir fixed/symmetric_ fir')

See Also

* makehdl
* hdlsetuptoolpath
* “Tool Setup”

Family

Specify the target device chip family for your model as a character vector. When you specify the
Synthesis Tool, HDL Coder populates the Family, Device, Package, and Speed with default values
for that tool. To find the chip family for your target device, at the MATLAB command line, enter
hdlcoder.supportedDevices. Then, open the linked report and find your target device details.

Settings
Default: '
Specify the target device chip family for your Simulink model as a character vector.

Command-Line Information

Property: SynthesisToolChipFamily
Type: character vector

Value: A valid chip family for the target device
Default: '’

For example, if your SynthesisTool is Xilinx Vivado, you can specify Virtex7 as the
SynthesisToolChipFamily when you generate HDL code for the symmetric_ fir subsystem
inside the sfir fixed model using either of these methods.

» Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric_ fir',
'SynthesisToolChipFamily', 'Virtex7')

* When you use hdlset param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset param('sfir fixed', 'SynthesisToolChipFamily', 'Virtex7')
makehdl('sfir fixed/symmetric_fir')

Tool and Device

See Also

* makehdl
* hdlsetuptoolpath
+ “Tool Setup”

Device

Specify the target device name for your model as a character vector. When you specify the Synthesis
Tool, HDL Coder populates the Family, Device, Package, and Speed with default values for that
tool. To find the device name for your target device, at the MATLAB command line, enter
hdlcoder.supportedDevices. Then, open the linked report and find your target device details.

Settings
Default: '
Specify the target device name for your Simulink model as a character vector.

Command-Line Information

Property: SynthesisToolDevicename

Type: character vector

Value: A valid device name for the synthesis tool
Default: '

You can get the SynthesisToolDeviceName when you specify the SynthesisTool for your model.
Consider that the SynthesisTool is set to Xilinx Vivado and the SynthesisToolChipFamily
is set to Virtex7.

* To get the default device name. pass the property as an argument to the hdlget param function.

hdlget param('sfir fixed',
'SynthesisToolDeviceName')
* When you use hdlset param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset param('sfir fixed', 'SynthesisToolDeviceName', 'xc7v2000t')
makehdl('sfir fixed/symmetric fir')

See Also

* makehdl
* hdlsetuptoolpath
* “Tool Setup”

Package

Specify the target device package name for your model as a character vector. When you specify the
Synthesis Tool, HDL Coder populates the Family, Device, Package, and Speed with default values
for that tool. To find the device name for your target device, at the MATLAB command line, enter
hdlcoder.supportedDevices. Then, open the linked report and find your target device details.

13-5

13 HDL Code Generation Pane: Target

13-6

Settings
Default: '’
Specify the target device package name for your Simulink model as a character vector.

Command-Line Information

Property: SynthesisToolPackageName

Type: character vector

Value: A valid package name for the synthesis tool
Default: '

You can get the SynthesisToolPackageName when you specify the SynthesisTool for your
model. Consider that the SynthesisTool is set to Xilinx Vivado and the
SynthesisToolChipFamily is set to Virtex7.

* To get the default device name. pass the property as an argument to the hdlget param function.
hdlget param('sfir fixed',
'SynthesisToolPackageName')
* When you use hdlset param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset param('sfir fixed', 'SynthesisToolPackageName', 'fhgl761')
makehdl('sfir fixed/symmetric fir')

See Also

* makehdl
* hdlsetuptoolpath
* “Tool Setup”

Speed

Specify the target device speed value for your model as a character vector. When you specify the
Synthesis Tool, HDL Coder populates the Family, Device, Package, and Speed with default values
for that tool. To find the chip family for your target device, at the MATLAB command line, enter
hdlcoder.supportedDevices. Then, open the linked report and find your target device details.

Settings
Default: '’
Specify the target device speed value for your Simulink model as a character vector.

Command-Line Information

Property: SynthesisToolSpeedValue

Type: character vector

Value: A valid speed value for the target device
Default: '

You can get the SynthesisToolSpeedValue when you specify the SynthesisTool for your model.
Consider that the SynthesisTool is set to Xilinx Vivado and the SynthesisToolChipFamily
is set to Virtex7.

Tool and Device

* To get the default device name. pass the property as an argument to the hdlget param function.
hdlget param('sfir fixed', ...
'SynthesisToolSpeedValue')

* When you use hdlset param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset param('sfir fixed', 'SynthesisToolSpeedValue', '-1"')
makehdl('sfir fixed/symmetric fir')

See Also

* makehdl

* hdlsetuptoolpath
* “Tool Setup”

13-7

13 HDL Code Generation Pane: Target

Target Frequency

13-8

This parameter resides in the Objectives Settings section of the HDL Code Generation > Target
pane of the Configuration Parameters dialog box. By using this parameter, you can specify the target
frequency in MHz for multiple features and workflows. Before setting the target frequency, make sure
that you specify the Synthesis Tool.

