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Functions Supported for HDL Code
Generation

• “Functions Supported for HDL Code Generation — Alphabetical List” on page 1-2
• “Functions Supported for HDL Code Generation — Categorical List” on page 1-8
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Functions Supported for HDL Code Generation — Alphabetical
List

You can generate efficient HDL code for a subset of MATLAB built-in functions and toolbox functions
that you call from MATLAB code. These functions appear in alphabetical order in the following table.

To find supported functions by MATLAB category or toolbox, see “Functions Supported for HDL Code
Generation — Categorical List” on page 1-8.

Name Product Remarks and Limitations
abs Fixed-Point Designer™ Double and complex data types not

supported.
add Fixed-Point Designer —
all MATLAB Double data type not supported.
and MATLAB —
any MATLAB Double data type not supported.
bitand MATLAB —
bitand Fixed-Point Designer —
bitandreduce Fixed-Point Designer —
bitcmp MATLAB —
bitcmp Fixed-Point Designer —
bitconcat Fixed-Point Designer —
bitget MATLAB —
bitget Fixed-Point Designer —
bitor MATLAB —
bitor Fixed-Point Designer —
bitorreduce Fixed-Point Designer —
bitreplicate Fixed-Point Designer —
bitrol Fixed-Point Designer —
bitror Fixed-Point Designer —
bitset MATLAB —
bitset Fixed-Point Designer —
bitshift MATLAB For efficient HDL code generation,

use the Fixed-Point Designer
functions bitsll, bitsrl, or
bitsra instead of bitshift.

bitshift Fixed-Point Designer —
bitsliceget Fixed-Point Designer —
bitsll Fixed-Point Designer —
bitsra Fixed-Point Designer —
bitsrl Fixed-Point Designer —
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Name Product Remarks and Limitations
bitxor MATLAB —
bitxor Fixed-Point Designer —
bitxorreduce Fixed-Point Designer —
ceil Fixed-Point Designer —
complex MATLAB —
complex Fixed-Point Designer —
conj Fixed-Point Designer —
convergent Fixed-Point Designer —
ctranspose MATLAB —
ctranspose Fixed-Point Designer —
divide Fixed-Point Designer • For HDL Code generation, the

divisor must be a constant and a
power of two.

• Non-fi inputs must be constant;
that is, their values must be
known at compile time so that
they can be cast to fi objects.

• Complex and imaginary divisors
are not supported.

• Code generation in MATLAB
does not support the syntax
T.divide(a,b).

end Fixed-Point Designer —
eps Fixed-Point Designer • Supported for scalar fixed-point

signals only.
• Supported for scalar, vector, and

matrix, fi single and fi double
signals.

eq MATLAB —
eq Fixed-Point Designer —
fi Fixed-Point Designer —
fimath Fixed-Point Designer —
fix Fixed-Point Designer —
floor Fixed-Point Designer —
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Name Product Remarks and Limitations
for MATLAB Do not use for loops without static

bounds.

Do not use the & and | operators
within conditions of a for
statement. Instead, use the && and
|| operators.

HDL Coder does not support
nonscalar expressions in the
conditions of for statements.
Instead, use the all or any
functions to collapse logical vectors
into scalars.

ge MATLAB —
ge Fixed-Point Designer —
getlsb Fixed-Point Designer —
getmsb Fixed-Point Designer —
gt MATLAB —
gt Fixed-Point Designer —
horzcat Fixed-Point Designer —
if MATLAB Do not use the & and | operators

within conditions of an if
statement. Instead, use the && and
|| operators.

HDL Coder does not support
nonscalar expressions in the
conditions of if statements.
Instead, use the all or any
functions to collapse logical vectors
into scalars.

imag MATLAB —
int8, int16, int32 Fixed-Point Designer —
iscolumn MATLAB —
isempty MATLAB —
isequal Fixed-Point Designer —
isfi Fixed-Point Designer —
isfimath Fixed-Point Designer —
isfimathlocal Fixed-Point Designer —
isfinite MATLAB —
isinf MATLAB —
isnan MATLAB —
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Name Product Remarks and Limitations
isnumeric MATLAB —
isnumerictype Fixed-Point Designer —
isreal MATLAB —
isrow MATLAB —
isscalar MATLAB —
issigned Fixed-Point Designer —
isvector MATLAB —
le MATLAB —
le Fixed-Point Designer —
length MATLAB —
logical MATLAB —
lowerbound Fixed-Point Designer —
lsb Fixed-Point Designer —
lt MATLAB —
lt Fixed-Point Designer —
max Fixed-Point Designer —
min Fixed-Point Designer —
minus Fixed-Point Designer —
mpower MATLAB Both inputs must be scalar, and the

exponent input, k, must be an
integer.

mpower Fixed-Point Designer Both inputs must be scalar, and the
exponent input, k, must be a
constant integer.

mtimes(A,B) MATLAB —
mtimes Fixed-Point Designer —
ndims MATLAB —
ne MATLAB —
ne Fixed-Point Designer —
nearest Fixed-Point Designer —
not MATLAB —
numerictype Fixed-Point Designer —
ones MATLAB Dimensions must be real,

nonnegative integers.
or MATLAB —
plus MATLAB Inputs cannot be data type

logical.
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Name Product Remarks and Limitations
plus Fixed-Point Designer Inputs cannot be data type

logical.
power MATLAB Both inputs must be scalar, and the

exponent input, k, must be an
integer.

power Fixed-Point Designer Both inputs must be scalar, and the
exponent input, k, must be a
constant integer.

range Fixed-Point Designer —
real MATLAB —
realmax Fixed-Point Designer —
realmin Fixed-Point Designer —
reinterpretcast Fixed-Point Designer —
repmat MATLAB —
rescale Fixed-Point Designer —
reshape MATLAB —
round Fixed-Point Designer —
sfi Fixed-Point Designer —
sign Fixed-Point Designer —
size MATLAB —
sqrt Fixed-Point Designer —
sub Fixed-Point Designer —
subsasgn Fixed-Point Designer Supported data types for HDL code

generation are listed in “Supported
MATLAB Data Types, Operators,
and Control Flow Statements” on
page 2-2.

subsref Fixed-Point Designer Supported data types for HDL code
generation are listed in “Supported
MATLAB Data Types, Operators,
and Control Flow Statements” on
page 2-2.

sum Fixed-Point Designer —
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Name Product Remarks and Limitations
switch MATLAB The conditional expression in a

switch or case statement must
use only:

• uint8, uint16, uint32, int8,
int16, or int32 data types

• Scalar data

If multiple case statements make
assignments to the same variable,
the numeric type and fimath
specification for that variable must
be the same in every case
statement.

times MATLAB Inputs cannot be data type
logical.

times Fixed-Point Designer Inputs cannot be data type
logical.

transpose MATLAB —
transpose MATLAB —
ufi Fixed-Point Designer —
uint8, uint16, uint32 Fixed-Point Designer —
uminus Fixed-Point Designer —
uplus MATLAB Inputs cannot be data type

logical.
upperbound Fixed-Point Designer —
vertcat Fixed-Point Designer —
xor MATLAB —
zeros MATLAB Dimensions must be real,

nonnegative integers.

 Functions Supported for HDL Code Generation — Alphabetical List

1-7



Functions Supported for HDL Code Generation — Categorical
List

In this section...
“Arithmetic Operations in MATLAB” on page 1-8
“Bitwise Operations in MATLAB” on page 1-9
“Complex Numbers in MATLAB” on page 1-9
“Control Flow in MATLAB” on page 1-9
“Logical Operators in MATLAB” on page 1-10
“Arrays in MATLAB” on page 1-10
“Relational Operators in MATLAB” on page 1-10
“ Fixed-Point Designer ” on page 1-10

In this section...
“Arithmetic Operations in MATLAB” on page 1-8
“Bitwise Operations in MATLAB” on page 1-9
“Complex Numbers in MATLAB” on page 1-9
“Control Flow in MATLAB” on page 1-9
“Logical Operators in MATLAB” on page 1-10
“Arrays in MATLAB” on page 1-10
“Relational Operators in MATLAB” on page 1-10
“ Fixed-Point Designer ” on page 1-10

You can generate efficient HDL code for a subset of MATLAB built-in functions and toolbox functions
that you call from MATLAB code. These functions are listed by MATLAB category or toolbox category
in the following tables.

For an alphabetical list of supported functions, see “Functions Supported for HDL Code Generation —
Alphabetical List” on page 1-2.

Arithmetic Operations in MATLAB
Name Remarks and Limitations
ctranspose(A) —
mpower(A,B) A and B must be scalar, and B must be an integer.
mtimes(A,B) —
plus(A,B) Neither A nor B can be data type logical.
power(A,B) A and B must be scalar, and B must be an integer.
times(A,B) Neither A nor B can be data type logical.
transpose(A) —
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Bitwise Operations in MATLAB
Name Remarks and Limitations
bitand —
bitcmp —
bitget —
bitor —
bitset —
bitshift For efficient HDL code generation, use the Fixed-Point Designer functions

bitsll, bitsrl, or bitsra instead of bitshift.
bitxor —

Complex Numbers in MATLAB
Name Remarks and Limitations
complex —
imag —
real —

Control Flow in MATLAB
Name Remarks and Limitations
for Do not use for loops without static bounds.

Do not use the & and | operators within conditions of a for statement.
Instead, use the && and || operators.

HDL Coder does not support nonscalar expressions in the conditions of
for statements. Instead, use the all or any functions to collapse logical
vectors into scalars.

if Do not use the & and | operators within conditions of an if statement.
Instead, use the && and || operators.

HDL Coder does not support nonscalar expressions in the conditions of if
statements. Instead, use the all or any functions to collapse logical
vectors into scalars.

switch The conditional expression in a switch or case statement must use only:

• uint8, uint16, uint32, int8, int16, or int32 data types
• Scalar data

If multiple case statements make assignments to the same variable, the
numeric type and fimath specification for that variable must be the same
in every case statement.

 Functions Supported for HDL Code Generation — Categorical List
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Logical Operators in MATLAB
Name Remarks and Limitations
and —
not —
or —
xor —

Arrays in MATLAB
Name Remarks and Limitations
ones Dimensions must be real, nonnegative integers.
zeros Dimensions must be real, nonnegative integers.

Relational Operators in MATLAB
Name Remarks and Limitations
eq —
ge —
gt —
le —
lt —
ne —

Fixed-Point Designer
HDL code generation support for fixed-point run-time library functions from the Fixed-Point Designer
is summarized in the following table. See “Fixed-Point Function Limitations” on page 2-27 for
general limitations of fixed-point run-time library functions for code generation.

Function Remarks and Limitations
abs Double and complex data types not supported.
add —
bitand —
bitandreduce —
bitcmp —
bitconcat —
bitget —
bitor —
bitorreduce —
bitreplicate —
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Function Remarks and Limitations
bitrol —
bitror —
bitset —
bitshift —
bitsliceget —
bitsll —
bitsra —
bitsrl —
bitxor —
bitxorreduce —
ceil —
complex —
conj —
convergent —
ctranspose —
divide • For HDL Code generation, the divisor must be a constant and a power

of two.
• Non-fi inputs must be constant; that is, their values must be known at

compile time so that they can be cast to fi objects.
• Complex and imaginary divisors are not supported.
• Code generation in MATLAB does not support the syntax

T.divide(a,b).
eps • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single and fi double
signals.

eq —
fi —
fimath —
fix —
floor —
ge —
getlsb —
getmsb —
gt —
horzcat —
int8, int16, int32 —
isequal —
isfi —
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Function Remarks and Limitations
isfimath —
isfimathlocal —
isnumerictype —
issigned —
le —
lowerbound —
lsb —
lt —
max —
min —
minus —
mpower Both inputs must be scalar, and the exponent input, k, must be a constant

integer.
mtimes —
nearest —
numerictype —
ones Dimensions must be real, nonnegative integers.
plus Inputs cannot be data type logical.
power Both inputs must be scalar, and the exponent input, k, must be a constant

integer.
range —
realmax —
realmin —
reinterpretcast —
rescale —
round —
sfi —
sign —
sqrt —
sub —
subsasgn Supported data types for HDL code generation are listed in “Supported

MATLAB Data Types, Operators, and Control Flow Statements” on page 2-
2.

subsref Supported data types for HDL code generation are listed in “Supported
MATLAB Data Types, Operators, and Control Flow Statements” on page 2-
2.

sum —
times Inputs cannot be data type logical.
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Function Remarks and Limitations
ufi —
uint8, uint16, uint32 —
uminus —
upperbound —
vertcat —
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MATLAB Algorithm Design

• “Supported MATLAB Data Types, Operators, and Control Flow Statements” on page 2-2
• “Persistent Variables and Persistent Array Variables” on page 2-7
• “Complex Data Type Support” on page 2-9
• “HDL Code Generation for System Objects” on page 2-12
• “Predefined System Objects Supported for HDL Code Generation” on page 2-14
• “Load constants from a MAT-File” on page 2-16
• “Generate Code for User-Defined System Objects” on page 2-17
• “Map Matrices to ROM” on page 2-19
• “Fixed-Point Bitwise Functions” on page 2-20
• “Fixed-Point Run-Time Library Functions” on page 2-25
• “Model State with Persistent Variables and System Objects” on page 2-29
• “Bitwise Operations in MATLAB for HDL Code Generation” on page 2-32
• “Guidelines for Writing MATLAB Code to Generate Efficient HDL Code” on page 2-36
• “For-Loop Best Practices for HDL Code Generation” on page 2-38
• “MATLAB Test Bench Requirements and Best Practices for HDL Code Generation” on page 2-40
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Supported MATLAB Data Types, Operators, and Control Flow
Statements

In this section...
“Supported Data Types” on page 2-2
“Supported Operators” on page 2-3
“Control Flow Statements” on page 2-5

When you generate HDL code from your MATLAB algorithm, use the data types, operators, and
control flow statements that HDL Coder supports.

Supported Data Types
HDL Coder does not support cell arrays and Inf data types. This table shows the supported subset of
MATLAB data types.

Types Supported Data Types Restrictions
Integer • uint8, uint16, uint32,

uint64
• int8, int16, int32, int64

In Simulink®, MATLAB Function block ports
must use numeric types sfix64 or ufix64 for
64-bit data.

Real • double
• single

HDL code generated with double or single
data types in your MATLAB code can be used
for simulation, but is not synthesizable. You
can generate synthesizable code when you use
these data types in your Simulink model. For
more information, see:

• “Simulink Blocks Supported with Native
Floating-Point” on page 10-80

• “Generate Target-Independent HDL Code
with Native Floating-Point” on page 10-70

• “Signal and Data Type Support” on page
10-2

Character char –
Logical logical –
Fixed point • Scaled (binary point only)

fixed-point numbers
• Custom integers (zero binary

point)

Fixed-point numbers with slope (not equal to
1.0) and bias (not equal to 0.0) are not
supported.

Maximum word size for fixed-point numbers is
128 bits.

Vectors • unordered {N}
• row {1, N}
• column {N, 1}

The maximum number of vector elements
allowed is 2^32.

Before a variable is subscripted, it must be
fully defined.
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Types Supported Data Types Restrictions
Matrices {N, M} Matrices are supported in the body of the

design algorithm, but are not supported as
inputs to the top-level design function.

Do not use matrices in the testbench.
Structures struct Arrays of structures are not supported.

For the FPGA Turnkey and IP Core Generation
workflows, structures are supported in the
body of the design algorithm, but are not
supported as inputs to the top-level design
function.

Enumerations enumeration Enumeration values must be monotonically
increasing.

If your target language is Verilog®, all
enumeration member names must be unique
within the design.

Enumerations at the top-level DUT ports are
not supported with the following workflows or
verification methods:

• IP Core Generation workflow
• FPGA Turnkey workflow
• FPGA-in-the-Loop
• HDL Cosimulation

Global variables are not supported for HDL code generation.

Supported Operators

Note HDL code generated for large vector and matrix inputs to arithmetic operations can result in
inefficient code. The code for these operators is not automatically pipelined.
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Arithmetic Operators

Operation Operator Syntax Equivalent Function Restrictions
Binary addition A+B plus(A,B) Neither A nor B can be

data type logical.
Matrix multiplication A*B mtimes(A,B) HDL code generated for

matrix arithmetic
operations is not
pipelined, and can
result in inefficient
code.

Arraywise multiplication A.*B times(A,B) Neither A nor B can be
data type logical.

Matrix power A^B mpower(A,B) A and B must be scalar,
and B must be an
integer.

HDL code generated for
matrix arithmetic
operations is not
pipelined, and can
result in inefficient
code.

Arraywise power A.^B power(A,B) A and B must be scalar,
and B must be an
integer.

Complex transpose A' ctranspose(A) –
Matrix transpose A.' transpose(A)  
Matrix concat [A B] None –
Matrix index A(r c) None Before you use a

variable, you must fully
define it.

Logical Operators

Operation Operator Syntax M Function
Equivalent

Notes

Logical And A&B and(A,B) –
Logical Or A|B or(A,B) –
Logical Xor A xor B xor(A,B) –
Logical And (short
circuiting)

A&&B N/A Use short circuiting
logical operators within
conditionals.

Logical Or (short
circuiting)

A||B N/A Use short circuiting
logical operators within
conditionals.

Element complement ~A not(A) –

2 MATLAB Algorithm Design
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Relational Operators

Relation Operator Syntax Equivalent Function
Less than A<B lt(A,B)
Less than or equal to A<=B le(A,B)
Greater than or equal to A>=B ge(A,B)
Greater than A>B gt(A,B)
Equal A==B eq(A,B)
Not equal A~=B ne(A,B)

Control Flow Statements
HDL Coder supports the following control flow statements and constructs with restrictions.

Control Flow Statement Restrictions
for Do not use for loops without static bounds.

Do not use the & and | operators within conditions of a for statement.
Instead, use the && and || operators.

HDL Coder does not support nonscalar expressions in the conditions of
for statements. Instead, use the all or any functions to collapse logical
vectors into scalars.

if Do not use the & and | operators within conditions of an if statement.
Instead, use the && and || operators.

HDL Coder does not support nonscalar expressions in the conditions of
if statements. Instead, use the all or any functions to collapse logical
vectors into scalars.

switch The conditional expression in a switch or case statement must use
only:

• uint8, uint16, uint32, int8, int16, or int32 data types
• Scalar data

If multiple case statements make assignments to the same variable, the
numeric type and fimath specification for that variable must be the
same in every case statement.

The following control flow statements are not supported:

• while
• break
• continue
• return
• parfor

Avoid using the following vector functions, as they may generate loops containing break statements:
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• isequal
• bitrevorder
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Persistent Variables and Persistent Array Variables

Persistent Variables
Persistent variables enable you to model registers. If you need to preserve state between invocations
of your MATLAB algorithm, use persistent variables.

Before you use a persistent variable, you must initialize it with a statement specifying its size and
type. You can initialize a persistent variable with either a constant value or a variable, as in the
following examples:

% Initialize with a constant
persistent p;
if isempty(p)
    p = fi(0,0,8,0); 
end

% Initialize with a variable
initval = fi(0,0,8,0);

persistent p;
if isempty(p)
    p = initval; 
end

Use a logical expression that evaluates to a constant to test whether a persistent variable has been
initialized, as in the preceding examples. Using a logical expression that evaluates to a constant
ensures that the generated HDL code for the test is executed only once, as part of the reset process.

You can initialize multiple variables within a single logical expression, as in the following example:

% Initialize with  variables
initval1 = fi(0,0,8,0);
initval2 = fi(0,0,7,0);

persistent p;
if isempty(p)
    x = initval1; 
    y = initval2; 
end

Note  If persistent variables are not initialized as described above, extra sentinel variables can
appear in the generated code. These sentinel variables can translate to inefficient hardware.

Persistent Array Variables
Persistent array variables enable you to model RAM.

By default, the HDL Coder software optimizes the area of your design by mapping persistent array
variables to RAM. If persistent array variables are not mapped to RAM, they map to registers. RAM
mapping can therefore reduce the area of your design in the target hardware.

 Persistent Variables and Persistent Array Variables
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To learn how persistent array variables map to RAM, see “Map Persistent Arrays and dsp.Delay to
RAM” on page 8-3.

2 MATLAB Algorithm Design

2-8



Complex Data Type Support

In this section...
“Declaring Complex Signals” on page 2-9
“Conversion Between Complex and Real Signals” on page 2-10
“Support for Vectors of Complex Numbers” on page 2-10

Declaring Complex Signals
The following MATLAB code declares several local complex variables. x and y are declared by
complex constant assignment; z is created using the using the complex() function.
function [x,y,z] = fcn

% create 8 bit complex constants
x = uint8(1 + 2i);
y = uint8(3 + 4j);
z = uint8(complex(5, 6));

The following code example shows VHDL® code generated from the previous MATLAB code.
ENTITY complex_decl IS
    PORT (
        clk : IN std_logic; 
        clk_enable : IN std_logic; 
        reset : IN std_logic;
        x_re : OUT std_logic_vector(7 DOWNTO 0);
        x_im : OUT std_logic_vector(7 DOWNTO 0);
        y_re : OUT std_logic_vector(7 DOWNTO 0);
        y_im : OUT std_logic_vector(7 DOWNTO 0);
        z_re : OUT std_logic_vector(7 DOWNTO 0);
        z_im : OUT std_logic_vector(7 DOWNTO 0));
END complex_decl;
 
 
ARCHITECTURE fsm_SFHDL OF complex_decl IS
 
BEGIN
    x_re <= std_logic_vector(to_unsigned(1, 8));
    x_im <= std_logic_vector(to_unsigned(2, 8));
    y_re <= std_logic_vector(to_unsigned(3, 8));
    y_im <= std_logic_vector(to_unsigned(4, 8));
    z_re <= std_logic_vector(to_unsigned(5, 8));
    z_im <= std_logic_vector(to_unsigned(6, 8));
END fsm_SFHDL;

As shown in the example, complex inputs, outputs and local variables declared in MATLAB code
expand into real and imaginary signals. The naming conventions for these derived signals are:

• Real components have the same name as the original complex signal, suffixed with the default
string '_re' (for example, x_re). To specify a different suffix, set the Complex real part postfix
option (or the corresponding ComplexRealPostfix CLI property).

• Imaginary components have the same name as the original complex signal, suffixed with the string
'_im' (for example, x_im). To specify a different suffix, set the Complex imaginary part postfix
option (or the corresponding ComplexImagPostfix CLI property).

A complex variable declared in MATLAB code remains complex during the entire length of the
program.
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Conversion Between Complex and Real Signals
The MATLAB code provides access to the fields of a complex signal via the real() and imag()
functions, as shown in the following code.
function [Re_part, Im_part]= fcn(c)
% Output real and imaginary parts of complex input signal
 
Re_part = real(c);
Im_part = imag(c);

HDL Coder supports these constructs, accessing the corresponding real and imaginary signal
components in generated HDL code. In the following Verilog code example, the MATLAB complex
signal variable c is flattened into the signals c_re and c_im. Each of these signals is assigned to the
output variables Re_part and Im_part, respectively.
module Complex_To_Real_Imag (clk, clk_enable, reset, c_re, c_im, Re_part, Im_part );

    input clk;
    input clk_enable;
    input reset;
    input [3:0] c_re;
    input [3:0] c_im;
    output [3:0] Re_part;
    output [3:0] Im_part;

    // Output real and imaginary parts of complex input signal
    assign Re_part = c_re;
    assign Im_part = c_im;

Support for Vectors of Complex Numbers
You can generate HDL code for vectors of complex numbers. Like scalar complex numbers, vectors of
complex numbers are flattened down to vectors of real and imaginary parts in generated HDL code.