Settings
Default: 0

This setting is the target frequency in MHz for multiple features and workflows that HDL Coder
supports. The supported features are:

* FPGA floating-point target library mapping: Specify the target frequency that you want the IP to
achieve when you use ALTERA MEGAFUNCTION (ALTERA FP FUNCTIONS). If you do not specify
the target frequency, HDL Coder sets the target frequency to a default value of 200 MHz. See also
“Generate HDL Code for FPGA Floating-Point Target Libraries” on page 31-11.

» Adaptive pipelining: If your design uses multipliers, specify the synthesis tool and the target
frequency. Based on these settings, HDL Coder estimates the number of pipelines that can be
inserted to improve area and timing on the target platform. If you do not specify the target
frequency, HDL Coder uses a target frequency of 0 MHz and does not insert adaptive pipelines.
See also “Adaptive Pipelining” on page 24-56.

You can also set the target frequency by using the Target Frequency (MHz) setting in the Set
Target Frequency task in the HDL Workflow Advisor.

Specify the target frequency for these workflows-

* Generic ASIC/FPGA: To specify the target frequency that you want your design to achieve. HDL
Coder generates a timing constraint file for that clock frequency. It adds the constraint to the
FPGA synthesis tool project that you create in the Create Project task. If the target frequency is
not achievable, the synthesis tool generates an error. Target frequency is not supported with
Microsemi Libero SoC.

+ IP Core Generation: To specify the target frequency for HDL Coder to modify the clock
module setting in the reference design to produce the clock signal with that frequency. Enter a
target frequency value that is within the Frequency Range (MHz). If you do not specify the
target frequency, HDL Coder uses the Default (MHz) target frequency.

* Simulink Real-Time FPGA I/0: For Speedgoat I/O modules that are supported with Xilinx
ISE, specify the target frequency to generate the clock module to produce the clock signal with
that frequency.

The Speedgoat I/O modules that are supported with Xilinx Vivado use the IP Core
Generation workflow infrastructure. Specify the target frequency for HDL Coder to modify the
clock module setting in the reference design to produce the clock signal with that frequency.
Enter a target frequency value that is within the Frequency Range (MHz). If you do not specify
the target frequency, HDL Coder uses the Default (MHz) target frequency.

* FPGA Turnkey: To generate the clock module to produce the clock signal with that frequency
automatically.

Target Frequency

Command-Line Information
Property: TargetFrequency

Type: integer

Value: integer greater than or equal to 0
Default: 0

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can specify the TargetFrequency when you generate HDL code for the
symmetric fir subsystem inside the sfir fixed model using either of these methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric_ fir',
'TargetFrequency', '300")

* When you use hdlset param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset param('sfir fixed', 'TargetFrequency', '300"')
makehdl('sfir fixed/symmetric fir')

See Also

* makehdl
* “Set Target Frequency” on page 37-6
* “Customize Floating-Point IP Configuration” on page 31-18

13-9

HDL Code Generation Pane:
Optimization

* “Optimization Overview” on page 14-2

* “Balance delays” on page 14-3

* “RAM Mapping” on page 14-5

* “Transform non zero initial value delay” on page 14-7

* “Multiplier partitioning threshold” on page 14-8

» “Distributed Pipelining” on page 14-9

* “Clock Rate Pipelining” on page 14-12

* “Adaptive pipelining” on page 14-15

* “Preserve design delays” on page 14-17

* “Resource Sharing of Adders and Multipliers” on page 14-18
* “Resource Sharing of Multiply-Add and Other Blocks” on page 14-24
* “Share Floating-Point IPs” on page 14-28

* “Multicycle Path Constraints” on page 14-30

14 HDL Code Generation Pane: Optimization

Optimization Overview

The Optimization pane enables you to specify various optimizations such as delay balancing,
resource sharing and pipelining. To improve the area and timing of your design on the target
hardware, specify these settings. This pane also contains a Multicycle Path Constraints section.

Use the settings in this section to specify the timing requirements that the Synthesis tool must meet
for your design.

14-2

Balance delays

Balance delays

This parameter is in the HDL Code Generation > Optimization > General tab of the Configuration
Parameters dialog box.

When you enable certain optimizations such as pipelining or resource sharing, or specify certain
block implementations and generate code, HDL Coder introduces pipeline delays along certain signal
paths in your model. By default, the Balance delays setting is enabled. The code generator detects
these pipeline delays introduced along one path and then inserts matching delays on other paths.