For example in the following script t is a complex vector variable of base type ufix4 and size [1,2].
function y = fcn(u1, u2)
 
t = [u1 u2];
y = t+1;

In the generated HDL code the variable t is broken down into real and imaginary parts with the same
two-element array. .
VARIABLE t_re : vector_of_unsigned4(0 TO 3);
VARIABLE t_im : vector_of_unsigned4(0 TO 3);

The real and imaginary parts of the complex number have the same vector of type ufix4, as shown
in the following code.
TYPE vector_of_unsigned4 IS ARRAY (NATURAL RANGE <>) OF unsigned(3 DOWNTO 0);

Complex vector-based operations (+,-,* etc.,) are similarly broken down to vectors of real and
imaginary parts. Operations are performed independently on the elements of such vectors, following
MATLAB semantics for vectors of complex numbers.

In both VHDL and Verilog code generated from MATLAB code, complex vector ports are always
flattened. If complex vector variables appear on inputs and outputs, real and imaginary vector
components are further flattened to scalars.

In the following code, u1 and u2 are scalar complex numbers and y is a vector of complex numbers.
function y = fcn(u1, u2)
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t = [u1 u2];
y = t+1;

This generates the following port declarations in a VHDL entity definition.
ENTITY _MATLAB_Function IS
    PORT (
        clk : IN std_logic; 
        clk_enable : IN std_logic; 
        reset : IN std_logic;
        u1_re : IN vector_of_std_logic_vector4(0 TO 1);
        u1_im : IN vector_of_std_logic_vector4(0 TO 1);
        u2_re : IN vector_of_std_logic_vector4(0 TO 1);
        u2_im : IN vector_of_std_logic_vector4(0 TO 1);
        y_re : OUT vector_of_std_logic_vector32(0 TO 3);
        y_im : OUT vector_of_std_logic_vector32(0 TO 3));
END _MATLAB_Function;
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HDL Code Generation for System Objects
In this section...
“Why Use System Objects?” on page 2-12
“Predefined System Objects” on page 2-12
“User-Defined System Objects” on page 2-12
“Limitations of HDL Code Generation for System Objects” on page 2-12
“System object Examples for HDL Code Generation” on page 2-13

HDL Coder supports both predefined and user-defined System objects for code generation.

Why Use System Objects?
System objects provide a design advantage because:

• You can save time during design and testing by using existing System object components.
• You can design and qualify custom System objects for reuse in multiple designs.
• You can define your algorithm in a System object once, and reuse multiple instances of it in a

single MATLAB design.

This idiom cannot be used with MATLAB functions that have state. For example, if the algorithm
has state and requires the use of persistent variables, that function cannot be instantiated
multiple times in a design. Instead, you would need to copy and rename the function for each
instance.

• HDL code that you generate from System objects is modular and more readable.

Predefined System Objects
Predefined System objects that are available with MATLAB, DSP System Toolbox™, and
Communications Toolbox™ are supported for HDL code generation. For a list, see “Predefined System
Objects Supported for HDL Code Generation” on page 2-14.

User-Defined System Objects
You can create user-defined System objects for HDL code generation. For an example, see “Generate
Code for User-Defined System Objects” on page 2-17.

Limitations of HDL Code Generation for System Objects
The following limitations apply to HDL code generation for all System objects:

• Your design can call the step method only once per System object.
• step must not be inside a nested conditional statement, such as a nested loop, if statement, or

switch statement.
• step must not be inside a conditional statement that contains a matrix indexing operation.
• A System object must be declared persistent if it has state.
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A System object has state when it has a tunable private or public property, or a property with the
DiscreteState attribute.

• You can use the dsp.Delay System object only in feed-forward delay modeling.
• UseMatrixTypesInHDL attribute must be set to ‘off’, if you have a System object in your

MATLAB code.
• Enumerations are not supported.
• Global variables are not supported.

Supported Methods

For predefined System Objects, step is the only method supported for HDL code generation.

For user-defined System Objects, either the step method, or the output and update methods, are
supported for HDL code generation.

Additional Restrictions for Predefined System Objects

Predefined System objects are not supported for HDL code generation from within a MATLAB System
block.

Additional Restrictions for User-Defined System Objects

In addition to the limitations for all System objects, the following restrictions apply to user-defined
System objects for HDL code generation:

• In the setupImpl and resetImpl methods, if you assign values to properties or variables, the
values must be constants.

• If your design uses the output and update methods, it can call each method only once per
System object.

• Initial and reset values for properties must be compile-time constant.
• User-defined System objects must not be public properties.
• A step method with multiple outputs cannot be called within a conditional statement.

System object Examples for HDL Code Generation
To learn how to use System objects for HDL code generation, view the MATLAB designs in the
following examples:

• “HDL Code Generation from System Objects” on page 5-14
• “Model State with Persistent Variables and System Objects” on page 2-29
• “Generate Code for User-Defined System Objects” on page 2-17
• “Integrate Custom HDL Code Into MATLAB Design” on page 5-23

 HDL Code Generation for System Objects

2-13



Predefined System Objects Supported for HDL Code
Generation

In this section...
“Predefined System Objects in MATLAB Code” on page 2-14
“Predefined System Objects in the MATLAB System Block” on page 2-15

Predefined System Objects in MATLAB Code
HDL Coder supports the following MATLAB System objects for HDL code generation:

• hdl.RAM
• hdl.BlackBox

HDL Coder supports the following Communications Toolbox System objects for HDL code generation:

• comm.BPSKModulator, comm.BPSKDemodulator
• comm.PSKModulator, comm.PSKDemodulator
• comm.QPSKModulator, comm.QPSKDemodulator
• comm.ConvolutionalInterleaver, comm.ConvolutionalDeinterleaver
• comm.ViterbiDecoder
• comm.HDLCRCDetector, comm.HDLCRCGenerator
• comm.HDLRSDecoder, comm.HDLRSEncoder

HDL Coder supports the following DSP System Toolbox System objects for HDL code generation:

• dsp.Delay
• dsp.BiquadFilter
• dsp.DCBlocker
• dsp.HDLComplexToMagnitudeAngle
• dsp.HDLFIRRateConverter
• dsp.HDLFFT, dsp.HDLIFFT
• dsp.HDLChannelizer
• dsp.HDLNCO
• dsp.FIRFilter
• dsp.HDLFIRFilter

HDL Coder supports the following Vision HDL Toolbox™ System objects for HDL code generation:

• visionhdl.BilateralFilter
• visionhdl.BirdsEyeView
• visionhdl.ChromaResampler
• visionhdl.ColorSpaceConverter
• visionhdl.DemosaicInterpolator
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• visionhdl.EdgeDetector
• visionhdl.GammaCorrector
• visionhdl.LookupTable
• visionhdl.Histogram
• visionhdl.ImageStatistics
• visionhdl.ROISelector
• visionhdl.LineBuffer
• visionhdl.PixelStreamAligner
• visionhdl.ImageFilter
• visionhdl.MedianFilter
• visionhdl.Closing
• visionhdl.Dilation
• visionhdl.Erosion
• visionhdl.Opening
• visionhdl.GrayscaleClosing
• visionhdl.GrayscaleDilation
• visionhdl.GrayscaleErosion
• visionhdl.GrayscaleOpening

Predefined System Objects in the MATLAB System Block
A subset of these predefined System objects are supported for code generation when you use them in
a MATLAB System block. To learn more, see “HDL Code Generation” (Simulink) on the MATLAB
System page.
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Load constants from a MAT-File
You can load compile-time constants from a MAT-file with the coder.load function in your MATLAB
design.

For example, you can create a MAT-file, sinvals.mat, that contains fixed-point values of sin by
entering the following commands in MATLAB:

sinvals = sin(fi(-pi:0.1:pi, 1, 16,15));
save sinvals.mat sinvals;

You can then generate HDL code from the following MATLAB code, which loads the constants from
sinvals.mat into a persistent variable, pConstStruct, and assigns the values to a variable that is
not persistent, sv.

persistent pConstStruct;
if isempty(pConstStruct)
    pConstStruct = coder.load('sinvals.mat');
end
sv = pConstStruct.sinvals;

2 MATLAB Algorithm Design

2-16



Generate Code for User-Defined System Objects
In this section...
“How To Create A User-Defined System object” on page 2-17
“User-Defined System object Example” on page 2-17

How To Create A User-Defined System object
To create a user-defined System object and generate code:

1 Create a class that subclasses from matlab.System.
2 Define one of the following sets of methods:

• setupImpl and stepImpl
• setupImpl, outputImpl, and updateImpl

To use the outputImpl and updateImpl methods, your System object must also inherit from
the matlab.system.mixin.Nondirect class.

3 Optionally, if your System object has private state properties, define the resetImpl method to
initialize them to zero.

4 Write a top-level design function that creates an instance of your System object and calls the
step method, or the output and update methods.

Note The resetImpl method runs automatically during System object initialization. For HDL
code generation, you cannot call the public reset method.

5 Write a test bench function that exercises the top-level design function.
6 Generate HDL code.

User-Defined System object Example
This example shows how to generate HDL code for a user-defined System object that implements the
setupImpl and stepImpl methods.

1 In a writable folder, create a System object, CounterSysObj, which subclasses from
matlab.System. Save the code as CounterSysObj.m.

classdef CounterSysObj < matlab.System

    properties (Nontunable)
        Threshold = int32(1)
    end
    properties (Access=private)
        State
        Count
    end
    methods
        function obj = CounterSysObj(varargin)
            setProperties(obj,nargin,varargin{:});
        end
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    end
    
    methods (Access=protected)
        function setupImpl(obj, ~)
            % Initialize states
            obj.Count = int32(0);
            obj.State = int32(0);
        end
        function y = stepImpl(obj, u)
            if obj.Threshold > u(1)
                obj.Count(:) = obj.Count + int32(1); % Increment count
            end
            y = obj.State;          % Delay output
            obj.State = obj.Count;  % Put new value in state
        end
    end
end

The stepImpl method implements the System object functionality. The setupImpl method
defines the initial values for the persistent variables in the System object.

2 Write a function that uses this System object and save it as myDesign.m. This function is your
DUT.

function y = myDesign(u)

persistent obj
if isempty(obj)
    obj = CounterSysObj('Threshold',5);
end

y = step(obj, u);

end
3 Write a test bench that calls the DUT function and save it as myDesign_tb.m.

clear myDesign
for ii=1:10
    y = myDesign(int32(ii));
end

4 Generate HDL code for the DUT function as you would for any other MATLAB code, but skip
fixed-point conversion.

See Also

More About
• “HDL Code Generation for System Objects” on page 2-12
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Map Matrices to ROM
To map a matrix constant to ROM:

• Read one matrix element at a time.
• The matrix size must be greater than or equal to the RAM Mapping Threshold value.

To learn how to set the RAM mapping threshold in Simulink, see the RAM mapping threshold
(bits) section in “RAM Mapping” on page 14-5. To learn how to set the RAM mapping threshold
in MATLAB, see “How To Enable RAM Mapping” on page 8-3.

• Read accesses to the matrix must not be within a feedback loop.

If your MATLAB code meets these requirements, HDL Coder inserts a no-reset register at the output
of the matrix in the generated code. Many synthesis tools infer a ROM from this code pattern.
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Fixed-Point Bitwise Functions
The following table summarizes bitwise functions in MATLAB and Fixed-Point Designer that are
supported for HDL code generation. The following conventions are used in the table:

• a,b: Denote fixed-point integer operands.
• idx: Denotes an index to a bit within an operand. Indexes can be scalar or vector, depending on

the function.

MATLAB code uses 1-based indexing conventions. In generated HDL code, such indexes are
converted to zero-based indexing conventions.

• lidx, ridx: denote indexes to the left and right boundaries delimiting bit fields. Indexes can be
scalar or vector, depending on the function.

• val: Denotes a Boolean value.

Note Indexes, operands, and values passed as arguments bitwise functions can be scalar or vector,
depending on the function. For information on the individual functions, see “Bitwise Operations”
(Fixed-Point Designer).

MATLAB Syntax Description See Also
bitand(a, b) Bitwise AND bitand
bitandreduce(a, lidx,
ridx)

Bitwise AND of a field of consecutive bits within a.
The field is delimited by lidx , ridx.

Output data type: ufix1

For VHDL, generates the bitwise AND operator
operating on a set of individual slices

For Verilog, generates the reduce operator:

&a[lidx:ridx]

bitandreduce

bitcmp(a) Bitwise complement bitcmp
bitconcat(a, b)
bitconcat([a_vector])
bitconcat(a,
b,c,d,...)

Concatenate fixed-point operands.

Operands can be of different signs.

Output data type: ufixN, where N is the sum of
the word lengths of a and b.

For VHDL, generates the concatenation operator:
(a & b)

For Verilog, generates the concatenation operator:
{a , b}

bitconcat
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MATLAB Syntax Description See Also
bitget(a,idx) Access a bit at position idx.

For VHDL, generates the slice operator: a(idx)

For Verilog, generates the slice operator: a[idx]

bitget

bitor(a, b) Bitwise OR bitor
bitorreduce(a, lidx,
ridx)

Bitwise OR of a field of consecutive bits within a.
The field is delimited by lidx and ridx.

Output data type: ufix1

For VHDL, generates the bitwise OR operator
operating on a set of individual slices.

For Verilog, generates the reduce operator:

|a[lidx:ridx]

bitorreduce

bitset(a, idx, val) Set or clear bit(s) at position idx.

If val = 0, clears the indicated bit(s). Otherwise,
sets the indicated bits.

bitset

bitreplicate(a, n) Concatenate bits of fi object a n times bitreplicate
bitrol(a, idx) Rotate left.

idx must be a positive integer. The value of idx
can be greater than the word length of a. idx is
normalized to mod(idx, wlen). wlen is the word
length of a.

For VHDL, generates the rol operator.

For Verilog, generates the following expression
(where wl is the word length of a:

a << idx || a >> wl - idx

bitrol

bitror(a, idx) Rotate right.

idx must be a positive integer. The value of idx
can be greater than the word length of a. idx is
normalized to mod(idx, wlen) . wlen is the
word length of a.

For VHDL, generates the ror operator.

For Verilog, generates the following expression
(where wl is the word length of a:

a >> idx || a << wl - idx

bitror
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MATLAB Syntax Description See Also
bitset(a, idx, val) Set or clear bit(s) at position idx.

If val = 0, clears the indicated bit(s). Otherwise,
sets the indicated bits.

bitset

bitshift(a, idx) Note: For efficient HDL code generation, use
bitsll, bitsrl, or bitsra instead of bitshift.

Shift left or right, based on the positive or
negative integer value of‘idx.

idx must be an integer.

For positive values of idx, shift left idx bits.

For negative values of idx, shift right idx bits.

If idx is a variable, generated code contains logic
for both left shift and right shift.

Result values saturate if the overflowMode of a
is set to saturate.

bitshift

bitsliceget(a, lidx,
ridx)

Access consecutive set of bits from lidx to ridx.

Output data type: ufixN, where N = lidx-
ridix+1.

bitsliceget

bitsll(a, idx) Shift left logical.

idx must be a scalar within the range

0 <= idx < wl

wl is the word length of a.

Overflow and rounding modes of input operand a
are ignored.

Generates sll operator in VHDL.

Generates << operator in Verilog.

bitsll
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MATLAB Syntax Description See Also
bitsra(a, idx) Shift right arithmetic.

idx must be a scalar within the range

0 <= idx < wl

wl is the word length of a,

Overflow and rounding modes of input operand a
are ignored.

Generates sra operator in VHDL.

Generates >>> operator in Verilog.

bitsra

bitsrl(a, idx) Shift right logical.

idx must be a scalar within the range

0 <= idx < wl

wl is the word length of a.

Overflow and rounding modes of input operand a
are ignored.

Generates srl operator in VHDL.

Generates >> operator in Verilog.

bitsrl

bitxor(a, b) Bitwise XOR bitxor
bitxorreduce(a, lidx,
ridx)

Bitwise XOR reduction.

Bitwise XOR of a field of consecutive bits within a.
The field is delimited by lidx and ridx.

Output data type: ufix1

For VHDL, generates a set of individual slices.

For Verilog, generates the reduce operator:

^a[lidx:ridx]

bitxorreduce

getlsb(a) Return value of LSB. getlsb
getmsb(a) Return value of MSB. getmsb

See Also

Related Examples
• “Bitwise Operations in MATLAB for HDL Code Generation” on page 2-32
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More About
• “Bitwise Operations” (Fixed-Point Designer)
• “Fixed-Point Run-Time Library Functions” on page 2-25
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Fixed-Point Run-Time Library Functions
HDL code generation support for fixed-point run-time library functions from the Fixed-Point Designer
is summarized in the following table. See “Fixed-Point Function Limitations” on page 2-27 for
general limitations of fixed-point run-time library functions for code generation.

Function Remarks and Limitations
abs Double and complex data types not supported.
add —
bitand —
bitandreduce —
bitcmp —
bitconcat —
bitget —
bitor —
bitorreduce —
bitreplicate —
bitrol —
bitror —
bitset —
bitshift —
bitsliceget —
bitsll —
bitsra —
bitsrl —
bitxor —
bitxorreduce —
ceil —
complex —
conj —
convergent —
ctranspose —
divide • For HDL Code generation, the divisor must be a constant and a power

of two.
• Non-fi inputs must be constant; that is, their values must be known at

compile time so that they can be cast to fi objects.
• Complex and imaginary divisors are not supported.
• Code generation in MATLAB does not support the syntax

T.divide(a,b).
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Function Remarks and Limitations
eps • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single and fi double
signals.

eq —
fi —
fimath —
fix —
floor —
ge —
getlsb —
getmsb —
gt —
horzcat —
int8, int16, int32 —
isequal —
isfi —
isfimath —
isfimathlocal —
isnumerictype —
issigned —
le —
lowerbound —
lsb —
lt —
max —
min —
minus —
mpower Both inputs must be scalar, and the exponent input, k, must be a constant

integer.
mtimes —
nearest —
numerictype —
ones Dimensions must be real, nonnegative integers.
plus Inputs cannot be data type logical.
power Both inputs must be scalar, and the exponent input, k, must be a constant

integer.
range —
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Function Remarks and Limitations
realmax —
realmin —
reinterpretcast —
rescale —
round —
sfi —
sign —
sqrt —
sub —
subsasgn Supported data types for HDL code generation are listed in “Supported

MATLAB Data Types, Operators, and Control Flow Statements” on page 2-
2.

subsref Supported data types for HDL code generation are listed in “Supported
MATLAB Data Types, Operators, and Control Flow Statements” on page 2-
2.

sum —
times Inputs cannot be data type logical.
ufi —
uint8, uint16, uint32 —
uminus —
upperbound —
vertcat —

Fixed-Point Function Limitations
In addition to function-specific limitations listed in the table, the following general limitations apply to
the use of Fixed-Point Designer functions in generated HDL code:

• fipref and quantizer objects are not supported.
• Slope and bias scaling are not supported.
• Dot notation is only supported for getting the values of fimath and numerictype properties. Dot

notation is not supported for fi objects, and it is not supported for setting properties.
• Word lengths greater than 128 bits are not supported.
• You cannot change the fimath or numerictype of a given variable after that variable has been

created.
• The boolean and ScaledDouble values of the DataTypeMode and DataType properties are not

supported.
• For all SumMode property settings other than FullPrecision, the CastBeforeSum property

must be set to true.
• The numel function returns the number of elements of fi objects in the generated code.
• General limitations of C/C++ code generated from MATLAB apply. See “MATLAB Language

Features That Code Generation Does Not Support” (Fixed-Point Designer) for more information.
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See Also

Related Examples
• “Bitwise Operations in MATLAB for HDL Code Generation” on page 2-32

More About
• “Bitwise Operations” (Fixed-Point Designer)
• “Fixed-Point Bitwise Functions” on page 2-20
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Model State with Persistent Variables and System Objects
This example shows how to use persistent variables and System objects to model state and delays in a
MATLAB® design for HDL code generation.

Introduction

Using System objects to model delay results in concise generated code.

In MATLAB, multiple calls to a function having persistent variables do not result in multiple delays.
Instead, the state in the function gets updated multiple times.

% In order to reuse code implemented in a function with states,
% you need to duplicate functions multiple times to create multiple
% instances of the algorithm with delay.

Examine the MATLAB Code

Let us take a quick look at the implementation of the Sobel algorithm.

Examine the design to see how the delays and line buffers are modeled using:

• Persistent variables: mlhdlc_sobel
• System objects: mlhdlc_sysobj_sobel

Notice that the 'filterdelay' function is duplicated with different function names in 'mlhdlc_sobel' code
to instantiate multiple versions of the algorithm in MATLAB for HDL code generation.

The delay line implementation is more complicated when done using MATLAB persistent variables.

Now examine the simplified implementation of the same algorithm using System objects in
'mlhdlc_sysobj_sobel'.

When used within the constraints of HDL code generation, the dsp.Delay objects always map to
registers. For persistent variables to be inferred as registers, you have to be careful to read the
variable before writing to it to map it to a register.

MATLAB Design

demo_files = {...
    'mlhdlc_sysobj_sobel', ...
    'mlhdlc_sysobj_sobel_tb', ...
    'mlhdlc_sobel', ...
    'mlhdlc_sobel_tb'
    };

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a temporary folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');
mlhdlc_temp_dir = [tempdir 'mlhdlc_delay_modeling'];

% create a temporary folder and copy the MATLAB files
cd(tempdir);
[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');
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mkdir(mlhdlc_temp_dir);
cd(mlhdlc_temp_dir);

for ii=1:numel(demo_files)
    copyfile(fullfile(mlhdlc_demo_dir, [demo_files{ii},'.m*']), mlhdlc_temp_dir);
end

Known Limitations

For predefined System Objects, HDL Coder™ only supports the 'step' method and does not support
'output' and 'update' methods.

With support for only the step method, delays cannot be used in modeling feedback paths. For
example, the following piece of MATLAB code cannot be supported using the dsp.Delay System
object.

%#codegen
function y = accumulate(u)
persistent p;
if isempty(p)
   p = 0;
end
y = p;
p = p + u;

Create a New HDL Coder Project

To create a new project, enter the following command:

coder -hdlcoder -new mlhdlc_sobel

Next, add the file 'mlhdlc_sobel.m' to the project as the MATLAB Function and 'mlhdlc_sobel_tb.m' as
the MATLAB Test Bench.

You can refer to the Getting Started with MATLAB to HDL Workflow tutorial for a more complete
tutorial on creating and populating MATLAB HDL Coder projects.

Run Fixed-Point Conversion and HDL Code Generation

Launch the Workflow Advisor and right-click the 'Code Generation' step. Choose the option 'Run to
selected task' to run all the steps from the beginning through HDL code generation.

Examine the generated HDL code by clicking the hyperlinks in the Code Generation Log window.

Now, create a new project for the system object design:

coder -hdlcoder -new mlhdlc_sysobj_sobel

Add the file 'mlhdlc_sysobj_sobel.m' to the project as the MATLAB Function and
'mlhdlc_sysobj_sobel_tb.m' as the MATLAB Test Bench.

Repeat the code generation steps and examine the generated fixed-point MATLAB and HDL code.

Additional Notes:

You can model integer delay using dsp.Delay object by setting the 'Length' property to be greater
than 1. These delay objects will be mapped to shift registers in the generated code.
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If the optimization option 'Map persistent array variables to RAMs' is enabled, delay System objects
will get mapped to block RAMs under the following conditions:

• 'InitialConditions' property of the dsp.Delay is set to zero.
• Delay input data type is not floating-point.
• RAMSize (DelayLength * InputWordLength) is greater than or equal to the 'RAM Mapping

Threshold'.

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');
mlhdlc_temp_dir = [tempdir 'mlhdlc_delay_modeling'];
clear mex;
cd (mlhdlc_demo_dir);
rmdir(mlhdlc_temp_dir, 's');
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Bitwise Operations in MATLAB for HDL Code Generation
HDL Coder supports bit shift, bit rotate, bit slice operations that mimic HDL-specific operators
without saturation and rounding logic.

Bit Shiftting and Rotation
Bit Shifting and Rotation Algorithms

The following code implements a barrel shifter/rotator that performs a selected operation (based on
the mode argument) on a fixed-point input operand.

function y   = fcn(u, mode)
% Multi Function Barrel Shifter/Rotator

% fixed width shift operation
fixed_width = uint8(3);

switch mode
    case 1
        % shift left logical
        y = bitsll(u, fixed_width);
    case 2
        % shift right logical
        y = bitsrl(u, fixed_width);
    case 3
        % shift right arithmetic
        y = bitsra(u, fixed_width);
    case 4
        % rotate left
        y = bitrol(u, fixed_width);
    case 5
        % rotate right
        y = bitror(u, fixed_width);
    otherwise
        % do nothing
        y = u;
end

Generated Code

In VHDL code generated for this function, the shift and rotate functions map directly to shift and
rotate instructions in VHDL.

     CASE mode IS
            WHEN "00000001" =>
                -- shift left logical
                --'<S2>:1:8'
                cr := signed(u) sll 3;
                y <= std_logic_vector(cr);
            WHEN "00000010" =>
                -- shift right logical
                --'<S2>:1:11'
                b_cr := signed(u) srl 3;
                y <= std_logic_vector(b_cr);
            WHEN "00000011" =>
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                -- shift right arithmetic
                --'<S2>:1:14'
                c_cr := SHIFT_RIGHT(signed(u) , 3);
                y <= std_logic_vector(c_cr);
            WHEN "00000100" =>
                -- rotate left
                --'<S2>:1:17'
                d_cr := signed(u) rol 3;
                y <= std_logic_vector(d_cr);
            WHEN "00000101" =>
                -- rotate right
                --'<S2>:1:20'
                e_cr := signed(u) ror 3;
                y <= std_logic_vector(e_cr);
            WHEN OTHERS => 
                -- do nothing
                --'<S2>:1:23'
                y <= u;
        END CASE;

The corresponding Verilog code is similar, except that Verilog does not have native operators for
rotate instructions.

             case ( mode)
                1 :
                    begin
                        // shift left logical
                        //'<S2>:1:8'
                        cr = u <<< 3;
                        y = cr;
                    end
                2 :
                    begin
                        // shift right logical
                        //'<S2>:1:11'
                        b_cr = u >> 3;
                        y = b_cr;
                    end
                3 :
                    begin
                        // shift right arithmetic
                        //'<S2>:1:14'
                        c_cr = u >>> 3;
                        y = c_cr;
                    end
                4 :
                    begin
                        // rotate left
                        //'<S2>:1:17'
                        d_cr = {u[12:0], u[15:13]};
                        y = d_cr;
                    end
                5 :
                    begin
                        // rotate right
                        //'<S2>:1:20'
                        e_cr = {u[2:0], u[15:3]};
                        y = e_cr;
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                    end
                default :
                    begin
                        // do nothing
                        //'<S2>:1:23'
                        y = u;
                    end
            endcase

Bit Slicing and Bit Concatenation
The bitsliceget and bitconcat functions map directly to slice and concatenate operators in both
VHDL and Verilog.

Bit Slicing and Concatenation Algorithm

You can use the functions bitsliceget and bitconcat to access and manipulate bit slices (fields)
in a fixed-point or integer word. As an example, consider the operation of swapping the upper and
lower 4-bit nibbles of an 8-bit byte. The following example accomplishes this task without resorting to
traditional mask-and-shift techniques.

function y = fcn(u)
% NIBBLE SWAP 
y = bitconcat( …
      bitsliceget(u, 4, 1), 
      bitsliceget(u, 8, 5));

Generated Code

The following listing shows the corresponding generated VHDL code.

ENTITY fcn IS
    PORT (
        clk : IN std_logic; 
        clk_enable : IN std_logic; 
        reset : IN std_logic;
        u : IN std_logic_vector(7 DOWNTO 0);
        y : OUT std_logic_vector(7 DOWNTO 0));
END nibble_swap_7b;

ARCHITECTURE fsm_SFHDL OF fcn IS

BEGIN
    -- NIBBLE SWAP
    y <= u(3 DOWNTO 0) & u(7 DOWNTO 4);
END fsm_SFHDL;

The following listing shows the corresponding generated Verilog code.

module fcn (clk, clk_enable, reset, u, y );
    input clk;
    input clk_enable;
    input reset;
    input [7:0] u;

2 MATLAB Algorithm Design

2-34



    output [7:0] y;

    // NIBBLE SWAP
    assign y = {u[3:0], u[7:4]};

endmodule

See Also

More About
• “Bitwise Operations” (Fixed-Point Designer)
• “Fixed-Point Bitwise Functions” on page 2-20
• “Fixed-Point Run-Time Library Functions” on page 2-25
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Guidelines for Writing MATLAB Code to Generate Efficient HDL
Code

MATLAB Design Requirements for HDL Code Generation
When you generate HDL code from your MATLAB design, you are converting an algorithm into an
architecture that must meet hardware area and speed requirements.

Your MATLAB design has the following requirements:

• MATLAB code within the design must be supported for HDL code generation.
• Inputs and outputs must not be matrices or structures.

If you are generating code from the command line, verify your code readiness for code generation
with the following command:

coder.screener('design_function_name')

If you use the HDL Workflow Advisor to generate code, this check runs automatically.

For a MATLAB language support reference, including supported functions from the Fixed-Point
Designer, see “Functions Supported for HDL Code Generation — Alphabetical List” on page 1-2.

Guidelines for Writing MATLAB code
For better HDL code and faster code generation, design your MATLAB code according to the
following best practices:

• Serialize your input and output data. Parallel data processing structures require more hardware
resources and a higher pin count.

• Use add and subtract algorithms instead of algorithms that use functions like sine, divide, and
modulo. Add and subtract operations use fewer hardware resources.

• Avoid large arrays and matrices. Large arrays and matrices require more registers and RAM for
storage.

• Convert your code from floating-point to fixed-point. Floating-point data types are inefficient for
hardware realization. HDL Coder provides an automated workflow for floating-point to fixed-point
conversion.

• Unroll loops to increase speed at the cost of higher area; unroll fewer loops and enable the loop
streaming optimization to conserve area at the cost of lower throughput.

See Also
Apps
HDL Coder

Classes
coder.HdlConfig | coder.hdl.loopspec | coder.hdl.pipeline
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More About
• “Optimize MATLAB Loops” on page 8-11
• “For-Loop Best Practices for HDL Code Generation” on page 2-38
• “Supported MATLAB Data Types, Operators, and Control Flow Statements” on page 2-2
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For-Loop Best Practices for HDL Code Generation
When you generate HDL code from your MATLAB design, you are converting an algorithm into an
architecture that must meet hardware area and speed requirements. Some best practices for using
loops in MATLAB code for HDL code generation are:

• Use monotonically increasing loop counters, with increments of 1, to minimize the amount of
hardware generated in the HDL code.

• If you want to use the loop streaming optimization:

• When assigning new values to persistent variables inside a loop, do not use other persistent
variables on the right side of the assignment. Instead, use an intermediate variable.

• If a loop modifies any elements in a persistent array, the loop should modify all of the elements
in the persistent array.

Monotonically Increasing Loop Counters
By using monotonically increasing loop counters with increments of 1, you can reduce the amount of
hardware in the generated HDL code. The following loop is an example of a monotonically increasing
loop counter with increments of 1.

a=1;
for i=1:10
    a=a+1;
end

If a loop counter increases by an increment other than 1, the generated HDL code can require
additional adders. Due to this additional hardware, do not use the following type of loop.

a=1;
for i=1:2:10
    a=a+1;
end

If a loop counter decreases, the generated HDL code can require additional adders. Due to this
additional hardware, do not use the following type of loop.

a=1;
for i=10:-1:1
    a=a+1;
end

Persistent Variables in Loops
If a loop contains multiple persistent variables, when you assign values to persistent variables, use
intermediate variables that are not persistent on the right side of the assignment. This practice
makes dependencies clear to the compiler and assists internal optimizations during the HDL code
generation process. If you want to use the loop streaming optimization to reduce the amount of
generated hardware, this practice is recommended.

In the following example, var1 and var2 are persistent variables. var1 is used on the right side of
the assignment. Because a persistent variable is on the right side of an assignment, do not use this
type of loop:
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for i=1:10
    var1 = 1 + i;
    var2 = var1 * 2;
end

Instead of using var1 on the right side of the assignment, use an intermediate variable that is not
persistent. This example demonstrates this with the intermediate variable var_intermediate.

for i=1:10
    var_intermediate = 1 + i;
    var1 = var_intermediate;
    var2 = var_intermediate * 2;
end

Persistent Arrays in Loops
If a loop modifies elements in a persistent array, make sure that the loop modifies all of the elements
in the persistent array. If all elements of the persistent array are not modified within the loop, HDL
Coder cannot perform the loop streaming optimization.

In the following example, a is a persistent array. The first element is modified outside of the loop. Do
not use this type of loop.

for i=2:10
    a(i)=1+i;
 end
 a(1)=24;

Rather than modifying the first element outside the loop, modify all of the elements inside the loop.

for i=1:10
   if i==1
      a(i)=24;
   else
      a(i)=1+i;
   end
end

See Also
Apps
HDL Coder

Classes
coder.HdlConfig | coder.hdl.loopspec | coder.hdl.pipeline

More About
• “Optimize MATLAB Loops” on page 8-11
• “Guidelines for Writing MATLAB Code to Generate Efficient HDL Code” on page 2-36
• “Supported MATLAB Data Types, Operators, and Control Flow Statements” on page 2-2
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MATLAB Test Bench Requirements and Best Practices for HDL
Code Generation

What Is a MATLAB Test Bench?
A test bench is a MATLAB script or function that you write to test the algorithm in your MATLAB
design function. The test bench varies the input data to the design to simulate real world conditions.
It can also can check that the output data meets design specifications.

HDL Coder uses the data it gathers from running your test bench with your design to infer fixed-point
data types for floating-point to fixed-point conversion. The coder also uses the data to generate HDL
test data for verifying your generated code. For more information on how to write your test bench for
the best results, see “MATLAB Test Bench Requirements and Best Practices for HDL Code
Generation” on page 2-40.

MATLAB Test Bench Requirements
You can use any MATLAB data type and function in your test bench.

A MATLAB test bench has the following requirements:

• For floating-point to fixed-point conversion, the test bench must be a script or a function with no
inputs.

• The inputs and outputs in your MATLAB design interface must use the same data types, sizes, and
complexity in each call site in your test bench.

• If you enable the Accelerate test bench for faster simulation option in the Float-to-Fixed
Workflow, the MATLAB constructs in your test bench loop must be compilable.

MATLAB Test Bench Best Practices
Use the following MATLAB test bench best practices:

• Design your test bench to cover the full numeric range of data that the design must handle. HDL
Coder uses the data that it accumulates from running the test bench to infer fixed-point data types
during floating-point to fixed-point conversion.

If you call the design function multiple times from your test bench, the coder uses the
accumulated data from each instance to infer fixed-point types. Both the design and the test bench
can call local functions within the file or other functions on the MATLAB path. The call to the
design function can be at any level of your test bench hierarchy.

• Before trying to generate code, run your test bench in MATLAB . If simulation is slow, accelerate
your test bench. To learn how to accelerate your simulation, see “Accelerate MATLAB Algorithms”
(MATLAB Coder).

• If you have a loop that calls your design function, use only compilable MATLAB constructs within
the loop and enable the Accelerate test bench for faster simulation option.

• Before each test bench simulation run, use the clear variables command to reset your
persistent variables.

To see an example of a test bench, enter this command:
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showdemo mlhdlc_tutorial_float2fixed_files

See Also
Apps
HDL Coder

Classes
coder.HdlConfig | coder.hdl.loopspec | coder.hdl.pipeline

More About
• “Guidelines for Writing MATLAB Code to Generate Efficient HDL Code” on page 2-36
• “For-Loop Best Practices for HDL Code Generation” on page 2-38
• “Supported MATLAB Data Types, Operators, and Control Flow Statements” on page 2-2
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MATLAB Best Practices and Design
Patterns for HDL Code Generation

• “Model a Counter for HDL Code Generation” on page 3-2
• “Model a State Machine for HDL Code Generation” on page 3-4
• “Generate Hardware Instances For Local Functions” on page 3-8
• “Implement RAM Using MATLAB Code” on page 3-10
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Model a Counter for HDL Code Generation
In this section...
“MATLAB Counter” on page 3-2
“MATLAB Code for the Counter” on page 3-2
“Best Practices in this Example” on page 3-3

MATLAB Counter
This design pattern shows a MATLAB example of a counter, which is suitable for HDL code
generation.

This model demonstrates the following best practices for writing MATLAB code to generate HDL
code:

• Initialize persistent variables.
• Read persistent variables before they are modified.

This Simulink model illustrates the counter modeled in this example.

MATLAB Code for the Counter
The function mlhdlc_counter is a behavioral model of a four bit synchronous up counter. The input
signal, enable_ctr, triggers the value of the count register, count_val, to increase by one. The
counter continues to increase by one each time the input is nonzero, until the count reaches a limit of
15. After the counter reaches this limit, the counter returns to zero. A persistent variable, which is
initialized to zero, represents the current value of the count. Two if statements determine the value
of the count based on the input.
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The following section of code defines the mldhlc_counter function.

%#codegen
function count = mlhdlc_counter(enable_ctr)
%four bit synchronous up counter

%persistent variable for the state 
persistent count_val;
if isempty(count_val)
    count_val = 0;
end

%counting up
if enable_ctr
    count_val=count_val+1;

    %limit to four bits
    if count_val>15
        count_val=0;
    end
end

count=count_val;

end

Best Practices in this Example
This design pattern demonstrates two best practices for writing MATLAB code for HDL code
generation:

• Initialize persistent variables to a specific value. In this example, an if statement and the
isempty function initialize the persistent variable. If the persistent variable is not initialized then
HDL code cannot be generated.

• Inside a function, read persistent variables before they are modified, in order for the persistent
variables to be inferred as registers.
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Model a State Machine for HDL Code Generation
In this section...
“MATLAB State Machines” on page 3-4
“MATLAB Code for the Mealy State Machine” on page 3-4
“MATLAB Code for the Moore State Machine” on page 3-5
“Best Practices” on page 3-7

MATLAB State Machines
The following design pattern shows MATLAB examples of Mealy and Moore state machines which are
suitable for HDL code generation.

The MATLAB code in these models demonstrates best practices for writing MATLAB models for HDL
code generation.

• With a switch block, use the otherwise statement to account for all conditions.
• Use variables to designate states in a state machine.

In a Mealy state machine, the output depends on the state and the input. In a Moore state machine,
the output depends only on the state.

MATLAB Code for the Mealy State Machine
The following MATLAB code defines the mlhdlc_fsm_mealy function. A persistent variable
represents the current state. A switch block uses the current state and input to determine the
output and new state. In each case in the switch block, an if-else statement calculates the new
state and output.

%#codegen
function Z = mlhdlc_fsm_mealy(A)
% Mealy State Machine

% y = f(x,u) : 
% all actions are condition actions and 
% outputs are function of state and input 

% define states
S1 = 0;
S2 = 1;
S3 = 2;
S4 = 3;

persistent current_state;
if isempty(current_state)
    current_state = S1;   
end

% switch to new state based on the value state register
switch (current_state) 
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    case S1,
        
        % value of output 'Z' depends both on state and inputs
        if (A)
            Z = true;
            current_state = S1;
        else
            Z = false;            
            current_state = S2;
        end
        
    case S2,
        
        if (A)
            Z = false;
            current_state = S3;
        else
            Z = true;
            current_state = S2;
        end
        
    case S3,
        
        if (A)
            Z = false;            
            current_state = S4;
        else
            Z = true;            
            current_state = S1;
        end
        
    case S4,
        
        if (A)
            Z = true;
            current_state = S1;
        else
            Z = false;            
            current_state = S3;
        end        
        
    otherwise,
        
        Z = false;
end

MATLAB Code for the Moore State Machine
The following MATLAB code defines the mlhdlc_fsm_moore function. A persistent variable
represents the current state, and a switch block uses the current state to determine the output and
new state. In each case in the switch block, an if-else statement calculates the new state and
output. The value of the state is represented by numerical variables.

%#codegen
function Z = mlhdlc_fsm_moore(A)
% Moore State Machine
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% y = f(x) : 
% all actions are state actions and 
% outputs are pure functions of state only 

% define states
S1 = 0;
S2 = 1;
S3 = 2;
S4 = 3;

% using persistent keyword to model state registers in hardware
persistent curr_state;
if isempty(curr_state)
    curr_state = S1;   
end

% switch to new state based on the value state register
switch (curr_state)
    
    case S1,
        
        % value of output 'Z' depends only on state and not on inputs
        Z = true;
        
        % decide next state value based on inputs
        if (~A)
            curr_state = S1;
        else
            curr_state = S2;
        end
        
    case S2,
        
        Z = false;
        
        if (~A)
            curr_state = S1;
        else
            curr_state = S3;
        end
        
    case S3,
        
        Z = false;
        
        if (~A)
            curr_state = S2;
        else
            curr_state = S4;
        end
        
    case S4,
        
        Z = true;
        if (~A)
            curr_state = S3;
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        else
            curr_state = S1;
        end
        
    otherwise,
        Z = false;
end

Best Practices
This design pattern demonstrates two best practices for writing MATLAB code for HDL code
generation.

• With a switch block, use the otherwise statement to ensure that the model accounts for all
conditions. If the model does not cover all conditions, the generated HDL code can contain errors.

• To designate the states in a state machine, use variables with numerical values.
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Generate Hardware Instances For Local Functions
In this section...
“MATLAB Local Functions” on page 3-8
“MATLAB Code for mlhdlc_two_counters.m” on page 3-8

MATLAB Local Functions
The following example shows how to use local functions in MATLAB, so that each execution of a local
function corresponds to a separate hardware module in the generated HDL code. This example
demonstrates best practices for writing local functions in MATLAB code that is suitable for HDL code
generation.

• If your MATLAB code executes a local function multiple times, the generated HDL code does not
necessarily instantiate multiple hardware modules. Rather than instantiating multiple hardware
modules, multiple calls to a function typically update the state variable.

• If you want the generated HDL code to contain multiple hardware modules corresponding to each
execution of a local function, specify two different local functions with the same code but different
function names. If you want to avoid code duplication, consider using System objects to implement
the behavior in the function, and instantiate the System object multiple times.

• If you want to specify a separate HDL file for each local function in the MATLAB code, in the
Workflow Advisor, on the Advanced tab in the HDL Code Generation section, select Generate
instantiable code for functions .

MATLAB Code for mlhdlc_two_counters.m
This function creates two counters and adds the output of these counters. To create two counters,
there are two local functions with identical code, counter and counter2. The main method calls
each of these local functions once. If the function were to call the counter function twice, separate
hardware modules for the counters would not be generated in the HDL code.

%#codegen
function total_count = mlhdlc_two_counters(a,b)

%This function contains two different local functions with identical
%counters and calls each counter once.

total_count1=counter(a);

total_count2=counter2(b);

total_count=total_count1+total_count2;

function count = counter(enable_ctr)
%four bit synchronous up counter

%persistent variable for the state 
persistent count_val;
if isempty(count_val)
    count_val = 0;
end
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%counting up
if enable_ctr
    count_val=count_val+1;
end

%limit from four bits
if count_val>15
    count_val=0;
end

count=count_val;

function count = counter2(enable_ctr)
%four bit synchronous up counter

%persistent variable for the state 
persistent count_val;
if isempty(count_val)
    count_val = 0;
end

%counting up
if enable_ctr
    count_val=count_val+1;
end

%limit from four bits
if count_val>15
    count_val=0;
end

count=count_val;
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Implement RAM Using MATLAB Code
In this section...
“Implementation of RAM” on page 3-10
“Implement RAM Using a Persistent Array or System object Properties” on page 3-10
“Implement RAM Using hdl.RAM” on page 3-11

Implementation of RAM
You can write MATLAB code that maps to RAM during HDL code generation by using:

• Persistent arrays or private properties in a user-defined System object.
• hdl.RAM System objects.

The following examples model the same line delay in MATLAB. However, one example uses a
persistent array and the other uses an hdl.RAM System object to model the RAM behavior.

The line delay uses memory in a ring structure. Data is written to one location and read from another
location in such a way that the data written is read after a delay of a specific number of cycles. The
RAM read address is generated by a counter. The write address is generated by adding a constant
value to the read address.

For a comparison of the ways you can write MATLAB code to map to RAM during HDL code
generation, and for an overview of the tradeoffs, see “RAM Mapping Comparison for MATLAB Code”
on page 8-6. For more information, see “Map Persistent Arrays and dsp.Delay to RAM” on page 8-
3.

Implement RAM Using a Persistent Array or System object Properties
This example shows a line delay that implements the RAM behavior using a persistent array with the
function mlhdlc_hdlram_persistent. Changing a specific value in the persistent array is
equivalent to writing to the RAM. Accessing a specific value in the array is equivalent to reading from
the RAM.

You can implement RAM by using user-defined System object private properties in the same way.