To make sure that the generated model after HDL code generation is functionally equivalent to the
original Simulink model, leave this setting enabled. If you disable this setting, HDL Coder generates a
warning that numerical differences can occur in the validation model. To fix this warning, enable
Balance delays on the model or run the model check “Check delay balancing setting” on page 38-
11.

Settings
Default: On

¥ On

Enables delay balancing on your model. If HDL Coder detects introduction of new delays along
one path, matching delays are inserted on the other paths. When delay balancing is enabled, the
generated model is functionally equivalent to the original model.

I off

The latency along signal paths might not be balanced, and the generated model might not be
functionally equivalent to the original model.

Command-Line Information
Property: BalanceDelays

Type: character vector

Value: 'on' | 'off'

Default: 'on’

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can enable the BalanceDelays setting when you generate HDL code for the
symmetric_ fir subsystem inside the sfir fixed model using either of these methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric fir',
'BalanceDelays', 'on')
* When you use hdlset param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset param('sfir fixed', 'BalanceDelays','on')
makehdl('sfir fixed/symmetric_fir')

14-3

14 HDL Code Generation Pane: Optimization

See Also

* makehdl
* “Delay Balancing” on page 24-27
* “BalanceDelays” on page 21-4

14-4

RAM Mapping

RAM Mapping

In this section...

“Map pipeline delays to RAM” on page 14-5
“RAM mapping threshold (bits)” on page 14-6

This section contains parameters in the HDL Code Generation > Target > General tab of the
Configuration Parameters dialog box. Using the parameters in this section, you can reduce the area
usage on the target device by trading-off block RAMs for registers. The parameters specify whether
you want to map pipeline registers in the generated code to RAM, and the minimum RAM size for
mapping to block RAMs on the FPGA.

Map pipeline delays to RAM

Map pipeline registers in the generated HDL code to RAM. Certain speed or area optimizations such
as pipelining and resource sharing, or certain block implementations that you specify can insert
pipeline registers in the generated HDL code. You can save area on the target device by mapping
these pipeline registers to RAM.

Settings
Default: Off

|7On

Map pipeline registers in the generated HDL code to RAM. To map these registers to block RAMs,
the RAM size must be greater than or equal to the RAM mapping threshold in bits. RAM size is
the product Delay length * Word length * Vector length * Complex length.

I off
Do not map pipeline registers in the generated HDL code to RAM.

Command-Line Information
Property: MapPipelineDelaysToRAM
Type: character vector

Value: 'on' | 'off"'

Default: 'off'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can enable the MapPipelineDelaysToRAM setting when you generate HDL code
for the symmetric fir subsystem inside the sfir fixed model using either of these methods.

» Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric fir',
'MapPipelineDelaysToRAM', 'on')
* When you use hdlset param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset param('sfir fixed', 'MapPipelineDelaysToRAM', 'on')
makehdl('sfir fixed/symmetric_ fir')

14-5

14 HDL Code Generation Pane: Optimization

14-6

See Also

+ makehdl
* “UseRAM” on page 21-25
* “RAM Mapping for MATLAB Code” on page 8-2

RAM mapping threshold (bits)

Specify the minimum RAM size in bits for mapping to block RAMs. The code generator determines
whether to use registers or RAM resources on the FPGA by comparing the RAM size of your design
with the RAM mapping threshold that you specify.

Settings
Default: 256

The RAM mapping threshold must be an integer greater than or equal to zero. HDL Coder uses the
threshold to determine whether or not to map the following elements to block RAMs instead of to
registers:

* Delay blocks

» Persistent arrays in MATLAB Function blocks

Command-Line Information
Property: RAMMappingThreshold
Type: integer

Value: integer greater than or equal to 0
Default: 256

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can set the RAMMappingThreshold to 1024 when you generate HDL code for the
symmetric_ fir subsystem inside the sfir fixed model using either of these methods.

» Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric fir', ...
'RAMMappingThreshold', '1024"')

* When you use hdlset param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset param('sfir fixed', 'RAMMappingThreshold', '1024')
makehdl('sfir fixed/symmetric fir')

See Also

* makehdl
* “UseRAM” on page 21-25
* “RAM Mapping for MATLAB Code” on page 8-2

Transform non zero initial value delay

Transform non zero initial value delay

This parameter is in the HDL Code Generation > Optimization > General tab of the Configuration
Parameters dialog box. Enable this option to optimize Delay blocks with non zero initial condition.

Settings
Default: On

|7On

Transform Delay blocks with nonzero Initial condition in your Simulink model to Delay blocks
with zero Initial condition and some additional logic in the generated HDL code.

By using this transformation, HDL Coder can perform optimizations such as sharing, distributed
pipelining, and clock-rate pipelining more effectively, and prevent an assertion from being
triggered in the validation model.