%#codegen
function data_out = mlhdlc_hdlram_persistent(data_in)

persistent hRam;
if isempty(hRam)
    hRam = zeros(128,1);
end

% read address counter
persistent rdAddrCtr;
if isempty(rdAddrCtr)
    rdAddrCtr = 1;
end

% ring counter length
ringCtrLength = 10;

3 MATLAB Best Practices and Design Patterns for HDL Code Generation

3-10



ramWriteAddr = rdAddrCtr + ringCtrLength;

ramWriteData = data_in;
%ramWriteEnable = true;

ramReadAddr = rdAddrCtr;

% execute single step of RAM

hRam(ramWriteAddr)=ramWriteData;
ramRdDout=hRam(ramReadAddr);

rdAddrCtr = rdAddrCtr + 1;

data_out = ramRdDout;

Implement RAM Using hdl.RAM
This example shows a line delay that implements the RAM behavior using hdl.RAM with the function,
mlhdlc_hdlram_sysobj. In this function, the step method of the hdl.RAM System object reads
and writes to specific locations in hRam.

%#codegen
function data_out = mlhdlc_hdlram_sysobj(data_in)
persistent hRam;
if isempty(hRam)
    hRam = hdl.RAM('RAMType', 'Dual port');
end

% read address counter
persistent rdAddrCtr;
if isempty(rdAddrCtr)
    rdAddrCtr = 0;
end

% ring counter length
ringCtrLength = 10;
ramWriteAddr = rdAddrCtr + ringCtrLength;

ramWriteData = data_in;
ramWriteEnable = true;

ramReadAddr = rdAddrCtr;

% execute single step of RAM
[~,ramRdDout] = step(hRam,ramWriteData,ramWriteAddr, ...
                      ramWriteEnable,ramReadAddr);

rdAddrCtr = rdAddrCtr + 1;

data_out = ramRdDout;

hdl.RAM Restrictions for Code Generation

Code generation from hdl.RAM has the same restrictions as code generation from other System
objects. For details, see “Limitations of HDL Code Generation for System Objects” on page 2-12.
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Fixed-Point Conversion

• “Specify Type Proposal Options” on page 4-2
• “Log Data for Histogram” on page 4-5
• “View and Modify Variable Information” on page 4-7
• “Automated Fixed-Point Conversion” on page 4-9
• “Custom Plot Functions” on page 4-23
• “Visualize Differences Between Floating-Point and Fixed-Point Results” on page 4-24
• “Inspecting Data Using the Simulation Data Inspector” on page 4-29
• “Enable Plotting Using the Simulation Data Inspector” on page 4-31
• “Replacing Functions Using Lookup Table Approximations” on page 4-32
• “Replace a Custom Function with a Lookup Table” on page 4-33
• “Replace the exp Function with a Lookup Table” on page 4-39
• “Data Type Issues in Generated Code” on page 4-45
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Specify Type Proposal Options
Basic Type Proposal Settings Values Description
Fixed-point type proposal mode Propose fraction lengths for

specified word length
Use the specified word length
for data type proposals and
propose the minimum fraction
lengths to avoid overflows.

Propose word lengths for
specified fraction length
(default)

Use the specified fraction length
for data type proposals and
propose the minimum word
lengths to avoid overflows.

Default word length 14 (default) Default word length to use when
Fixed-point type proposal
mode is set to Propose
fraction lengths for
specified word lengths

Default fraction length 4 (default) Default fraction length to use
when Fixed-point type
proposal mode is set to
Propose word lengths for
specified fraction
lengths

Advanced Type Proposal Settings Values Description
When proposing types

Note Manually-entered static ranges always
take precedence over simulation ranges.

ignore simulation
ranges

Propose data types based on derived
ranges.

ignore derived ranges Propose data types based on simulation
ranges.

use all collected data
(default)

Propose data types based on both
simulation and derived ranges.

Propose target container types Yes Propose data type with the smallest
word length that can represent the
range and is suitable for C code
generation ( 8,16,32, 64 … ). For
example, for a variable with range
[0..7], propose a word length of 8
rather than 3.

No (default) Propose data types with the minimum
word length needed to represent the
value.

Optimize whole numbers No Do not use integer scaling for variables
that were whole numbers during
simulation.

Yes (default) Use integer scaling for variables that
were whole numbers during simulation.
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Advanced Type Proposal Settings Values Description
Signedness Automatic (default) Proposes signed and unsigned data

types depending on the range
information for each variable.

Signed Propose signed data types.
Unsigned Propose unsigned data types.

Safety margin for sim min/max (%) 0 (default) Specify safety factor for simulation
minimum and maximum values.

The simulation minimum and maximum
values are adjusted by the percentage
designated by this parameter, allowing
you to specify a range different from
that obtained from the simulation run.
For example, a value of 55 specifies that
you want a range at least 55 percent
larger. A value of -15 specifies that a
range up to 15 percent smaller is
acceptable.

Search paths '' (default) Add paths to the list of paths to search
for MATLAB files. Separate list items
with a semicolon.

fimath Settings Values Description
Rounding method Ceiling Specify the fimath properties

for the generated fixed-point
data types.

The default fixed-point math
properties use the Floor
rounding and Wrap overflow.
These settings generate the
most efficient code but might
cause problems with overflow.

After code generation, if
required, modify these settings
to optimize the generated code,
or example, avoid overflow or
eliminate bias, and then rerun
the verification.

For more information on
fimath properties, see “fimath
Object Properties” (Fixed-Point
Designer).

Convergent
Floor (default)
Nearest
Round
Zero

Overflow action Saturate
Wrap (default)

Product mode FullPrecision (default)
KeepLSB
KeepMSB
SpecifyPrecision

Sum mode FullPrecision (default)
KeepLSB
KeepMSB
SpecifyPrecision
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Generated File Settings Value Description
Generated fixed-point file name
suffix

_fixpt (default) Specify the suffix to add to the
generated fixed-point file
names.

Plotting and Reporting
Settings

Values Description

Custom plot function '' (default) Specify the name of a custom
plot function to use for
comparison plots.

Plot with Simulation Data
Inspector

No (default) Specify whether to use the
Simulation Data Inspector for
comparison plots.

Yes

Highlight potential data type
issues

No (default) Specify whether to highlight
potential data types in the
generated html report. If this
option is turned on, the report
highlights single-precision,
double-precision, and expensive
fixed-point operation usage in
your MATLAB code.

Yes
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Log Data for Histogram
To log data for histograms:

1 In the Fixed-Point Conversion window, click Run Simulation and select Log data for
histogram, and then click the Run Simulation button.

The simulation runs and the simulation minimum and maximum ranges are displayed on the
Variables tab. Using the simulation range data, the software proposes fixed-point types for each
variable based on the default type proposal settings, and displays them in the Proposed Type
column.

2 To view a histogram for a variable, click the variable’s Proposed Type field.

3 You can view the effect of changing the proposed data types by:

• Selecting and dragging the white bounding box in the histogram window. This action does not
change the word length of the proposed data type, but modifies the position of the binary
point within the word so that the fraction length of the proposed data type changes.

• Selecting and dragging the left edge of the bounding box to increase or decrease the word
length. This action does not change the fraction length or the position of the binary point.
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• Selecting and dragging the right edge to increase or decrease the fraction length of the
proposed data type. This action does not change the position of the binary point. The word
length changes to accommodate the fraction length.

• Selecting or clearing Signed. Clear Signed to ignore negative values.

Before committing changes, you can revert to the types proposed by the automatic conversion by

clicking .
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View and Modify Variable Information

View Variable Information
In the Fixed-Point Conversion tool, you can view information about the variables in the MATLAB
functions. To view information about the variables for the selected function, use the Variables tab or
pause over a variable in the code window. For more information, see “Viewing Variables” on page 4-
14.

You can view the variable information:

• Variable

Variable name. Variables are classified and sorted as inputs, outputs, persistent, or local variables.
• Type

The original size, type, and complexity of each variable.
• Sim Min

The minimum value assigned to the variable during simulation.
• Sim Max

The maximum value assigned to the variable during simulation.

To search for a variable in the MATLAB code window and on the Variables tab, use Ctrl+F.

Modify Variable Information
If you modify variable information, the app highlights the modified values using bold text. You can
modify the following fields:

• Static Min

You can enter a value for Static Min into the field or promote Sim Min information. See
“Promote Sim Min and Sim Max Values” on page 4-8.

Editing this field does not trigger static range analysis, but the app uses the edited values in
subsequent analyses.

• Static Max

You can enter a value for Static Max into the field or promote Sim Max information. See
“Promote Sim Min and Sim Max Values” on page 4-8.

Editing this field does not trigger static range analysis, but the app uses the edited values in
subsequent analyses.

• Whole Number

The app uses simulation data to determine whether the values assigned to a variable during
simulation were always integers. You can manually override this field.

Editing this field does not trigger static range analysis, but the app uses the edited value in
subsequent analyses.
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• Proposed Type

You can modify the signedness, word length, and fraction length settings individually:

• On the Variables tab, modify the value in the ProposedType field.

• In the code window, select a variable, and then modify the Proposed Type field.

If you selected to log data for a histogram, the histogram dynamically updates to reflect the
modifications to the proposed type. You can also modify the proposed type in the histogram, see
“Histogram” on page 4-19.

Revert Changes
• To clear results and revert edited values, right-click the Variables tab and select Reset entire

table.
• To revert the type of a selected variable to the type computed by the app, right-click the field and

select Undo changes.
• To revert changes to variables, right-click the field and select Undo changes for all

variables.
• To clear a static range value, right-click an edited field and select Clear this static range.
• To clear manually entered static range values, right-click anywhere on the Variables tab and

select Clear all manually entered static ranges.

Promote Sim Min and Sim Max Values
With the app, you can promote simulation minimum and maximum values to static minimum and
maximum values. This capability is useful if you have not specified static ranges and you have
simulated the model with inputs that cover the full intended operating range.

To copy:

• A simulation range for a selected variable, select a variable, right-click, and then select Copy sim
range.

• Simulation ranges for top-level inputs, right-click the Static Min or Static Max column, and then
select Copy sim ranges for all top-level inputs.

• Simulation ranges for persistent variables, right-click the Static Min or Static Max column, and
then select Copy sim ranges for all persistent variables.
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Automated Fixed-Point Conversion
In this section...
“License Requirements” on page 4-9
“Automated Fixed-Point Conversion Capabilities” on page 4-9
“Code Coverage” on page 4-10
“Proposing Data Types” on page 4-12
“Locking Proposed Data Types” on page 4-13
“Viewing Functions” on page 4-14
“Viewing Variables” on page 4-14
“Histogram” on page 4-19
“Function Replacements” on page 4-20
“Validating Types” on page 4-21
“Testing Numerics” on page 4-21
“Detecting Overflows” on page 4-21

License Requirements
Fixed-point conversion requires the following licenses:

• Fixed-Point Designer
• MATLAB Coder™

Automated Fixed-Point Conversion Capabilities
You can convert floating-point MATLAB code to fixed-point code using the Fixed-Point Conversion tool
in HDL Coder projects. You can choose to propose data types based on simulation range data, derived
(also known as static) range data, or both.

You can manually enter static ranges. These manually-entered ranges take precedence over
simulation ranges and the tool uses them when proposing data types. In addition, you can modify and
lock the proposed type so that the tool cannot change it. For more information, see “Locking
Proposed Data Types” on page 4-13.

For a list of supported MATLAB features and functions, see “MATLAB Language Features Supported
for Automated Fixed-Point Conversion” (MATLAB Coder).

During fixed-point conversion, you can:

• Verify that your test files cover the full intended operating range of your algorithm using code
coverage results.

• Propose fraction lengths based on default word lengths.
• Propose word lengths based on default fraction lengths.
• Optimize whole numbers.
• Specify safety margins for simulation min/max data.
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• Validate that you can build your project with the proposed data types.
• Test numerics by running the test bench with the fixed-point types applied.
• View a histogram of bits used by each variable.
• Detect overflows.

Code Coverage
By default, the Fixed-Point Conversion tool shows code coverage results. Your test files must exercise
the algorithm over its full operating range so that the simulation ranges are accurate. The quality of
the proposed fixed-point data types depends on how well the test files cover the operating range of
the algorithm with the accuracy that you want. Reviewing code coverage results helps you verify that
your test files are exercising the algorithm adequately. If the code coverage is inadequate, modify the
test files or add more test files to increase coverage. If you simulate multiple test files in one run, the
tool displays cumulative coverage. However, if you specify multiple test files but run them one at a
time, the tool displays the coverage of the file that ran last.

The tool displays a color-coded coverage bar to the left of the code.

This table describes the color coding.
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Coverage Bar
Color

Indicates

Green One of the following situations:

• The entry-point function executes multiple times and the code executes more
than one time.

• The entry-point function executes one time and the code executes one time.

Different shades of green indicate different ranges of line execution counts. The
darkest shade of green indicates the highest range.

Orange The entry-point function executes multiple times, but the code executes one
time.

Red Code does not execute.

When you pause over the coverage bar, the color highlighting extends over the code. For each section
of code, the app displays the number of times that section executes.

To verify that your test files are testing your algorithm over the intended operating range, review the
code coverage results.

Coverage Bar
Color

Action

Green If you expect sections of code to execute more frequently than the coverage
shows, either modify the MATLAB code or the test files.

Orange This behavior is expected for initialization code, for example, the initialization
of persistent variables. If you expect the code to execute more than one time,
either modify the MATLAB code or the test files.
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Coverage Bar
Color

Action

Red If the code that does not execute is an error condition, this behavior is
acceptable. If you expect the code to execute, either modify the MATLAB code
or the test files. If the code is written conservatively and has upper and lower
boundary limits, and you cannot modify the test files to reach this code, add
static minimum and maximum values. See “Computing Derived Ranges” on
page 4-13.

Code coverage is on by default. Turn it off only after you have verified that you have adequate test file
coverage. Turning off code coverage can speed up simulation. To turn off code coverage, in the Fixed-
Point Conversion tool:

1 Click Run Simulation.
2 Clear Show code coverage.

Proposing Data Types
The Fixed-Point Conversion tool proposes fixed-point data types based on computed ranges and the
word length or fraction length setting. The computed ranges are based on simulation range data,
derived range data, or both. If you run a simulation and compute derived ranges, the conversion tool
merges the simulation and derived ranges.

Note You cannot propose data types based on derived ranges for MATLAB classes.

You can manually enter static ranges. These manually-entered ranges take precedence over
simulation ranges and the tool uses them when proposing data types. In addition, you can modify and
lock the proposed type so that the tool cannot change it. For more information, see “Locking
Proposed Data Types” on page 4-13.

Running a Simulation

When you open the Fixed-Point Conversion tool, the tool generates an instrumented MEX function for
your MATLAB design. If the build completes without errors, the tool displays compiled information
(type, size, complexity) for functions and variables in your code. To navigate to local functions, click
the Functions tab. If build errors occur, the tool provides error messages that link to the line of code
that caused the build issues. You must address these errors before running a simulation. Use the link
to navigate to the offending line of code in the MATLAB editor and modify the code to fix the issue. If
your code uses functions that are not supported for fixed-point conversion, the tool displays them on
the Function Replacements tab. See “Function Replacements” on page 4-20.

Before running a simulation, specify the test bench that you want to run. When you run a simulation,
the tool runs the test bench, calling the instrumented MEX function. If you modify the MATLAB
design code, the tool automatically generates an updated MEX function before running the test
bench.

If the test bench runs successfully, the simulation minimum and maximum values and the proposed
types are displayed on the Variables tab. If you manually enter static ranges for a variable, the
manually-entered ranges take precedence over the simulation ranges. If you manually modify the
proposed types by typing or using the histogram, the data types are locked so that the tool cannot
modify them.
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If the test bench fails, the errors are displayed on the Simulation Output tab.

The test bench should exercise your algorithm over its full operating range. The quality of the
proposed fixed-point data types depends on how well the test bench covers the operating range of the
algorithm with the desired accuracy.

Optionally, you can select to log data for histograms. After running a simulation, you can view the
histogram for each variable. For more information, see “Histogram” on page 4-19.

Computing Derived Ranges

The advantage of proposing data types based on derived ranges is that you do not have to provide
test files that exercise your algorithm over its full operating range. Running such test files often takes
a very long time.

To compute derived ranges and propose data types based on these ranges, provide static minimum
and maximum values or proposed data types for all input variables. To improve the analysis, enter as
much static range information as possible for other variables. You can manually enter ranges or
promote simulation ranges to use as static ranges. Manually-entered static ranges always take
precedence over simulation ranges.

If you know what data type your hardware target uses, set the proposed data types to match this
type. Manually-entered data types are locked so that the tool cannot modify them. The tool uses these
data types to calculate the input minimum and maximum values and to derive ranges for other
variables. For more information, see “Locking Proposed Data Types” on page 4-13.

When you select Compute Derived Ranges, the tool runs a derived range analysis to compute static
ranges for variables in your MATLAB algorithm. When the analysis is complete, the static ranges are
displayed on the Variables tab. If the run produces +/-Inf derived ranges, consider defining ranges
for all persistent variables.

Optionally, you can select Quick derived range analysis. With this option, the conversion tool
performs faster static analysis. The computed ranges might be larger than necessary. Select this
option in cases where the static analysis takes more time than you can afford.

If the derived range analysis for your project is taking a long time, you can optionally set a timeout.
The tool aborts the analysis when the timeout is reached.

Locking Proposed Data Types
You can lock proposed data types against changes by the Fixed-Point Conversion tool using one of the
following methods:

• Manually setting a proposed data type in the Fixed-Point Conversion tool.
• Right-clicking a type proposed by the tool and selecting Lock computed value.

The tool displays locked data types in bold so that they are easy to identify. You can unlock a type
using one of the following methods:

• Manually overwriting it.
• Right-clicking it and selecting Undo changes. This action unlocks only the selected type.
• Right-clicking and selecting Undo changes for all variables. This action unlocks all locked

proposed types.
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Viewing Functions
You can view a list of functions in your project on the Navigation pane. This list also includes
function specializations and class methods. When you select a function from the list, the MATLAB
code for that function or class method is displayed in the Fixed-Point Conversion tool code window.

After conversion, the left pane also displays a list of output files including the fixed-point version of
the original algorithm. If your function is not specialized, the conversion retains the original function
name in the fixed-point filename and appends the fixed-point suffix. For example, the fixed-point
version of fun_with_matlab.m is fun_with_matlab_fixpt.m.

Viewing Variables
The Variables tab provides the following information for each variable in the function selected in the
Navigation pane:

• Type — The original data type of the variable in the MATLAB algorithm.
• Sim Min and Sim Max — The minimum and maximum values assigned to the variable during

simulation.

You can edit the simulation minimum and maximum values. Edited fields are shown in bold.
Editing these fields does not trigger static range analysis, but the tool uses the edited values in
subsequent analyses. You can revert to the types proposed by the tool.

• Static Min and Static Max — The static minimum and maximum values.

To compute derived ranges and propose data types based on these ranges, provide static minimum
and maximum values for all input variables. To improve the analysis, enter as much static range
information as possible for other variables.

When you compute derived ranges, the Fixed-Point Conversion tool runs a static analysis to
compute static ranges for variables in your code. When the analysis is complete, the static ranges
are displayed. You can edit the computed results. Edited fields are shown in bold. Editing these
fields does not trigger static range analysis, but the tool uses the edited values in subsequent
analyses. You can revert to the types proposed by the tool.

• Whole Number — Whether all values assigned to the variable during simulation are integers.

The Fixed-Point Conversion tool determines whether a variable is always a whole number. You can
modify this field. Edited fields are shown in bold. Editing these fields does not trigger static range
analysis, but the tool uses the edited values in subsequent analyses. You can revert to the types
proposed by the tool.

• The proposed fixed-point data type for the specified word (or fraction) length. Proposed data types
use the numerictype notation. For example, numerictype(1,16,12) denotes a signed fixed-
point type with a word length of 16 and a fraction length of 12. numerictype(0,16,12) denotes
an unsigned fixed-point type with a word length of 16 and a fraction length of 12.
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Because the tool does not apply data types to expressions, it does not display proposed types for
them. Instead, it displays their original data types.

You can also view and edit variable information in the code pane by placing your cursor over a
variable name.

You can use Ctrl+F to search for variables in the MATLAB code and on the Variables tab. The tool
highlights occurrences in the code and displays only the variable with the specified name on the
Variables tab.

Viewing Information for MATLAB Classes

The tool displays:

• Code for MATLAB classes and code coverage for class methods in the code window. Use the
Function list in the Navigation bar to select which class or class method to view.
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• Information about MATLAB classes on the Variables tab.

Specializations

If a function is specialized, the tool lists each specialization and numbers them sequentially. For
example, consider a function, dut, that calls subfunctions, foo and bar, multiple times with different
input types.

function y = dut(u, v)
 
tt1 = foo(u);
tt2 = foo([u v]);
tt3 = foo(complex(u,v));
 
ss1 = bar(u);
ss2 = bar([u v]); 
ss3 = bar(complex(u,v));
 
y = (tt1 + ss1) + sum(tt2 + ss2) + real(tt3) + real(ss3);
 
end
 
function y = foo(u)
  y = u * 2;
end
 
function y = bar(u)
  y = u * 4;
end
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If you select a specialization, the app displays only the variables used by the specialization.
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In the generated fixed-point code, the number of each fixed-point specialization matches the number
in the Source Code list which makes it easy to trace between the floating-point and fixed-point
versions of your code. For example, the generated fixed-point function for foo > 1 is named
foo_s1.
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Histogram
To log data for histograms, in the Fixed-Point Conversion window, click Run Simulation and select
Log data for histogram, and then click the Run Simulation button.

After simulation, to view the histogram for a variable, on the Variables tab, click the Proposed Type
field for that variable.

The histogram provides the range of the proposed data type and the percentage of simulation values
that the proposed data type covers. The bit weights are displayed along the X-axis, and the
percentage of occurrences along the Y-axis. Each bin in the histogram corresponds to a bit in the
binary word. For example, this histogram displays the range for a variable of type
numerictype(1,16,14).
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You can view the effect of changing the proposed data types by:

• Dragging the edges of the bounding box in the histogram window to change the proposed data
type.

• Selecting or clearing Signed.

To revert to the types proposed by the automatic conversion, in the histogram window, click .

Function Replacements
If your MATLAB code uses functions that do not have fixed-point support, the tool lists these functions
on the Function Replacements tab. You can choose to replace unsupported functions with a custom
function replacement or with a lookup table.
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You can add and remove function replacements from this list. If you enter a function replacements for
a function, the replacement function is used when you build the project. If you do not enter a
replacement, the tool uses the type specified in the original MATLAB code for the function.

Note Using this table, you can replace the names of the functions but you cannot replace argument
patterns.

Validating Types
Selecting Validate Types validates the build using the proposed fixed-point data types. If the
validation is successful, you are ready to test the numerical behavior of the fixed-point MATLAB
algorithm.

If the errors or warnings occur during validation, they are displayed on the Type Validation Output
tab. If errors or warning occur:

• On the Variables tab, inspect the proposed types and manually modified types to verify that they
are valid.

• On the Function Replacements tab, verify that you have provided function replacements for
unsupported functions.