I off
Do not transform Delay blocks with nonzero Initial condition in your Simulink model.

Command-Line Information
Property: TransformNonZeroInitValDelay
Type: character vector

Value: 'on' | 'off'

Default: 'off'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can set the TransformNonZeroInitValDelay property to on when you generate
HDL code for the symmetric fir subsystem inside the sfir fixed model using either of these
methods.

» Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric fir', .
'TransformNonZeroInitValDelay', 'on')

* When you use hdlset param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset param('sfir fixed', 'TransformNonZeroInitValDelay', 'on')
makehdl('sfir fixed/symmetric fir')

See Also

makehdl

14-7

14 HDL Code Generation Pane: Optimization

Multiplier partitioning threshold

14-8

This parameter is in the HDL Code Generation > Optimization > General tab of the Configuration
Parameters dialog box. Use this parameter to specify the maximum input bit width for multipliers in
your design.

Settings
Default: Inf

N, where N is an integer greater than or equal to 2
Partition multipliers so that N is the maximum multiplier input bit width.

This parameter specifies the maximum input bit width for a multiplier. If at least one of the inputs
to the multiplier has a bit width greater than the threshold value, the code generator splits the
multiplier into smaller multipliers.

To improve hardware mapping results, set the multiplier partitioning threshold to the input bit
width of the DSP or multiplier hardware on your target device.

Inf

Do not partition multipliers.

Command-Line Information

Property: MultiplierPartitioningThreshold
Type: integer

Value: integer greater than or equal to 0

Default: Inf

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can set the MultiplierPartitioningThreshold to 16 when you generate HDL
code for the symmetric fir subsystem inside the sfir fixed model using either of these
methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric_ fir',
'MultiplierPartitioningThreshold','16")

* When you use hdlset param, you can set the parameter on the model and then generate HDL
code using makehd1.

hdlset param('sfir fixed', 'MultiplierPartitioningThreshold','16"')
makehdl('sfir fixed/symmetric fir')

See Also

* makehdl
* “Multiplier promotion threshold” on page 14-22

Distributed Pipelining

Distributed Pipelining

This section contains parameters in the HDL Code Generation > Optimization > Pipelining tab of
the Configuration Parameters dialog box. Using the parameters in this section, you can improve the
timing of your design on the target device. Enable the hierarchical distributed pipelining
optimization, and specify whether to prioritize the distributed pipelining algorithm for numerical
integrity or performance.

Hierarchical distributed pipelining

Hierarchical distributed pipelining extends the scope of distributed pipelining by distributing delays
across subsystem hierarchies. This optimization moves the delays within a Subsystem while
preserving the hierarchy.

Settings
Default: Off

|7On

Enable retiming across a subsystem hierarchy. HDL Coder applies retiming hierarchically from
the top-level Subsystem. To move delays inside a Subsystem, in the HDL Block Properties for that
Subsystem, set DistributedPipelining to on. Hierarchical distributed pipelining stops
distributing delays when it reaches a Subsystem that has DistributedPipelining set to off.

I off

Distributes pipelines within a Subsystem, if you have DistributedPipelining set to on for that
Subsystem.

Dependency

If you select the Preserve design delays check box, distributed pipelining does not move the design
delays.

Command-Line Information

Property: HierarchicalDistPipelining
Type: character vector

Value: 'on' | 'off'

Default: 'off'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can enable the HierarchicalDistPipelining setting when you generate HDL
code for the symmetric fir subsystem inside the sfir fixed model using either of these
methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric_fir',
'HierarchicalDistPipelining', 'on")

* When you use hdlset param, you can set the parameter on the model and then generate HDL
code using makehdl.

14-9

14 HDL Code Generation Pane: Optimization

14-10

hdlset param('sfir fixed', 'HierarchicalDistPipelining','on")
makehdl('sfir fixed/symmetric_ fir')

See Also

* makehdl
» “Distributed Pipelining” on page 24-42
» “DistributedPipelining” on page 21-8

Distributed pipelining priority

Specify the priority for your distributed pipelining algorithm.
Settings

Default: Numerical Integrity

Numerical Integrity
Prioritize numerical integrity when distributing pipeline registers.

This option uses a conservative retiming algorithm that does not move registers across a
component if the functional equivalence to the original design is unknown.

Performance

Prioritize performance over numerical integrity.

Use this option if your design requires a higher clock frequency and the Simulink behavior does
not need to strictly match the generated code behavior. This option uses a more aggressive
retiming algorithm that moves registers across a component even if the modified design’s
functional equivalence to the original design is unknown.

Command-Line Information

Property: DistributedPipeliningPriority
Type: character vector

Value: 'NumericalIntegrity' | 'Performance’
Default: 'Numer