Testing Numerics
After validating the proposed fixed-point data types, select Test Numerics to verify the behavior of
the fixed-point MATLAB algorithm. By default, if you added a test bench to define inputs or run a
simulation, the tool uses this test bench to test numerics. The tool compares the numerical behavior
of the generated fixed-point MATLAB code with the original floating-point MATLAB code. If you select
to log inputs and outputs for comparison plots, the tool generates an additional plot for each scalar
output. This plot shows the floating-point and fixed-point results and the difference between them.
For non-scalar outputs, only the error information is shown.

If the numerical results do not meet your desired accuracy after fixed-point simulation, modify fixed-
point data type settings and repeat the type validation and numerical testing steps. You might have to
iterate through these steps multiple times to achieve the desired results.

Detecting Overflows
When testing numerics, selecting Use scaled doubles to detect overflows enables overflow
detection. When this option is selected, the conversion tool runs the simulation using scaled double
versions of the proposed fixed-point types. Because scaled doubles store their data in double-
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precision floating-point, they carry out arithmetic in full range. They also retain their fixed-point
settings, so they are able to report when a computation goes out of the range of the fixed-point type. .

If the tool detects overflows, on its Overflow tab, it provides:

• A list of variables and expressions that overflowed
• Information on how much each variable overflowed
• A link to the variables or expressions in the code window

If your original algorithm uses scaled doubles, the tool also provides overflow information for these
expressions.

See Also

“Detect Overflows” (MATLAB Coder)
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Custom Plot Functions
The Fixed-Point Conversion tool provides a default time series based plotting function. The
conversion process uses this function at the test numerics step to show the floating-point and fixed-
point results and the difference between them. However, during fixed-point conversion you might
want to visualize the numerical differences in a view that is more suitable for your application
domain. For example, plots that show eye diagrams and bit error differences are more suitable in the
communications domain and histogram difference plots are more suitable in image processing
designs.

You can choose to use a custom plot function at the test numerics step. The Fixed-Point Conversion
tool facilitates custom plotting by providing access to the raw logged input and output data before
and after fixed-point conversion. You supply a custom plotting function to visualize the differences
between the floating-point and fixed-point results. If you specify a custom plot function, the fixed-
point conversion process calls the function for each input and output variable, passes in the name of
the variable and the function that uses it, and the results of the floating-point and fixed-point
simulations.

Your function should accept three inputs:

• A structure that holds the name of the variable and the function that uses it.

Use this information to:

• Customize plot headings and axes.
• Choose which variables to plot.
• Generate different error metrics for different output variables.

• A cell array to hold the logged floating-point values for the variable.

This cell array contains values observed during floating-point simulation of the algorithm during
the test numerics phase. You might need to reformat this raw data.

• A cell array to hold the logged values for the variable after fixed-point conversion.

This cell array contains values observed during fixed-point simulation of the converted design.

For example, function customComparisonPlot(varInfo, floatVarVals,
fixedPtVarVals).

To use a custom plot function, in the Fixed-Point Conversion tool, select Advanced, and then set
Custom plot function to the name of your plot function.

In the programmatic workflow, set the coder.FixptConfig configuration object PlotFunction
property to the name of your plot function. See “Visualize Differences Between Floating-Point and
Fixed-Point Results” on page 4-24.
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Visualize Differences Between Floating-Point and Fixed-Point
Results

This example shows how to configure the codegen function to use a custom plot function to compare
the behavior of the generated fixed-point code against the behavior of the original floating-point
MATLAB code.

By default, when the LogIOForComparisonPlotting option is enabled, the conversion process
uses a time series based plotting function to show the floating-point and fixed-point results and the
difference between them. However, during fixed-point conversion you might want to visualize the
numerical differences in a view that is more suitable for your application domain. This example shows
how to customize plotting and produce scatter plots at the test numerics step of the fixed-point
conversion.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”
(MATLAB).

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\custom_plot.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB command line,

enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples')) 
3 Copy the myFilter.m, myFilterTest.m, plotDiff.m, and filterData.mat files to your

local working folder.

Type Name Description
Function code myFilter.m Entry-point MATLAB function
Test file myFilterTest.m MATLAB script that tests

myFilter.m
Plotting function plotDiff.m Custom plot function
MAT-file filterData.mat Data to filter.

The myFilter Function

function [y, ho] = myFilter(in)

persistent b h;
if isempty(b)
  b = complex(zeros(1,16));
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  h = complex(zeros(1,16));
  h(8) = 1;
end

b = [in, b(1:end-1)];
y = b*h.';

errf = 1-sqrt(real(y)*real(y) + imag(y)*imag(y));
update = 0.001*conj(b)*y*errf;

h = h + update;
h(8) = 1;
ho = h;

end

The myFilterTest File

% load data
data = load('filterData.mat');
d = data.symbols;

for idx = 1:4000
    y = myFilter(d(idx));
end

The plotDiff Function

% varInfo - structure with information about the variable. It has the following fields
%            i) name
%            ii) functionName
% floatVals - cell array of logged original values for the 'varInfo.name' variable
% fixedVals - cell array of logged values for the 'varInfo.name' variable after Fixed-Point conversion.
function plotDiff(varInfo, floatVals, fixedVals)
    varName = varInfo.name;
    fcnName = varInfo.functionName;

    % escape the '_'s because plot titles treat these as subscripts
    escapedVarName = regexprep(varName,'_','\\_');
    escapedFcnName = regexprep(fcnName,'_','\\_');
    
    % flatten the values
    flatFloatVals = floatVals(1:end);
    flatFixedVals = fixedVals(1:end);

    % build Titles
    floatTitle = [ escapedFcnName ' > ' 'float : ' escapedVarName ];
    fixedTitle = [ escapedFcnName ' > ' 'fixed : ' escapedVarName ];
    
    data = load('filterData.mat');
    
    switch varName
        case 'y'
            x_vec = data.symbols;
            
            figure('Name', 'Comparison plot', 'NumberTitle', 'off');
            
            % plot floating point values
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            y_vec = flatFloatVals;
            subplot(1, 2, 1);
            plotScatter(x_vec, y_vec, 100, floatTitle);
            
            % plot fixed point values
            y_vec = flatFixedVals;
            subplot(1, 2, 2);
            plotScatter(x_vec, y_vec, 100, fixedTitle);

        otherwise
            % Plot only output 'y' for this example, skip the rest
    end

end

function plotScatter(x_vec, y_vec, n, figTitle)
    % plot the last n samples
    x_plot = x_vec(end-n+1:end);
    y_plot = y_vec(end-n+1:end);
    
    hold on
    scatter(real(x_plot),imag(x_plot), 'bo');    

    hold on
    scatter(real(y_plot),imag(y_plot), 'rx');
    
    title(figTitle);
end

Set Up Configuration Object

1 Create a coder.FixptConfig object.

fxptcfg = coder.config('fixpt');

2 Specify the test file name and custom plot function name. Enable logging and numerics testing.

fxptcfg.TestBenchName = 'myFilterTest';
fxptcfg.PlotFunction = 'plotDiff';
fxptcfg.TestNumerics = true; 
fxptcfg. LogIOForComparisonPlotting = true;
fxptcfg.DefaultWordLength = 16;

Convert to Fixed Point

Convert the floating-point MATLAB function, myFilter, to fixed-point MATLAB code. You do not
need to specify input types for the codegen command because it infers the types from the test file.

codegen -args {complex(0, 0)} -float2fixed fxptcfg myFilter

The conversion process generates fixed-point code using a default word length of 16 and then runs a
fixed-point simulation by running the myFilterTest.m function and calling the fixed-point version of
myFilter.m.

Because you selected to log inputs and outputs for comparison plots and to use the custom plotting
function, plotDiff.m, for these plots, the conversion process uses this function to generate the
comparison plot.
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The plot shows that the fixed-point results do not closely match the floating-point results.

Increase the word length to 24 and then convert to fixed point again.

fxptcfg.DefaultWordLength = 24;
codegen -args {complex(0, 0)} -float2fixed fxptcfg myFilter

The increased word length improved the results. This time, the plot shows that the fixed-point results
match the floating-point results.
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Inspecting Data Using the Simulation Data Inspector
In this section...
“What Is the Simulation Data Inspector?” on page 4-29
“Import Logged Data” on page 4-29
“Export Logged Data” on page 4-29
“Group Signals” on page 4-29
“Run Options” on page 4-29
“Create Report” on page 4-30
“Comparison Options” on page 4-30
“Enabling Plotting Using the Simulation Data Inspector” on page 4-30
“Save and Load Simulation Data Inspector Sessions” on page 4-30

What Is the Simulation Data Inspector?
The Simulation Data Inspector allows you to view data logged during the fixed-point conversion
process. You can use it to inspect and compare the inputs and outputs to the floating-point and fixed-
point versions of your algorithm.

For fixed-point conversion, there is no programmatic interface for the Simulation Data Inspector.

Import Logged Data
Before importing data into the Simulation Data Inspector, you must have previously logged data to
the base workspace or to a MAT-file.

Export Logged Data
The Simulation Data Inspector provides the capability to save data collected by the fixed-point
conversion process to a MAT-file that you can later reload. The format of the MAT-file is different from
the format of a MAT-file created from the base workspace.

Group Signals
You can customize the organization of your logged data in the Simulation Data Inspector Runs pane.
By default, data is first organized by run. You can then organize your data by logged variable or no
hierarchy.

Run Options
You can configure the Simulation Data Inspector to:

• Append New Runs

In the Run Options dialog box, the default is set to add new runs to the bottom of the run list. To
append new runs to the top of the list, select Add new runs at top.
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• Specify a Run Naming Rule

To specify run naming rules, in the Simulation Data Inspector toolbar, click Run Options.

Create Report
You can create a report of the runs or comparison plots. Specify the name and location of the report
file. By default, the Simulation Data Inspector overwrites existing files. To preserve existing reports,
select If report exists, increment file name to prevent overwriting.

Comparison Options
To change how signals are matched when runs are compared, specify the Align by and Then by
parameters and then click OK.

Enabling Plotting Using the Simulation Data Inspector
To enable the Simulation Data Inspector, see “Enable Plotting Using the Simulation Data Inspector”
on page 4-31.

Save and Load Simulation Data Inspector Sessions
If you have data in the Simulation Data Inspector and you want to archive or share the data to view in
the Simulation Data Inspector later, save the Simulation Data Inspector session. When you save a
Simulation Data Inspector session, the MAT-file contains:

• All runs, data, and properties from the Runs and Comparisons panes.
• Check box selection state for data in the Runs pane.

Save a Session to a MAT-File

1 On the Visualize tab, click Save.
2 Browse to where you want to save the MAT-file to, name the file, and click Save.

Load a Saved Simulation Data Inspector Simulation

1 On the Visualize tab, click Open.
2 Browse, select the MAT-file saved from the Simulation Data Inspector, and click Open.
3 If data in the session is plotted on multiple subplots, on the Format tab, click Subplots and

select the subplot layout.
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Enable Plotting Using the Simulation Data Inspector
In this section...
“From the UI” on page 4-31
“From the Command Line” on page 4-31

From the UI
You can use the Simulation Data Inspector to inspect and compare floating-point and fixed-point
logged input and output data. In the Fixed-Point Conversion tool:

1 Click Advanced.
2 In the Advanced Settings dialog box, set Plot with Simulation Data Inspector to Yes.
3 At the Test Numerics stage in the conversion process, click Test Numerics, select Log inputs

and outputs for comparison plots, and then click .

For an example, see “Propose Fixed-Point Data Types Based on Derived Ranges” (MATLAB Coder).

From the Command Line
You can use the Simulation Data Inspector to inspect and compare floating-point and fixed-point input
and output data logged using the function. At the MATLAB command line:

1 Create a fixed-point configuration object and configure the test file name.

fixptcfg = coder.config('fixpt');
fixptcfg.TestBenchName = 'dti_test';

2 Select to run the test file to verify the generated fixed-point MATLAB code. Log inputs and
outputs for comparison plotting and select to use the Simulation Data Inspector to plot the
results.

fixptcfg.TestNumerics = true;
fixptcfg.LogIOForComparisonPlotting = true;
fixptcfg.PlotWithSimulationDataInspector = true;

3 Generate fixed-point MATLAB code using codegen.

codegen -float2fixed fixptcfg -config cfg dti

For an example, see “Propose Fixed-Point Data Types Based on Derived Ranges” (MATLAB Coder).
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Replacing Functions Using Lookup Table Approximations
The software provides an option to generate lookup table approximations for continuous and stateless
single-input, single-output functions in your original MATLAB code. These functions must be on the
MATLAB path.

You can use this capability to handle functions that are not supported for fixed point and to replace
your own custom functions. The fixed-point conversion process infers the ranges for the function and
then uses an interpolated lookup table to replace the function. You can control the interpolation
method and number of points in the lookup table. By adjusting these settings, you can tune the
behavior of replacement function to match the behavior of the original function as closely as possible.

The fixed-point conversion process generates one lookup table approximation per call site of the
function that needs replacement.

To use lookup table approximations, see:

• coder.approximation
• “Replace the exp Function with a Lookup Table” on page 4-39
• “Replace a Custom Function with a Lookup Table” on page 4-33
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Replace a Custom Function with a Lookup Table
In this section...
“Using the HDL Coder App” on page 4-33
“From the Command Line” on page 4-36

With HDL Coder, you can generate lookup table approximations for functions that do not support
fixed-point types, and replace your own functions. To replace a custom function with a Lookup Table,
use the HDL Coder app, or the fiaccel codegen function.

Using the HDL Coder App
This example shows how to replace a custom function with a Lookup Table using the HDL Coder app.

Create Algorithm and Test Files

In a local, writable folder:

1 Create a MATLAB function, custom_fcn, which is the function that you want to replace.

function y = custom_fcn(x)
  y = 1./(1+exp(-x));
end

2 Create a wrapper function that calls custom_fcn.

function y = call_custom_fcn(x)
  y = custom_fcn(x);
end

3 Create a test file, custom_test, which uses call_custom_fcn.

close all

x = linspace(-10,10,1e3);
for itr = 1e3:-1:1
   y(itr) = call_custom_fcn( x(itr) );
end
plot( x, y );

Create and Set up a HDL Coder Project

1 Navigate to the work folder that contains the file for this example.
2 To open the HDL Coder app, in the MATLAB command prompt, enter hdlcoder. Set Name to

custom_project.prj and click OK. The project opens in the MATLAB workspace.
3 In the project window, on the MATLAB Function tab, click the Add MATLAB function link.

Browse to the file call_custom_fcn.m, and then click OK to add the file to the project.

Define Input Types

1 To define input types for call_custom_fcn.m, on the MATLAB Function tab, click
Autodefine types.

2 Add custom_test as a test file, and then click Run.

From the test file, HDL Coder determines that x is a scalar double.

 Replace a Custom Function with a Lookup Table

4-33



3 Click Use These Types.

Replace custom_fcn with Lookup Table

1 To open the HDL Workflow Advisor, click Workflow Advisor, and in the Workflow Advisor
window, click Fixed-Point Conversion.

2 To replace custom_fcn with a Lookup Table, on the Function Replacements tab, enter
custom_fcn, select Lookup Table, and then click +.

By default, the lookup table uses linear interpolation, 1000 points, and design minimum and
maximum values that the app detects by running a simulation or computing derived ranges.

3 Under Run Simulation, select Log data for histogram, and then click Run Simulation.
Verify that custom_test file is selected as the test file.

The simulation runs and the tool displays simulation minimum and maximum ranges on the
Variables tab. HDL Coder plots the simulation results in the MATLAB Editor.

4 Fixed-Point Conversion

4-34



Validate Fixed-Point Types

1 In the Proposed Type column, verify that the fixed-point types proposed by software cover the
full simulation range. To view logged histogram data for a variable, click its Proposed Type field.

The histogram provides range information and the percentage of simulation range that the
proposed data type covers.
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2 To validate the build by using the proposed types, click Validate Types.

The software validates the proposed types and generates a fixed-point code,
call_custom_fcn_fixpt.

3 To view the generated fixed-point code, click the call_custom_fcn_fixpt link.

The generated fixed-point function, call_custom_fcn_fixpt.m, calls this approximation
instead of calling custom_fcn.

function y = call_custom_fcn_fixpt(x)
  fm = get_fimath();

  y = fi(replacement_custom_fcn(x), 0, 14, 14, fm);
end

function fm = get_fimath()
    fm = fimath('RoundingMethod', 'Floor',...
         'OverflowAction', 'Wrap',...
         'ProductMode','FullPrecision',...
         'MaxProductWordLength', 128,...
         'SumMode','FullPrecision',...
         'MaxSumWordLength', 128);
end

From the Command Line
Prerequisites

To complete this example, you must install the following products:

• MATLAB
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”
(MATLAB).

Create a MATLAB function, custom_fcn.m. This is the function that you want to replace.

function y = custom_fcn(x)
  y = 1./(1+exp(-x));
end

Create a wrapper function that calls custom_fcn.m.

function y = call_custom_fcn(x)
  y = custom_fcn(x);
end

Create a test file, custom_test.m, that uses call_custom_fcn.m.

close all

x = linspace(-10,10,1e3);
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for itr = 1e3:-1:1
   y(itr) = call_custom_fcn( x(itr) );
end
plot( x, y );

Create a function replacement configuration object to approximate custom_fcn. Specify the function
handle of the custom function and set the number of points to use in the lookup table to 50.

q = coder.approximation('Function','custom_fcn',...
                        'CandidateFunction',@custom_fcn, 'NumberOfPoints',50);

Create a coder.FixptConfig object, fixptcfg. Specify the test file name and enable numerics
testing. Associate the function replacement configuration object with the fixed-point configuration
object.

fixptcfg = coder.config('fixpt');
fixptcfg.TestBenchName = 'custom_test';
fixptcfg.TestNumerics = true;
fixptcfg.addApproximation(q);

Generate fixed-point MATLAB code.

codegen -float2fixed fixptcfg call_custom_fcn

codegen generates fixed-point MATLAB code in call_custom_fcn_fixpt.m.

To view the generated fixed-point code, click the link to call_custom_fcn_fixpt.

The generated code contains a lookup table approximation, replacement_custom_fcn, for the
custom_fcn function. The fixed-point conversion process infers the ranges for the function and then
uses an interpolated lookup table to replace the function. The lookup table uses 50 points as
specified. By default, it uses linear interpolation and the minimum and maximum values detected by
running the test file.

The generated fixed-point function, call_custom_fcn_fixpt, calls this approximation instead of
calling custom_fcn.

function y = call_custom_fcn_fixpt(x)
  fm = get_fimath();

  y = fi(replacement_custom_fcn(x), 0, 14, 14, fm);
end

You can now test the generated fixed-point code and compare the results against the original
MATLAB function. If the behavior of the generated fixed-point code does not match the behavior of
the original code closely enough, modify the interpolation method or number of points used in the
lookup table and then regenerate code.

See Also
coder.approximation

Related Examples
• “Replace the exp Function with a Lookup Table” on page 4-39
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More About
• “Replacing Functions Using Lookup Table Approximations” on page 4-32
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Replace the exp Function with a Lookup Table
With HDL Coder, you can handle functions that are not supported for fixed point and replace your
own functions. To replace a custom function with a Lookup Table, use the HDL Coder App, or the
fiaccel codegen function.

In this section...
“From the UI” on page 4-39
“From the Command Line” on page 4-42

From the UI
This example shows how to replace a custom function with a Lookup Table using the HDL Coder app.

Create Algorithm and Test Files

In a local, writable folder:

1 Create a MATLAB function, custom_fcn, which is the function that you want to replace.

function y = custom_fcn(x)
  y = 1./(1+exp(-x));
end

2 Create a wrapper function that calls custom_fcn.

function y = call_custom_fcn(x)
  y = custom_fcn(x);
end

3 Create a test file, custom_test, which uses call_custom_fcn.

close all

x = linspace(-10,10,1e3);
for itr = 1e3:-1:1
   y(itr) = call_custom_fcn( x(itr) );
end
plot( x, y );

Create and Set up a HDL Coder Project

1 Navigate to the work folder that contains the file for this example.
2 To open the HDL Coder app, in the MATLAB command prompt, enter hdlcoder. Set Name to

custom_project.prj and click OK. The project opens in the MATLAB workspace.
3 In the project window, on the MATLAB Function tab, click the Add MATLAB function link.

Browse to the file call_custom_fcn.m, and then click OK to add the file to the project.

Define Input Types

1 To define input types for call_custom_fcn.m, on the MATLAB Function tab, click
Autodefine types.

2 Add custom_test as a test file, and then click Run.

From the test file, HDL Coder determines that x is a scalar double.
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3 Click Use These Types.

Replace custom_fcn with Lookup Table

1 To open the HDL Workflow Advisor, click Workflow Advisor, and in the Workflow Advisor
window, click Fixed-Point Conversion.

2 To replace custom_fcn with a Lookup Table, on the Function Replacements tab, enter
custom_fcn, select Lookup Table, and then click +.

By default, the lookup table uses linear interpolation, 1000 points, and design minimum and
maximum values that the app detects by running a simulation or computing derived ranges.

3 Under Run Simulation, select Log data for histogram, and then click Run Simulation.
Verify that custom_test file is selected as the test file.

The simulation runs and the tool displays simulation minimum and maximum ranges on the
Variables tab. HDL Coder plots the simulation results in the MATLAB Editor.
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Validate Fixed-Point Types

1 In the Proposed Type column, verify that the fixed-point types proposed by software cover the
full simulation range. To view logged histogram data for a variable, click its Proposed Type field.

The histogram provides range information and the percentage of simulation range that the
proposed data type covers.
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2 To validate the build by using the proposed types, click Validate Types.

The software validates the proposed types and generates a fixed-point code,
call_custom_fcn_fixpt.

3 To view the generated fixed-point code, click the call_custom_fcn_fixpt link.

The generated fixed-point function, call_custom_fcn_fixpt.m, calls this approximation
instead of calling custom_fcn.

function y = call_custom_fcn_fixpt(x)
  fm = get_fimath();

  y = fi(replacement_custom_fcn(x), 0, 14, 14, fm);
end

function fm = get_fimath()
    fm = fimath('RoundingMethod', 'Floor',...
         'OverflowAction', 'Wrap',...
         'ProductMode','FullPrecision',...
         'MaxProductWordLength', 128,...
         'SumMode','FullPrecision',...
         'MaxSumWordLength', 128);
end

From the Command Line
This example shows how to replace the exp function with a lookup table approximation in the
generated fixed-point code using the function.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”
(MATLAB).

Create Algorithm and Test Files

1 Create a MATLAB function, my_fcn.m, that calls the exp function.

function y = my_fcn(x)
  y = exp(x);
end

2 Create a test file, my_fcn_test.m, that uses my_fcn.m.

close all

x = linspace(-10,10,1e3);
for itr = 1e3:-1:1
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   y(itr) = my_fcn( x(itr) );
end
plot( x, y );

Configure Approximation

Create a function replacement configuration object to approximate the exp function, using the
default settings of linear interpolation and 1000 points in the lookup table.

q = coder.approximation('exp');

Set Up Configuration Object

Create a coder.FixptConfig object, fixptcfg. Specify the test file name and enable numerics
testing. Associate the function replacement configuration object with the fixed-point configuration
object.

fixptcfg = coder.config('fixpt');
fixptcfg.TestBenchName = 'my_fcn_test';
fixptcfg.TestNumerics = true;
fixptcfg.DefaultWordLength = 16;
fixptcfg.addApproximation(q);

Convert to Fixed Point

Generate fixed-point MATLAB code.

codegen -float2fixed fixptcfg my_fcn

View Generated Fixed-Point Code

To view the generated fixed-point code, click the link to my_fcn_fixpt.

The generated code contains a lookup table approximation, replacement_exp, for the exp function.
The fixed-point conversion process infers the ranges for the function and then uses an interpolated
lookup table to replace the function. By default, the lookup table uses linear interpolation, 1000
points, and the minimum and maximum values detected by running the test file.

The generated fixed-point function, my_fcn_fixpt, calls this approximation instead of calling exp.

function y = my_fcn_fixpt(x)
  fm = get_fimath();

  y = fi(replacement_exp(x), 0, 16, 1, fm);
end

You can now test the generated fixed-point code and compare the results against the original
MATLAB function. If the behavior of the generated fixed-point code does not match the behavior of
the original code closely enough, modify the interpolation method or number of points used in the
lookup table and then regenerate code.

See Also
coder.approximation
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Related Examples
• “Replace a Custom Function with a Lookup Table” on page 4-33

More About
• “Replacing Functions Using Lookup Table Approximations” on page 4-32
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Data Type Issues in Generated Code
Within the fixed-point conversion report, you have the option to highlight MATLAB code that results
in double, single, or expensive fixed-point operations. Consider enabling these checks when trying to
achieve a strict single, or fixed-point design.

These checks are disabled by default.

Enable the Highlight Option in a Project
1 Open the Settings menu.
2 Under Plotting and Reporting, set Highlight potential data type issues to Yes.

Enable the Highlight Option at the Command Line
1 Create a fixed-point code configuration object:

cfg = coder.config('fixpt');
2 Set the HighlightPotentialDataTypeIssues property of the configuration object to true.

cfg.HighlightPotentialDataTypeIssues = true;

Stowaway Doubles
When trying to achieve a strict-single or fixed-point design, manual inspection of code can be time-
consuming and error prone. This check highlights all expressions that result in a double operation.

Stowaway Singles
This check highlights all expressions that result in a single operation.

Expensive Fixed-Point Operations
The expensive fixed-point operations check identifies optimization opportunities for fixed-point code.
It highlights expressions in the MATLAB code that require cumbersome multiplication or division,
expensive rounding, expensive comparison, or multiword operations. For more information on
optimizing generated fixed-point code, see “Tips for Making Generated Code More Efficient” (Fixed-
Point Designer).

Cumbersome Operations

Cumbersome operations most often occur due to insufficient range of output. Avoid inputs to a
multiply or divide operation that has word lengths larger than the base integer type of your
processor. Operations with larger word lengths can be handled in software, but this approach
requires much more code and is much slower.

Expensive Rounding

Traditional handwritten code, especially for control applications, almost always uses "no effort"
rounding. For example, for unsigned integers and two's complement signed integers, shifting right
and dropping the bits is equivalent to rounding to floor. To get results comparable to, or better than,
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what you expect from traditional handwritten code, use the floor rounding method. This check
identifies expensive rounding operations in multiplication and division.

Expensive Comparison Operations

Comparison operations generate extra code when a casting operation is required to do the
comparison. For example, when comparing an unsigned integer to a signed integer, one of the inputs
must first be cast to the signedness of the other before the comparison operation can be performed.
Consider optimizing the data types of the input arguments so that a cast is not required in the
generated code.

Multiword Operations

Multiword operations can be inefficient on hardware. When an operation has an input or output data
type larger than the largest word size of your processor, the generated code contains multiword
operations. You can avoid multiword operations in the generated code by specifying local fimath
properties for variables. You can also manually specify input and output word lengths of operations
that generate multiword code.
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Code Generation

• “Create and Set Up Your Project” on page 5-2
• “Specify Properties of Entry-Point Function Inputs” on page 5-4
• “Basic HDL Code Generation and FPGA Synthesis from MATLAB by Using the Workflow Advisor”

on page 5-7
• “HDL Code Generation from System Objects” on page 5-14
• “Code Generation Reports” on page 5-18
• “Generate Instantiable Code for Functions” on page 5-22
• “Integrate Custom HDL Code Into MATLAB Design” on page 5-23
• “Enable MATLAB Function Block Generation” on page 5-28
• “System Design with HDL Code Generation from MATLAB and Simulink” on page 5-29
• “Specify the Clock Enable Rate” on page 5-32
• “Specify Test Bench Clock Enable Toggle Rate” on page 5-34
• “Generate an HDL Coding Standard Report from MATLAB” on page 5-36
• “Generate an HDL Lint Tool Script” on page 5-39
• “Generate Board-Independent IP Core from MATLAB Algorithm” on page 5-41
• “Minimize Clock Enables” on page 5-43
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Create and Set Up Your Project
In this section...
“Create a New Project” on page 5-2
“Open an Existing Project” on page 5-3
“Add Files to the Project” on page 5-3

Create a New Project
1 At the MATLAB command line, enter:

hdlcoder
2 Enter a project name in the project dialog box and click OK.

HDL Coder creates the project in the local working folder, and, by default, opens the project in the
right side of the MATLAB workspace.

Alternatively, you can create a new HDL Coder project from the apps gallery:
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1 On the Apps tab, on the far right of the Apps section, click the arrow .
2 Under Code Generation, click HDL Coder.
3 Enter a project name in the project dialog box and click OK.

Open an Existing Project
At the MATLAB command line, enter:

open project_name

where project_name specifies the full path to the project file.

Alternatively, navigate to the folder that contains your project and double-click the .prj file.

Add Files to the Project
Add the MATLAB Function (Design Under Test)

First, you must add the MATLAB file from which you want to generate code to the project. Add only
the top-level function that you call from MATLAB (the Design Under Test). Do not add files that are
called by this file. Do not add files that have spaces in their names. The path must not contain spaces,
as spaces can lead to code generation failures in certain operating system configurations.

To add a file, do one of the following:

• In the project pane, under MATLAB Function , click the Add MATLAB function link and browse
to the file.

• Drag a file from the current folder and drop it in the project pane under MATLAB Function.

If the functions that you added have inputs, and you do not specify a test bench, you must define
these inputs. See “Specify Properties of Entry-Point Function Inputs” on page 5-4.

Add a MATLAB Test Bench

You must add a MATLAB test bench unless your design does not need fixed-point conversion and you
do not want to generate an RTL test bench. If you do not add a test bench, you must define the inputs
to your top-level MATLAB function. For more information, see “Specify Properties of Entry-Point
Function Inputs” on page 5-4.

To add a test bench, do one of the following:

• In the project panel, under MATLAB Test Bench, click the Add MATLAB test bench link and
browse to the file.

• Drag a file from the current folder and drop it in the project pane under MATLAB Test Bench.
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Specify Properties of Entry-Point Function Inputs
In this section...
“When to Specify Input Properties” on page 5-4
“Why You Must Specify Input Properties” on page 5-4
“Properties to Specify” on page 5-4
“Rules for Specifying Properties of Primary Inputs” on page 5-5
“Methods for Defining Properties of Primary Inputs” on page 5-5

When to Specify Input Properties
If you supply a test bench for your MATLAB algorithm, you do not need to specify the primary
function inputs manually. The HDL Coder software uses the test bench to infer the data types.

Why You Must Specify Input Properties
HDL Coder must determine the properties of all variables in the MATLAB files at compile time. To
infer variable properties in MATLAB files, HDL Coder must be able to identify the properties of the
inputs to the primary function, also known as the top-level or entry-point function. Therefore, if your
primary function has inputs, you must specify the properties of these inputs, to HDL Coder. If your
primary function has no input parameters, HDL Coder can compile your MATLAB file without
modification. You do not need to specify properties of inputs to local functions or external functions
called by the primary function.

If you use the tilde (~) character to specify unused function inputs in an HDL Coder project, and you
want a different type to appear in the generated code, specify the type. Otherwise, the inputs default
to real, scalar doubles.

Properties to Specify
If your primary function has inputs, you must specify the following properties for each input.

For Specify properties
 Class Size Complexity numerictype fimath
Fixed-point inputs

Other inputs   

The following data types are not supported for primary function inputs, although you can use them
within the primary function:

• structure
• matrix

Variable-size data is not supported in the test bench or the primary function.

Default Property Values

HDL Coder assigns the following default values for properties of primary function inputs.
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Property Default
class double
size scalar
complexity real
numerictype No default
fimath hdlfimath

Supported Classes

The following table presents the class names supported by HDL Coder.

Class Name Description
logical Logical array of true and false values
char Character array
int8 8-bit signed integer array
uint8 8-bit unsigned integer array
int16 16-bit signed integer array
uint16 16-bit unsigned integer array
int32 32-bit signed integer array
uint32 32-bit unsigned integer array
single Single-precision floating-point or fixed-point number

array
double Double-precision floating-point or fixed-point number

array
embedded.fi Fixed-point number array

Rules for Specifying Properties of Primary Inputs
When specifying the properties of primary inputs, follow these rules:

• You must specify the class of all primary inputs. If you do not specify the size or complexity of
primary inputs, they default to real scalars.

• For each primary function input whose class is fixed point (fi), you must specify the input
numerictype and fimath properties.

Methods for Defining Properties of Primary Inputs
Method Advantages Disadvantages
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Method Advantages Disadvantages
“Define Input Properties
by Example at the
Command Line”

Note If you define input
properties
programmatically in the
MATLAB file, you cannot
use this method

• Easy to use
• Does not alter original MATLAB code
• Designed for prototyping a function

that has a few primary inputs

• Must be specified at the command
line every time you invoke (unless you
use a script)

• Not efficient for specifying memory-
intensive inputs such as large
structures and arrays

“Define Input Properties
Programmatically in the
MATLAB File” (MATLAB
Coder)

• Integrated with MATLAB code; no
need to redefine properties each time
you invoke HDL Coder

• Provides documentation of property
specifications in the MATLAB code

• Efficient for specifying memory-
intensive inputs such as large
structures

• Uses complex syntax
• HDL Coder project files do not

currently recognize properties defined
programmatically. If you are using a
project, you must reenter the input
types in the project.

See Also
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Basic HDL Code Generation and FPGA Synthesis from MATLAB
by Using the Workflow Advisor

This example shows how to create a HDL Coder™ project, generate code for your MATLAB design,
and synthesize the HDL code. In this example, you:

1 Create a MATLAB HDL Coder project.
2 Add the design and test bench files to the project.
3 Start the HDL Workflow Advisor for the MATLAB design.
4 Run fixed-point conversion and HDL code generation.
5 Generate a HDL test bench from the MATLAB test bench.
6 Verify the generated HDL code by using a HDL simulator. This example uses ModelSim® as the

tool.
7 Synthesize the generated HDL code by using a synthesis tool. This example uses Xilinx®

Vivado® as the tool.

FIR Filter MATLAB Design

The MATLAB design mlhdlc_sfir is a simple symmetric FIR filter.

design_name = 'mlhdlc_sfir';
testbench_name = 'mlhdlc_sfir_tb';

Review the MATLAB design.

open(design_name);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB design: Symmetric FIR Filter
% 
% Introduction:
%
% We can reduce the complexity of the FIR filter by leveraging its symmetry. 
% Symmetry for an n-tap filter implies, coefficient h0 = coefficient hn-1, 
% coefficient, h1 = coefficient hn-2, etc. In this case, the number of 
% multipliers can be approximately halved. The key is to add the 
% two data values that need to be multiplied with the same coefficient 
% prior to performing the multiplication. 
%
% Key Design pattern covered in this example: 
% (1) Filter states represented using the persistent variables
% (2) Filter coefficients passed in as parameters

%   Copyright 2011-2019 The MathWorks, Inc.

%#codegen
function [y_out, delayed_xout] = mlhdlc_sfir(x_in,h_in1,h_in2,h_in3,h_in4)   
% Symmetric FIR Filter

% declare and initialize the delay registers
persistent ud1 ud2 ud3 ud4 ud5 ud6 ud7 ud8;
if isempty(ud1)
    ud1 = 0; ud2 = 0; ud3 = 0; ud4 = 0; ud5 = 0; ud6 = 0; ud7 = 0; ud8 = 0;
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end

% access the previous value of states/registers
a1 = ud1 + ud8; a2 = ud2 + ud7;
a3 = ud3 + ud6; a4 = ud4 + ud5;

% multiplier chain
m1 = h_in1 * a1; m2 = h_in2 * a2;
m3 = h_in3 * a3; m4 = h_in4 * a4;

% adder chain
a5 = m1 + m2; a6 = m3 + m4;

% filtered output
y_out = a5 + a6;

% delayout input signal
delayed_xout = ud8;

% update the delay line
ud8 = ud7; 
ud7 = ud6;
ud6 = ud5;
ud5 = ud4;
ud4 = ud3;
ud3 = ud2;
ud2 = ud1;
ud1 = x_in;
end

FIR Filter MATLAB Test Bench

A MATLAB testbench mlhdlc_sfir_tb exercises the filter design by using a representative input
range. Review the MATLAB test bench mlhdlc_sfir_tb.

open(testbench_name);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB test bench for the FIR filter
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%   Copyright 2011-2019 The MathWorks, Inc.
clear mlhdlc_sfir;
T = 2;
dt = 0.001;
N = T/dt+1;
sample_time = 0:dt:T;

df = 1/dt;
sample_freq = linspace(-1/2,1/2,N).*df;

% input signal with noise
x_in = cos(2.*pi.*(sample_time).*(1+(sample_time).*75)).';

% filter coefficients
h1 = -0.1339; h2 = -0.0838; h3 = 0.2026; h4 = 0.4064;
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len = length(x_in);
y_out = zeros(1,len);
x_out = zeros(1,len);

for ii=1:len
    data = x_in(ii);
    % call to the design 'mlhdlc_sfir' that is targeted for hardware
    [y_out(ii), x_out(ii)] = mlhdlc_sfir(data, h1, h2, h3, h4);
end

figure('Name', [mfilename, '_plot']);
subplot(3,1,1);
plot(1:len,x_in,'-b');
xlabel('Time (ms)')

ylabel('Amplitude')
title('Input Signal (with noise)')
subplot(3,1,2); plot(1:len,y_out,'-b');
xlabel('Time (ms)')
ylabel('Amplitude')
title('Output Signal (filtered)')

freq_fft = @(x) abs(fftshift(fft(x)));

subplot(3,1,3); semilogy(sample_freq,freq_fft(x_in),'-b');
hold on
semilogy(sample_freq,freq_fft(y_out),'-r')
hold off
xlabel('Frequency (Hz)')
ylabel('Amplitude (dB)')
title('Input and Output Signals (Frequency domain)')
legend({'FilterIn', 'FilterOut'}, 'Location','South')
axis([-500 500 1 100])

Test the Original MATLAB Algorithm

To avoid run-time errors, simulate the design by using the test bench.

mlhdlc_sfir_tb

 Basic HDL Code Generation and FPGA Synthesis from MATLAB by Using the Workflow Advisor

5-9



Create a Folder and Copy Relevant Files

To copy the example files into a temporary folder, run these commands:

design_name = 'mlhdlc_sfir';
testbench_name = 'mlhdlc_sfir_tb';

Create a temporary folder

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');
mlhdlc_temp_dir = [tempdir 'mlhdlc_sfir'];
cd(tempdir);
[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');
mkdir(mlhdlc_temp_dir);
cd(mlhdlc_temp_dir);

Copy the MATLAB files.

copyfile(fullfile(mlhdlc_demo_dir, [design_name,'.m*']), mlhdlc_temp_dir);
copyfile(fullfile(mlhdlc_demo_dir, [testbench_name,'.m*']), mlhdlc_temp_dir);

Set Up HDL Simulator and Synthesis Tool Path

If you want to synthesize the generated HDL code, before you use HDL Coder to generate code, set
up your synthesis tool path. To set up the path to your synthesis tool, use the hdlsetuptoolpath
function. For example, if your synthesis tool is Xilinx Vivado:
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hdlsetuptoolpath('ToolName','Xilinx Vivado','ToolPath',...
               'C:\Xilinx\Vivado\2018.3\bin\vivado.bat');

You must have already installed Xilinx Vivado. To check your Xilinx Vivado synthesis tool setup,
launch the tool by running this command:

!vivado

If you want to simulate the generated HDL code by using a HDL test bench, you can use an HDL
simulator such as ModelSim®. You must have already installed the HDL simulator.

Create an HDL Coder Project

To create an HDL Coder project:

1. Create a project by running this command:

coder -hdlcoder -new sfir_project

2. For MATLAB Function, add the MATLAB design mlhdlc_sfir. Add mlhdlc_sfir_tb.m as the
MATLAB test bench.

3. Click Autodefine types and use the recommended types for the MATLAB design. The code
generator infers data types by running the test bench.
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Create Fixed-Point Versions of Algorithm and Test Bench

1 Click the Workflow Advisor button to open the Workflow Advisor. You see that the Define Input
Types task has passed.

2 Run the Fixed-Point Conversion task. The Fixed-Point Conversion tool opens in the right
pane.

When you run fixed-point conversion, to propose fraction lengths for floating-point data types, HDL
Coder uses the Default word length. In this tutorial, the Default word length is 14. The advisor
provides a default Safety Margin for Simulation Min/Max of 0%. The advisor adjusts the range of
the data by this safety factor. For example, a value of 4 specifies that you want a range of at least 4
percent larger. See also Floating-Point to Fixed-Point Conversion.

Select Code Generation Options and Generate HDL Code

Before you generate HDL code, if you want to deploy the code onto a target platform, specify the
synthesis tool. In the Code Generation Target task, leave Workflow to Generic ASIC/FPGA and
specify Xilinx Vivado as the Synthesis Tool. If you don't see the synthesis tool, click Refresh
list. Run this task.

In the HDL Code Generation task, by using the tabs on the right side of this task, you can specify
additional code generation options.

1 By default, HDL Coder generates VHDL® code. To generate Verilog code, in the Target tab,
choose Verilog as the Language.

2 To generate a code generation report with comments and traceability links, in the Coding style
tab, select Include MATLAB source code as comments and 'Generate report*.

3 To optimize your design, you can use the distributed pipelining optimization. In the
Optimizations tab, specify 1 for Input pipelining and Output pipelining and then select
Distribute pipeline registers. To learn more, see “Distributed Pipelining” on page 8-10.

4 Click Run to generate Verilog code.

Examine the log window and click the links to explore the generated code and the reports.

Generate HDL Test Bench and Simulate the Generated Code

HDL Coder generates a HDL test bench, runs the HDL test bench by using a HDL simulator, and
verifies whether the HDL simulation matches the numerics and latency of the fixed-point MATLAB
simulation.

To generate a HDL test bench and simulate the generated code, in the HDL Verification > Verify
with HDL Test Bench task:

1 In the Output Settings tab, select Generate HDL test bench.
2 To simulate the generated test bench, set the Simulation Tool to ModelSim. You must have

already installed ModelSim.
3 To specify generation of HDL test bench code and test bench data in separate files, in the Test

Bench Options tab, select Multi-file test bench.
4 Click the Run button.

The task generates an HDL test bench, then simulates the fixed-point design by using the selected
simulation tool, and generates a compilation report and a simulation report.
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Synthesize Generated HDL Code

HDL Coder synthesizes the HDL code on the target platform and generates area and timing reports
for your design based on the target device that you specify.

To synthesize the generated HDL code:

1. Run the Create project task.

This task creates a Xilinx Vivado synthesis project for the HDL code. HDL Coder uses this project in
the next task to synthesize the design.

2. Select and run the Run Synthesis task.

This task launches the synthesis tool in the background, opens the synthesis project, compiles the
HDL code, synthesizes the design, and generates netlists and area and timing reports.

3. Select and run the Run Implementation task.

This task launches the synthesis tool in the background, runs place and route on the design, and
generates pre- and post-route timing information for use in critical path analysis and back annotation
of your source model.

Clean Up Generated Files

To clean up the temporary project folder, run these commands:

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');
mlhdlc_temp_dir = [tempdir 'mlhdlc_sfir'];
clear mex;
cd (mlhdlc_demo_dir);
rmdir(mlhdlc_temp_dir, 's');

See Also

More About
• “HDL Workflow Advisor” on page 9-2
• “Automatic Verification of Generated HDL Code from MATLAB” (HDL Verifier)
• “FIL Simulation with HDL Workflow Advisor for MATLAB” (HDL Verifier)
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HDL Code Generation from System Objects
This example shows how to generate HDL code from MATLAB® code that contains System objects.

MATLAB Design

The MATLAB code used in this example implements a simple symmetric FIR filter and uses the
dsp.Delay System object to model state. This example also shows a MATLAB test bench that exercises
the filter.

design_name = 'mlhdlc_sysobj_ex';
testbench_name = 'mlhdlc_sysobj_ex_tb';

Let us take a look at the MATLAB design.

type(design_name);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB design: Symmetric FIR Filter
% 
% Design pattern covered in this example: 
%  Filter states modeled using DSP System object (dsp.Delay)
%  Filter coefficients passed in as parameters to the design
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%   Copyright 2011-2015 The MathWorks, Inc.

%#codegen
function [y_out, delayed_xout] = mlhdlc_sysobj_ex(x_in, h_in1, h_in2, h_in3, h_in4)
% Symmetric FIR Filter

persistent h1 h2 h3 h4 h5 h6 h7 h8;
if isempty(h1)
    h1 = dsp.Delay;
    h2 = dsp.Delay;
    h3 = dsp.Delay;
    h4 = dsp.Delay;
    h5 = dsp.Delay;
    h6 = dsp.Delay;
    h7 = dsp.Delay;
    h8 = dsp.Delay;
end

h1p = step(h1, x_in);
h2p = step(h2, h1p);
h3p = step(h3, h2p);
h4p = step(h4, h3p);
h5p = step(h5, h4p);
h6p = step(h6, h5p);
h7p = step(h7, h6p);
h8p = step(h8, h7p);

a1 = h1p + h8p;
a2 = h2p + h7p;
a3 = h3p + h6p;
a4 = h4p + h5p;
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m1 = h_in1 * a1;
m2 = h_in2 * a2;
m3 = h_in3 * a3;
m4 = h_in4 * a4;

a5 = m1 + m2;
a6 = m3 + m4;

% filtered output
y_out = a5 + a6;
% delayout input signal
delayed_xout = h8p;

end

type(testbench_name);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB test bench for the FIR filter
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%   Copyright 2011-2015 The MathWorks, Inc.

clear mlhdlc_sysobj_ex;
 
x_in = cos(2.*pi.*(0:0.001:2).*(1+(0:0.001:2).*75)).';

h1 = -0.1339;
h2 = -0.0838;
h3 = 0.2026;
h4 = 0.4064;

len = length(x_in);
y_out_sysobj = zeros(1,len);
x_out_sysobj = zeros(1,len);
a = 10;

for ii=1:len
    data = x_in(ii);
    % call to the design 'sfir' that is targeted for hardware
    [y_out_sysobj(ii), x_out_sysobj(ii)] = mlhdlc_sysobj_ex(data, h1, h2, h3, h4);    
end

figure('Name', [mfilename, '_plot']);
subplot(2,1,1); 
plot(1:len,x_in); title('Input signal with noise');
subplot(2,1,2);
plot(1:len,y_out_sysobj); title('Filtered output signal');

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a temporary folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');
mlhdlc_temp_dir = [tempdir 'mlhdlc_sysobj_intro'];
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% Create a temporary folder and copy the MATLAB files.
cd(tempdir);
[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');
mkdir(mlhdlc_temp_dir);
cd(mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, [design_name,'.m*']), mlhdlc_temp_dir);
copyfile(fullfile(mlhdlc_demo_dir, [testbench_name,'.m*']), mlhdlc_temp_dir);

Simulate the Design

Simulate the design with the test bench prior to code generation to make sure there are no runtime
errors.

mlhdlc_sysobj_ex_tb

Create a New HDL Coder™ Project

To create a new project, enter the following command:

coder -hdlcoder -new mlhdlc_sysobj_prj

Next, add the file 'mlhdlc_sysobj_ex.m' to the project as the MATLAB Function and
'mlhdlc_sysobj_ex_tb.m' as the MATLAB Test Bench.

You can refer to the Getting Started with MATLAB to HDL Workflow tutorial for a more complete
tutorial on creating and populating MATLAB HDL Coder projects.
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Run Fixed-Point Conversion and HDL Code Generation

Launch the Workflow Advisor. In the Workflow Advisor, right-click the 'Code Generation' step. Choose
the option 'Run to selected task' to run all the steps from the beginning through HDL code
generation.

Examine the generated HDL code by clicking the links in the log window.

Supported System objects

Refer to the documentation for a list of System objects supported for HDL code generation.

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');
mlhdlc_temp_dir = [tempdir 'mlhdlc_sysobj_intro'];
clear mex;
cd (mlhdlc_demo_dir);
rmdir(mlhdlc_temp_dir, 's');
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Code Generation Reports
In this section...
“Report Generation” on page 5-18
“Report Location” on page 5-18
“Errors and Warnings” on page 5-19
“Files and Functions” on page 5-19
“MATLAB Source” on page 5-19
“MATLAB Variables” on page 5-20
“Additional Reports” on page 5-21
“Report Limitations” on page 5-21

HDL Coder produces a code generation report that helps you to:

• Debug code generation issues and verify that your MATLAB code is suitable for code generation.
• View generated HDL code.
• See how the code generator determines and propagates type information for variables and

expressions in your MATLAB code.
• Access additional reports.

Report Generation
When you enable report generation, the code generator produces a code generation report. To
control generation and opening of a code generation report, use app settings, codegen options, or
configuration object properties.

In the HDL Coder app:

1 Open the HDL Coder Workflow Advisor.
2 In the HDL Code Generation step options, on the Coding Style tab, under Generated Code

Comments, select the Generate report check box.

At the command line, use codegen options:

• To generate a report, use the -report option.
• To generate and open a report, use the -launchreport option.

Alternatively, use configuration object properties:

• To generate a report, set GenerateReport to true.
• If you want codegen to open the report for you, set LaunchReport to true.

Report Location
The code generation report is named report.mldatx. It is located in the html subfolder of the code
generation output folder. If you have MATLAB R2018a or later, you can open the report.mldatx file
by double-clicking it.
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Errors and Warnings
View code generation error, warning, and information messages on the All Messages tab. To
highlight the source code for an error or warning, click the message. It is a best practice to address
the first message because subsequent errors and warnings can be related to the first message.

Files and Functions
The report lists MATLAB source functions and generated files. In the MATLAB Source pane, the
Function List view organizes functions according to the containing file. To visualize functions
according to the call structure, use the Call Tree view.

To view a function in the code pane of the report, click the function in the list. Clicking a function
opens the file that contains the function. To edit the selected file in the MATLAB Editor, click Edit in
MATLAB or click a line number in the code pane.

Specialized Functions or Classes

When a function is called with different types of inputs or a class uses different types for its
properties, the code generator produces specializations. In the MATLAB Source pane, numbered
functions (or classes) indicate specializations. For example:

MATLAB Source
To view a MATLAB function in the code pane, click the function in the MATLAB Source pane. To see
information about the type of a variable or expression, pause over the variable or expression.

In the code pane, syntax highlighting of MATLAB source code helps you to identify MATLAB syntax
elements. Syntax highlighting also helps you to identify certain code generation attributes such as
whether a function is extrinsic or whether an argument is constant.

Extrinsic Functions

In the MATLAB code, the report identifies an extrinsic function with purple text. The information
window indicates that the function is extrinsic.
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Constant Arguments

In the MATLAB code, orange text indicates a compile-time constant argument to an entry-point
function or a specialized function. The information window includes the constant value.

Knowing the value of the constant arguments helps you to understand generated function signatures.
It also helps you to see when code generation created function specializations for different constant
argument values.

To export the value to a variable in the workspace, click .

MATLAB Variables
The Variables tab provides information about the variables for the selected MATLAB function. To
select a function, click the function in the MATLAB Source pane.

The variables table shows:

• Class, size, and complexity
• Properties of fixed-point types

This information helps you to debug errors, such as type mismatch errors, and to understand type
propagation.

Visual Indicators on the Variables Tab

This table describes symbols, badges, and other indicators in the variables table.

Column in the Variables
Table

Indicator Description

Name expander Variable has elements or
properties that you can see by
clicking the expander.

Name {:} Heterogeneous cell array (all
elements have the same
properties)

Name {n} nth element of a heterogeneous
cell array
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Column in the Variables
Table

Indicator Description

Class v > n v is reused with a different
class, size, and complexity. The
number n identifies each unique
reuse (a reuse with a unique set
of properties). When you pause
over a renamed variable, the
report highlights only the
instances of this variable that
share the class, size, and
complexity.

Class complex prefix Complex number
Class Fixed-point type

To see the fixed-point
properties, click the badge.

Additional Reports
The Summary tab can have links to these additional reports:

• Conformance report
• Resource report
• “HDL Coding Standard Report” on page 26-2

Report Limitations
• The entry-point summary shows individual elements of varagin and vargout, but the variables

table does not show them.
• The report does not show full information for unrolled loops. It displays data types of one arbitrary

iteration.
• The report does not show information about dead code.

See Also

More About
• “Basic HDL Code Generation and FPGA Synthesis from MATLAB by Using the Workflow

Advisor” on page 5-7
• “Generate HDL Code from MATLAB Code Using the Command Line Interface”
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Generate Instantiable Code for Functions
In this section...
“How to Generate Instantiable Code for Functions” on page 5-22
“Generate Code Inline for Specific Functions” on page 5-22
“Limitations for Instantiable Code Generation for Functions” on page 5-22

You can use the Generate instantiable code for functions option to generate a VHDL entity or
Verilog module for each function. The software generates code for each entity or module in a
separate file.

How to Generate Instantiable Code for Functions
To enable instantiable code generation for functions in the UI:

1 In the HDL Workflow Advisor, select the HDL Code Generation task.
2 In the Advanced tab, select Generate instantiable code for functions.

To enable instantiable code generation for functions programmatically, in your coder.HdlConfig
object, set the InstantiateFunctions property to true. For example, to create a
coder.HdlConfig object and enable instantiable code generation for functions:

hdlcfg = coder.config('hdl');
hdlcfg.InstantiateFunctions = true;

Generate Code Inline for Specific Functions
If you want to generate instantiable code for some functions but not others, enable the option to
generate instantiable code for functions, and use coder.inline. See coder.inline for details.

Limitations for Instantiable Code Generation for Functions
The software generates code inline when:

• Function calls are within conditional code or for loops.
• Any function is called with a nonconstant struct input.
• The function has state, such as a persistent variable, and is called multiple times.
• There is an enumeration anywhere in the design function.

If you enable InstantiateFunctions , UseMatrixTypesInHDL has no effect.
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Integrate Custom HDL Code Into MATLAB Design
hdl.BlackBox provides a way to include custom HDL code, such as legacy or handwritten HDL
code, in a MATLAB design intended for HDL code generation.

When you create a user-defined System object that inherits from hdl.BlackBox, you specify a port
interface and simulation behavior that matches your custom HDL code.

HDL Coder simulates the design in MATLAB using the behavior you define in the System object.
During code generation, instead of generating code for the simulation behavior, the coder instantiates
a module with the port interface you specify in the System object.

To use the generated HDL code in a larger system, you include the custom HDL source files with the
rest of the generated code.

In this section...
“Define the hdl.BlackBox System object” on page 5-23
“Use System object In MATLAB Design Function” on page 5-24
“Generate HDL Code” on page 5-25
“Limitations for hdl.BlackBox” on page 5-27

Define the hdl.BlackBox System object
1 Create a user-defined System object that inherits from hdl.BlackBox.
2 Configure the black box interface to match the port interface for your custom HDL code by

setting hdl.BlackBox properties in the System object.
3 Define the step method such that its simulation behavior matches the custom HDL code.

Alternatively, the System object you define can inherit from both hdl.BlackBox and the
matlab.system.mixin.Nondirect class, and you can define output and update methods to
match the custom HDL code simulation behavior.

Example Code

For example, the following code defines a System object, CounterBbox, that inherits from
hdl.BlackBox and represents custom HDL code for a counter that increments until it reaches a
threshold. The CounterBbox reset and step methods model the custom HDL code behavior.

classdef CounterBbox < hdl.BlackBox % derive from hdl.BlackBox class
    %Counter: Count up to a threshold.
    %
    % This is an example of a discrete-time System object with state
    % variables.
    %
    properties (Nontunable)
        Threshold = 1
    end
 
    properties (DiscreteState)
        % Define discrete-time states.
        Count
    end
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    methods
        function obj = CounterBbox(varargin)
            % Support name-value pair arguments
            setProperties(obj,nargin,varargin{:});
            obj.NumInputs = 1;   % define number of inputs
            obj.NumOutputs = 1;  % define number of inputs
        end
    end
 
    methods (Access=protected)
        % Define simulation behavior.
        % For code generation, the coder uses your custom HDL code instead.
        function resetImpl(obj)
            % Specify initial values for DiscreteState properties
            obj.Count = 0;
        end
 
        function myout = stepImpl(obj, myin)
            % Implement algorithm. Calculate y as a function of
            % input u and state.
            if (myin > obj.Threshold)
                obj.Count = obj.Count + 1;
            end
            myout = obj.Count;
        end        
    end
end

Use System object In MATLAB Design Function
After you define your System object, use it in the MATLAB design function by creating an instance
and calling its step method.

To generate code, you also need to create a test bench function that exercises the top-level design
function.

Example Code

The following example code shows a top-level design function that creates an instance of the
CounterBbox and calls its step method.

function [y1, y2] = topLevelDesign(u)

persistent mybboxObj myramObj
if isempty(mybboxObj)
    mybboxObj = CounterBbox; % instantiate the black box
    myramObj = hdl.RAM('RAMType', 'Dual port');
end

y1 = step(mybboxObj, u); % call the system object step method
[~, y2] = step(myramObj, uint8(10), uint8(0), true, uint8(20));

The following example code shows a test bench function for the topLevelDesign function.

clear topLevelDesign
y1 = zeros(1,200);

5 Code Generation

5-24



y2 = zeros(1,200);
for ii=1:200
    [y1(ii), y2(ii)] = topLevelDesign(ii);
end
plot([1:200], y2)

Generate HDL Code
Generate HDL code using the design function and test bench code.

When you use the generated HDL code, include your custom HDL code with the generated HDL files.

Example Code

In the following generated VHDL code for the CounterBbox example, you can see that the
CounterBbox instance in the MATLAB code maps to an HDL component definition and instantiation,
but HDL code is not generated for the step method.

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.numeric_std.ALL;
 
ENTITY foo IS
  PORT( clk              :   IN    std_logic;
        reset            :   IN    std_logic;
        clk_enable       :   IN    std_logic;
        u                :   IN    std_logic_vector(7 DOWNTO 0);  -- uint8
        ce_out           :   OUT   std_logic;
        y1               :   OUT   real;  -- double
        y2               :   OUT   std_logic_vector(7 DOWNTO 0)  -- uint8
        );
END foo;
 
 
ARCHITECTURE rtl OF foo IS
 
  -- Component Declarations
  COMPONENT CounterBbox
    PORT( clk             :   IN    std_logic;
          clk_enable      :   IN    std_logic;
          reset           :   IN    std_logic;
          myin            :   IN    std_logic_vector(7 DOWNTO 0);  -- uint8
          myout           :   OUT   real  -- double
          );
  END COMPONENT;
 
  COMPONENT DualPortRAM_Inst0
    PORT( clk             :   IN    std_logic;
          enb             :   IN    std_logic;
          wr_din          :   IN    std_logic_vector(7 DOWNTO 0);  -- uint8
          wr_addr         :   IN    std_logic_vector(7 DOWNTO 0);  -- uint8
          wr_en           :   IN    std_logic;
          rd_addr         :   IN    std_logic_vector(7 DOWNTO 0);  -- uint8
          wr_dout         :   OUT   std_logic_vector(7 DOWNTO 0);  -- uint8
          rd_dout         :   OUT   std_logic_vector(7 DOWNTO 0)  -- uint8
          );
  END COMPONENT;
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  -- Component Configuration Statements
  FOR ALL : CounterBbox
    USE ENTITY work.CounterBbox(rtl);
 
  FOR ALL : DualPortRAM_Inst0
    USE ENTITY work.DualPortRAM_Inst0(rtl);
 
  -- Signals
  SIGNAL enb               : std_logic;
  SIGNAL varargout_1       : real := 0.0;  -- double
  SIGNAL tmp               : unsigned(7 DOWNTO 0);  -- uint8
  SIGNAL tmp_1             : unsigned(7 DOWNTO 0);  -- uint8
  SIGNAL tmp_2             : std_logic;
  SIGNAL tmp_3             : unsigned(7 DOWNTO 0);  -- uint8
  SIGNAL varargout_1_1     : std_logic_vector(7 DOWNTO 0);  -- ufix8
  SIGNAL varargout_2       : std_logic_vector(7 DOWNTO 0);  -- ufix8
 
BEGIN
  u_CounterBbox : CounterBbox
    PORT MAP( clk => clk,
              clk_enable => enb,
              reset => reset,
              myin => u,  -- uint8
              myout => varargout_1  -- double
              );
 
  u_DualPortRAM_Inst0 : DualPortRAM_Inst0
    PORT MAP( clk => clk,
              enb => enb,
              wr_din => std_logic_vector(tmp),  -- uint8
              wr_addr => std_logic_vector(tmp_1),  -- uint8
              wr_en => tmp_2,
              rd_addr => std_logic_vector(tmp_3),  -- uint8
              wr_dout => varargout_1_1,  -- uint8
              rd_dout => varargout_2  -- uint8
              );
 
  enb <= clk_enable;
 
  y1 <= varargout_1;
 
  --y2 = u;
  tmp <= to_unsigned(2#00001010#, 8);
 
  tmp_1 <= to_unsigned(2#00000000#, 8);
 
  tmp_2 <= '1';
 
  tmp_3 <= to_unsigned(2#00010100#, 8);
 
  ce_out <= clk_enable;
 
  y2 <= varargout_2;
 
END rtl;
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Limitations for hdl.BlackBox
You cannot use hdl.BlackBox to assign values to a VHDL generic or Verilog parameter in your
custom HDL code.

See Also
hdl.BlackBox

Related Examples
• “Generate Board-Independent IP Core from MATLAB Algorithm” on page 5-41
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Enable MATLAB Function Block Generation

In this section...
“Requirements for MATLAB Function Block Generation” on page 5-28
“Enable MATLAB Function Block Generation” on page 5-28
“Restrictions for MATLAB Function Block Generation” on page 5-28
“Results of MATLAB Function Block Generation” on page 5-28

Requirements for MATLAB Function Block Generation
During HDL code generation, your MATLAB algorithm must go through the floating-point to fixed-
point conversion process, even if it is already a fixed-point algorithm.

Enable MATLAB Function Block Generation
Using the GUI

To enable MATLAB Function block generation using the HDL Workflow Advisor:

1 In the HDL Workflow Advisor, on the left, click Code Generation.
2 In the Advanced tab, select the Generate MATLAB Function Black Box option.

Using the Command Line

To enable MATLAB Function block generation, at the command line, enter:

hdlcfg = coder.config('hdl');
hdlcfg.GenerateMLFcnBlock = true;

Restrictions for MATLAB Function Block Generation
The top-level MATLAB design function cannot have input or output arguments with the struct data
type.

Results of MATLAB Function Block Generation
After you generate HDL code, an untitled model opens containing a MATLAB Function block.

You can use the MATLAB Function block as part of a larger model in Simulink for simulation and
further HDL code generation.

To learn more about generating a MATLAB Function block from a MATLAB algorithm, see “System
Design with HDL Code Generation from MATLAB and Simulink” on page 5-29.
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System Design with HDL Code Generation from MATLAB and
Simulink

This example shows how to generate a MATLAB Function block from a MATLAB® design for system
simulation, code generation, and FPGA programming in Simulink®.

Introduction

HDL Coder can generate HDL code from both MATLAB® and Simulink®. The coder can also
generate a Simulink® component, the MATLAB Function block, from your MATLAB code.

This capability enables you to:

1 Design an algorithm in MATLAB;
2 Generate a MATLAB Function block from your MATLAB design;
3 Use the MATLAB component in a Simulink model of the system;
4 Simulate and optimize the system model;
5 Generate HDL code; and
6 Program an FPGA with the entire system design.

In this example, you will generate a MATLAB Function block from MATLAB code that implements a
FIR filter.

MATLAB Design

The MATLAB code used in the example is a simple FIR filter. The example also shows a MATLAB
testbench that exercises the filter.

design_name = 'mlhdlc_fir';
testbench_name = 'mlhdlc_fir_tb';

1 Design: mlhdlc_fir
2 Test Bench: mlhdlc_fir_tb

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the example files into a temporary folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');
mlhdlc_temp_dir = [tempdir 'mlhdlc_fir'];

% Create a temporary folder and copy the MATLAB files
cd(tempdir);
[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');
mkdir(mlhdlc_temp_dir);
cd(mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, [design_name,'.m*']), mlhdlc_temp_dir);
copyfile(fullfile(mlhdlc_demo_dir, [testbench_name,'.m*']), mlhdlc_temp_dir);

Simulate the Design

To simulate the design with the test bench prior to code generation to make sure there are no
runtime errors, enter the following command:
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mlhdlc_fir_tb

Create a New Project

To create a new HDL Coder project, enter the following command:

coder -hdlcoder -new fir_project

Next, add the file 'mlhdlc_fir.m' to the project as the MATLAB Function and 'mlhdlc_fir_tb.m' as the
MATLAB Test Bench.

Click the Workflow Advisor button to launch the HDL Workflow Advisor.

Enable the MATLAB Function Block Option

To generate a MATLAB Function block from a MATLAB HDL design, you must have a Simulink
license. If the following command returns '1', Simulink is available:

license('test', 'Simulink')

In the HDL Workflow Advisor Advanced tab, enable the Generate MATLAB Function Block option.

Run Floating-Point to Fixed-Point Conversion and Generate Code

To generate a MATLAB Function block, you must also convert your design from floating-point to fixed-
point.

Right-click the 'Code Generation' step and choose the option 'Run to selected task' to run all the steps
from the beginning through HDL code generation.

Examine the Generated MATLAB Function Block

An untitled model opens after HDL code generation. It has a MATLAB Function block containing the
fixed-point MATLAB code from your MATLAB HDL design. HDL Coder automatically applies settings
to the model and MATLAB Function block so that they can simulate in Simulink and generate HDL
code.

To generate HDL code from the MATLAB Function block, enter the following command:
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makehdl('untitled');

You can rename and save the new block to use in a larger Simulink design.

Clean Up the Generated Files

You can run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');
mlhdlc_temp_dir = [tempdir 'mlhdlc_fir'];
clear mex;
cd (mlhdlc_demo_dir);
rmdir(mlhdlc_temp_dir, 's');
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Specify the Clock Enable Rate
In this section...
“Why Specify the Clock Enable Rate?” on page 5-32
“How to Specify the Clock Enable Rate” on page 5-32

Why Specify the Clock Enable Rate?
When HDL Coder performs area optimizations, it might upsample parts of your design (DUT), and
thereby introduce an increase in your required DUT clock frequency.

If the coder upsamples your design, it generates a message indicating the ratio between the new
clock frequency and your original clock frequency. For example, the following message indicates that
your design’s new required clock frequency is 4 times higher than the original frequency:

The design requires 4 times faster clock with respect to the base rate = 1

This frequency increase introduces a rate mismatch between your input clock enable and output
clock enable, because the output clock enable runs at the slower original clock frequency.

With the Drive clock enable at option, you can choose whether to drive the input clock enable at the
faster rate (DUT base rate) or at a rate that is less than or equal to the original clock enable rate
(Input data rate).

How to Specify the Clock Enable Rate
1 In the HDL Workflow Advisor, select MATLAB to HDL Workflow > Code Generation. Click the

Clocks & Ports tab.
2 For the Drive clock enable at option, select Input data rate or DUT base rate.

Drive clock enable at Option Clock Enable Behavior
Input data rate (default) Each assertion of the input clock enable

produces an output clock enable assertion.

You can assert the input clock enable at a
maximum rate of once every N clocks. N =
the upsampled clock rate / original clock
rate.

For example, if you see the message, “The
design requires 4 times faster
clock with respect to the base
rate = 1”, your maximum input clock
enable rate is once every 4 clocks.
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Drive clock enable at Option Clock Enable Behavior
DUT base rate Input clock enable rate does not match the

output clock enable rate. You must assert the
input clock enable with your input data N
times to get 1 output clock enable assertion.
N = the upsampled clock rate / original clock
rate.

For example, if you see the message, “The
design requires 4 times faster
clock with respect to the base
rate = 1”, you must assert the input clock
enable 4 times to get 1 output clock enable
assertion.
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Specify Test Bench Clock Enable Toggle Rate
In this section...
“When to Specify Test Bench Clock Enable Toggle Rate” on page 5-34
“How to Specify Test Bench Clock Enable Toggle Rate” on page 5-34

When to Specify Test Bench Clock Enable Toggle Rate
When you want the test bench to drive your input data at a slower rate than the maximum input clock
enable rate, specify the test bench clock enable toggle rate.

This specification can help you to achieve better test coverage, and to simulate the real world input
data rate.

Note  The maximum input clock enable rate is once every N clock cycles. N = the upsampled clock
rate / original clock rate. Refer to the clock enable behavior for Input data rate, in “Specify the
Clock Enable Rate” on page 5-32.

How to Specify Test Bench Clock Enable Toggle Rate
To set your test bench clock enable toggle rate:

1 In the HDL Workflow Advisor, select MATLAB to HDL Workflow > Code Generation.
2 In the Clocks & Ports tab, for the Drive clock enable at option, select Input data rate.
3 In the Test Bench tab, for Input data interval, enter 0 or an integer greater than the maximum

input clock enable interval.

Input data interval, I Test Bench Clock Enable Behavior
I = 0 (default) Asserts at the maximum input clock enable

rate, or once every N cycles. N = the
upsampled clock rate / original clock rate.

I < N Not valid; generates an error.
I = N Same as I = 0.
I > N Asserts every I clock cycles.

For example, this timing diagram shows clock enable behavior with Input data interval = 0. Here,
the maximum input clock enable rate is once every 2 cycles.

The following timing diagram shows the same test bench and DUT with Input data interval = 3.
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Generate an HDL Coding Standard Report from MATLAB
In this section...
“Using the HDL Workflow Advisor” on page 5-36
“Using the Command Line” on page 5-38

You can generate an HDL coding standard report that shows how well your generated code follows
industry standards. You can optionally customize the coding standard report and the coding standard
rules.

Using the HDL Workflow Advisor
To generate an HDL coding standard report using the HDL Workflow Advisor:

1 In the HDL Code Generation task, select the Coding Standards tab.
2 For HDL coding standard, select Industry.
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3 Optionally, using the other options in the Coding Standards tab, customize the coding standard
rules.

4 Click Run to generate code.

After you generate code, the message window shows a link to the HTML compliance report.

Using the Command Line
To generate an HDL coding standard report using the command line interface, set the
HDLCodingStandard property to Industry in the coder.HdlConfig object.

For example, to generate HDL code and an HDL coding standard report for a design, mlhdlc_sfir,
with a testbench, mlhdlc_sfir_tb, enter the following commands:

hdlcfg = coder.config('hdl');
hdlcfg.TestBenchName = 'mlhdlc_sfir_tb';
hdlcfg.HDLCodingStandard='Industry';
codegen -config hdlcfg mlhdlc_sfir

### Generating Resource Utilization Report resource_report.html
### Generating default Industry script file mlhdlc_sfir_mlhdlc_sfir_default.prj
### Industry Compliance report with 0 errors, 8 warnings, 4 messages.
### Generating Industry Compliance Report mlhdlc_sfir_Industry_report.html

To open the report, click the report link.

You can customize the coding standard report and coding standard rule checks by specifying an HDL
coding standard customization object. For example, suppose you have a design, mlhdlc_sfir, and
testbench, mlhdlc_sfir_tb. You can create an HDL coding standard customization object, cso, set
the maximum if-else statement chain length to 5 by using the IfElseChain property, and generate
code:

hdlcfg = coder.config('hdl');
hdlcfg.TestBenchName = 'mlhdlc_sfir_tb';
hdlcfg.HDLCodingStandard='Industry';
cso = hdlcoder.CodingStandard('Industry');
cso.IfElseChain.length = 5;
hdlcfg.HDLCodingStandardCustomizations = cso;
codegen -config hdlcfg mlhdlc_sfir

See Also
Properties
HDL Coding Standard Customization

More About
• “HDL Coding Standard Report” on page 26-2
• “Basic Coding Practices” on page 26-9
• “RTL Description Techniques” on page 26-18
• “RTL Design Methodology Guidelines” on page 26-41
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Generate an HDL Lint Tool Script
You can generate a lint tool script to use with a third-party lint tool to check your generated HDL
code.

HDL Coder can generate Tcl scripts for the following lint tools:

• Ascent Lint
• HDL Designer
• Leda
• SpyGlass
• Custom

If you specify one of the supported third-party lint tools, you can either generate a default tool-
specific script, or customize the script by specifying the initialization, command, and termination
names as a character vector. If you want to generate a script for a custom lint tool, you must specify
the initialization, command, and termination names.

HDL Coder writes the initialization, command, and termination names to a Tcl script that you can use
to run the third-party tool.

How To Generate an HDL Lint Tool Script
Using the HDL Workflow Advisor

1 In the HDL Workflow Advisor, select the HDL Code Generation task.
2 In the Script Options tab, select Lint.
3 For Choose lint tool, select Ascent Lint, HDL Designer, Leda, SpyGlass, or Custom.
4 Optionally, enter text to customize the Lint script initialization, Lint script command, and

Lint script termination fields. For a custom tool, you must specify these fields.

After you generate code, the command window shows a link to the lint tool script.

Using the Command Line

To generate an HDL lint tool script from the command line, set the HDLLintTool property to
AscentLint, HDLDesigner, Leda, SpyGlass or Custom in your coder.HdlConfig object.

To disable HDL lint tool script generation, set the HDLLintTool property to None.

For example, to generate a default SpyGlass lint script using a coder.HdlConfig object, hdlcfg,
enter:

hdlcfg.HDLLintTool = 'SpyGlass';

After you generate code, the command window shows a link to the lint tool script.

To generate an HDL lint tool script with custom initialization, command, and termination strings, use
the HDLLintTool, HDLLintInit, HDLLintCmd, and HDLLintTerm properties.
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For example, you can use the following command to generate a custom Leda lint script for a DUT
subsystem, sfir_fixed\symmetric_fir, with custom initialization, termination, and command
strings:

hdlcfg.HDLLintTool = 'Leda';
hdlcfg.HDLLintInit = 'myInitialization';
hdlcfg.HDLLintCmd = 'myCommand %s';
hdlcfg.HDLLintTerm = 'myTermination';

After you generate code, the command window shows a link to the lint tool script.

Custom Lint Tool Command Specification

If you want to generate a lint tool script for a custom lint tool, you must use %s as a placeholder for
the HDL file name in the generated Tcl script.

For Lint script command or HDLLintCmd, specify the lint command in the following format:

custom_lint_tool_command -option1 -option2 %s

For example, to set the HDLLintCmd for a coder.HdlConfig object, hdlcfg, where the lint
command is custom_lint_tool_command -option1 -option2, enter:

hdlcfg.HDLLintCmd = 'custom_lint_tool_command -option1 -option2 %s';
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Generate Board-Independent IP Core from MATLAB Algorithm
In this section...
“Requirements and Limitations for IP Core Generation” on page 5-41
“Generate Board-Independent IP Core” on page 5-41

When you open the HDL Workflow Advisor and run the IP Core Generation workflow for your
Simulink model, you can specify a generic Xilinx® platform or a generic Intel® platform. The workflow
then generates a generic IP core that you can integrate into any target platform of your choice. For IP
core integration, define and register a custom reference design for your target board.

Requirements and Limitations for IP Core Generation
You cannot generate an HDL IP core without any AXI4 slave interface. At least one DUT port must
map to an AXI4 or AXI4-Lite interface. To generate an HDL IP core without any AXI4 slave interfaces,
use the Simulink IP core generation workflow. For more information, see “Generate Board-
Independent HDL IP Core from Simulink Model” on page 40-12.

In the same IP core, you cannot map to both an AXI4 interface and AXI4-Lite interface.

AXi4-Lite Interface Restrictions

• The inputs and outputs must have a bit width less than or equal to 32 bits.
• The input and outputs must be scalar.

AXI4-Stream Video Interface Restrictions

• Ports must have a 32-bit width.
• Ports must be scalar.
• You can have a maximum of one input video port and one output video port.
• The AXI4-Stream Video interface is not supported in Coprocessing – blocking Processor/FPGA

synchronization must be set to Free running mode. Coprocessing – blocking mode is not
supported.

Generate Board-Independent IP Core
To generate a board-independent IP core to use in an embedded system integration environment,
such as Intel Qsys, Xilinx EDK, or Xilinx IP Integrator:

1 Create an HDL Coder project containing your MATLAB design and test bench, or open an
existing project.

2 In the HDL Workflow Advisor, define input types and perform fixed-point conversion.

To learn how to convert your design to fixed-point, see “Basic HDL Code Generation and FPGA
Synthesis from MATLAB by Using the Workflow Advisor”.

3 In the HDL Workflow Advisor, in the Select Code Generation Target task:

• Workflow: Select IP Core Generation.
• Platform: Select Generic Xilinx Platform or Generic Altera Platform.
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Depending on your selection, the code generator automatically sets the Synthesis tool. For
example, if you select Generic Xilinx Platform, Synthesis tool automatically changes
to Xilinx Vivado.

• Additional source files: If you are using an hdl.BlackBox System object to include
existing Verilog or VHDL code, enter the file names. Enter each file name manually, separated
with a semicolon (;), or by using the ... button. The source file language must match your
target language.

4 In the Set Target Interface step, for each port, select an option from the Target Platform
Interfaces drop-down list.

5 In the HDL Code Generation step, optionally specify code generation options, then click Run.

In the HDL Workflow Advisor message pane, click the IP core report link to view detailed
documentation for your generated IP core.

See Also
Classes
hdlcoder.Board | hdlcoder.ReferenceDesign

Related Examples
• “Using IP Core Generation Workflow from MATLAB: LED Blinking”

More About
• “Custom IP Core Generation” on page 40-4
• “Board and Reference Design Registration System” on page 41-43
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Minimize Clock Enables

In this section...
“Using the GUI” on page 5-43
“Using the Command Line” on page 5-43
“Limitations” on page 5-44

By default, HDL Coder generates code in a style that is intended to map to registers with clock
enables, and the DUT has a top-level clock enable port.

If you do not want to generate registers with clock enables, you can minimize the clock enable logic.
For example, if your target hardware contains registers without clock enables, you can save hardware
resources by minimizing the clock enable logic.

The following VHDL code shows the default style of generated code, which uses clock enables. The
enb signal is the clock enable:

Unit_Delay_process : PROCESS (clk, reset)
  BEGIN
    IF reset = '1' THEN
      Unit_Delay_out1 <= to_signed(0, 32);
    ELSIF clk'EVENT AND clk = '1' THEN
      IF enb = '1' THEN
        Unit_Delay_out1 <= In1_signed;
      END IF;
    END IF;
  END PROCESS Unit_Delay_process;

The following VHDL code shows the style of code you generate if you minimize clock enables:

Unit_Delay_process : PROCESS (clk, reset)
  BEGIN
    IF reset = '1' THEN
      Unit_Delay_out1 <= to_signed(0, 32);
    ELSIF clk'EVENT AND clk = '1' THEN
      Unit_Delay_out1 <= In1_signed;
    END IF;
  END PROCESS Unit_Delay_process;

Using the GUI
To minimize clock enables, in the HDL Workflow Advisor, on the HDL Code Generation > Set Code
Generation Options > Set Optimization Options > General tab, select Minimize clock enables.

Using the Command Line
To minimize clock enables, in the coder.HdlConfig configuration object, set the
MinimizeClockEnables property to true. For example:

hdlCfg = coder.config('hdl')
hdlCfg.MinimizeClockEnables = true;
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Limitations
If you specify area optimizations that the coder implements by increasing the clock rate in certain
regions of the design, you cannot minimize clock enables. The following optimizations prevent clock
enable minimization:

• Resource sharing
• RAM mapping
• Loop streaming
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Verification

• “Verify Code with HDL Test Bench” on page 6-2
• “Test Bench Generation” on page 6-5
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Verify Code with HDL Test Bench
Simulate the generated HDL design under test (DUT) with test vectors from the test bench using the
specified simulation tool.

1 Start the MATLAB to HDL Workflow Advisor.

2 At step HDL Verification, click Verify with HDL Test Bench.
3 Select Generate HDL test bench.

This option enables HDL Coder to generate HDL test bench code from your MATLAB test script.
4 Optionally, select Simulate generated HDL test bench. This option enables MATLAB to

simulate the HDL test bench with the HDL DUT.

If you select this option, you must also select the Simulation tool.
5 For Test Bench Options, select and set the optional parameters according to the descriptions in

the following table.

HDL Test Bench Parameter Description
Test bench name postfix Specify the postfix for the test bench name.
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HDL Test Bench Parameter Description
Force clock Enable for test bench to force clock input

signals.
Clock high time (ns) Specify the number of nanoseconds the clock

is high.
Clock low time (ns) Specify the number of nanoseconds the clock

is low.
Hold time (ns) Specify the hold time for input signals and

forced reset signals.
Force clock enable Enable to force clock enable.
Clock enable delay (in clock cycles) Specify time (in clock cycles) between

deassertion of reset and assertion of clock
enable.

Force reset Enable for test bench to force reset input
signals.

Reset length (in clock cycles) Specify time (in clock cycles) between
assertion and deassertion of reset.

Hold input data between samples Enable to hold subrate signals between clock
samples.

Input data interval Specifies the number of clock cycles between
assertions of clock enable. For more
information, see “Specify Test Bench Clock
Enable Toggle Rate” on page 5-34.

Initialize test bench inputs Enable to initialize values on inputs to test
bench before test bench drives data to DUT.

Multi file test bench Enable to divide generated test bench into
helper functions, data, and HDL test bench
code.

Test bench data file name postfix Specify the character vector to append to
name of test bench data file when generating
multi-file test bench.

Test bench reference postfix Specify the character vector to append to
names of reference signals in test bench
code.

Ignore data checking (number of
samples)

Specify the number of samples at the
beginning of simulation during which output
data checking is suppressed.

Simulation iteration limit Specify the maximum number of test samples
to use during simulation of generated HDL
code.

6 Optionally, select Skip this step if you don’t want to use the HDL test bench to verify the HDL
DUT.

7 Click Run.
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If the test bench and simulation is successful, you should see messages similar to these in the
message pane:

### Begin TestBench generation.
### Collecting data...
### Begin HDL test bench file generation with logged samples
### Generating test bench: mlhdlc_sfir_fixpt_tb.vhd
### Creating stimulus vectors...
### Simulating the design 'mlhdlc_sfir_fixpt' using 'ModelSim'.
### Generating Compilation Report mlhdlc_sfir_fixpt_vsim_log_compile.txt
### Generating Simulation Report mlhdlc_sfir_fixpt_vsim_log_sim.txt
### Simulation successful.
### Elapsed Time: 113.0315 sec(s)

If there are errors, those messages appear in the message pane. Fix errors and click Run.
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Test Bench Generation
In this section...
“How Test Bench Generation Works” on page 6-5
“Test Bench Data Files” on page 6-5
“Test Bench Data Type Limitations” on page 6-5
“Use Constants Instead of File I/O” on page 6-5

How Test Bench Generation Works
HDL Coder writes the DUT stimulus and reference data from your MATLAB or Simulink simulation to
data files (.dat).

During HDL simulation, the HDL test bench reads the saved stimulus from the .dat files. The test
bench compares the actual DUT output with the expected output, which is also saved in .dat files.
After you generate code, the message window displays links to the test bench data files.

Reference data is delayed by one clock cycle in the waveform viewer compared to default test bench
generation due to the delay in reading data from files.

Test Bench Data Files
The coder saves stimulus and reference data for each DUT input and output in a separate test bench
data file (.dat), with the following exceptions:

• Two files are generated for the real and imaginary parts of complex data.
• Constant DUT input data is written to the test bench as constants.

Vector input or output data is saved as a single file.

Test Bench Data Type Limitations
If you have double, single, or enumeration data types at the DUT inputs and outputs, the simulation
data is generated as constants in the test bench code, instead of writing the simulation data to files.

Use Constants Instead of File I/O
You can generate test bench stimulus and reference data as constants in the test bench code instead
of using file I/O. However, simulating a long running test bench that uses constants requires more
memory than a test bench that uses file I/O.

Test bench generation automatically generates data as constants if your DUT inputs or outputs use
data types that are not supported for file I/O. For details, see “Test Bench Data Type Limitations” on
page 6-5.

To generate a test bench that uses constants instead of file I/O:

1 In the HDL Workflow Advisor, select the HDL Verification > Verify with HDL Test Bench task.
2 In the Test bench Options tab, disable the Use file I/O for test bench option.
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Generate Synthesis Scripts
You can generate customized synthesis scripts for the following tools:

• Xilinx Vivado®

• Xilinx ISE
• Microsemi Libero
• Mentor Graphics® Precision
• Altera® Quartus II
• Synopsys® Synplify Pro®

You can also generate a synthesis script for a custom tool by specifying the fields manually.

To generate a synthesis script:

1 In the HDL Workflow Advisor, select the HDL Code Generation task.
2 In the Script Options tab, select Synthesis.
3 For Choose synthesis tool, select a tool option.
4 If you want to customize your script, use the Synthesis file postfix, Synthesis initialization,

Synthesis command, and Synthesis termination text fields to do so.

After you generate code, your synthesis Tcl script (.tcl) is in the same folder as your generated HDL
code.
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Optimization

• “RAM Mapping for MATLAB Code” on page 8-2
• “Map Persistent Arrays and dsp.Delay to RAM” on page 8-3
• “RAM Mapping Comparison for MATLAB Code” on page 8-6
• “Pipelining MATLAB Code” on page 8-7
• “Pipeline MATLAB Expressions” on page 8-8
• “Distributed Pipelining” on page 8-10
• “Optimize MATLAB Loops” on page 8-11
• “Constant Multiplier Optimization” on page 8-13
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RAM Mapping for MATLAB Code
RAM mapping is an area optimization that maps storage and delay elements in your MATLAB code to
RAM. Without this optimization, storage and delay elements are mapped to registers. RAM mapping
can therefore reduce the area of your design in the target hardware.

You can map the following MATLAB code elements to RAM:

• persistent array variable
• dsp.Delay System object
• hdl.RAM System object

8 Optimization
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Map Persistent Arrays and dsp.Delay to RAM

In this section...
“How To Enable RAM Mapping” on page 8-3
“RAM Mapping Requirements for Persistent Arrays and System object Properties” on page 8-4
“RAM Mapping Requirements for dsp.Delay System Objects” on page 8-5

How To Enable RAM Mapping
1 In the HDL Workflow Advisor, select MATLAB to HDL Workflow > Code Generation >

Optimizations tab.
2 Select the Map persistent array variables to RAMs option.
3 Set the RAM mapping threshold to the size (in bits) of the smallest persistent array, user-

defined System object private property, or dsp.Delay that you want to map to RAM.
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RAM Mapping Requirements for Persistent Arrays and System object
Properties
The following table shows a summary of the RAM mapping behavior for persistent arrays and private
properties of a user-defined System object.

Map Persistent Array
Variables to RAMs Setting

Mapping Behavior

on Map to RAM. For restrictions, see “RAM Mapping Restrictions” on
page 8-4.

off Map to registers in the generated HDL code.

RAM Mapping Restrictions

When you enable RAM mapping, a persistent array or user-defined System object private property
maps to a block RAM when all of the following conditions are true:

• Each read or write access is for a single element only. For example, submatrix access and array
copies are not allowed.

• Address computation logic is not read-dependent. For example, computation of a read or write
address using the data read from the array is not allowed.

• Persistent variables or user-defined System object private properties are initialized to 0 if they
have a cyclic dependency. For example, if you have two persistent variables, A and B, you have a
cyclic dependency if A depends on B, and B depends on A.

• If an access is within a conditional statement, the conditional statement uses only simple logic
expressions (&&, ||, ~) or relational operators. For example, in the following code, r1 does not
map to RAM:

if (mod(i,2) > 0)
    a = r1(u);
else
    r1(i) = u;
end 

Rewrite complex conditions, such as conditions that call functions, by assigning them to
temporary variables, and using the temporary variables in the conditional statement. For example,
to map r1 to RAM, rewrite the previous code as follows:

temp = mod(i,2);
if (temp > 0)
    a = r1(u);
else
    r1(i) = u;
end 

• The persistent array or user-defined System object private property value depends on external
inputs.

For example, in the following code, bigarray does not map to RAM because it does not depend
on u:

function z = foo(u)

persistent cnt bigarray
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if isempty(cnt)
    cnt = fi(0,1,16,10,hdlfimath);
    bigarray = uint8(zeros(1024,1));
end
z = u + cnt;
idx = uint8(cnt);
temp = bigarray(idx+1);
cnt(:) = cnt + fi(1,1,16,0,hdlfimath) + temp;
bigarray(idx+1) = idx; 

• RAMSize is greater than or equal to the RAMMappingThreshold value. RAMSize is the product
NumElements * WordLength * Complexity.

• NumElements is the number of elements in the array.
• WordLength is the number of bits that represent the data type of the array.
• Complexity is 2 for arrays with a complex base type; 1 otherwise.

If any of the above conditions is false, the persistent array or user-defined System object private
property maps to a register in the HDL code.

RAM Mapping Requirements for dsp.Delay System Objects
A summary of the mapping behavior for a dsp.Delay System object is in the following table.

Map Persistent Array
Variables to RAMs Option

Mapping Behavior

on A dsp.Delay System object maps to a block RAM when all of the
following conditions are true:

• Length property is greater than 4.
• InitialConditions property is 0.
• Delay input data type is one of the following:

• Real scalar with a non-floating-point data type.
• Complex scalar with real and imaginary parts that are non-
floating-point.

• Vector where each element is either a non-floating-point real
scalar or complex scalar.

• RAMSize is greater than or equal to the RAM Mapping
Threshold value.

• RAMSize is the product Length * InputWordLength.
• InputWordLength is the number of bits that represent the

input data type.

If any of the conditions are false, the dsp.Delay System object
maps to registers in the HDL code.

off A dsp.Delay System object maps to registers in the generated
HDL code.
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RAM Mapping Comparison for MATLAB Code
hdl.RAM, dsp.Delay, persistent array variables, and user-definedSystem object private properties
can map to RAM, but have different attributes. The following table summarizes the differences.

Attribute hdl.RAM dsp.Delay Persistent Arrays and
User-Defined System
object Properties

RAM mapping criteria Unconditionally maps to
RAM

Maps to RAM in HDL
code under specific
conditions. See “RAM
Mapping Requirements
for dsp.Delay System
Objects” on page 8-5.

Maps to RAM in HDL
code under specific
conditions. See “RAM
Mapping Requirements
for Persistent Arrays
and System object
Properties” on page 8-4.

Address generation and
port mapping

User specified Automatic Automatic

Access scheduling User specified Automatically inferred Automatically inferred
Overclocking None None Local multirate if access

schedule requires it.
Latency with respect to
simulation in MATLAB.

0 0 2 cycles if local
multirate; 1 cycle
otherwise.

RAM type User specified Dual port Dual port
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Pipelining MATLAB Code
Pipelining helps achieve a higher maximum clock rate by inserting registers at strategic points in the
hardware to break the critical path. However, the higher clock rate comes at the expense of increased
chip area and increased initial latency.

Port Registers
Input and output port registers for modules help partition a larger design so the critical path does not
extend across module boundaries. Having a port register at each input and output port is a good
design practice for synchronous interfaces. Distributed pipelining does not affect port registers. To
insert input or output port registers:

1 In the HDL Workflow Advisor, select the HDL Code Generation task and select the
Optimizations tab.

2 Enable Register inputs, Register outputs, or both.

Input and Output Pipeline Registers
You can insert multiple input and output pipeline stages. Distributed pipelining can move these input
and output pipeline registers to help reduce your critical path within the module. If you insert input
and output pipeline stages without applying distributed pipelining, the registers stay at the DUT
inputs and outputs.

To insert input or output pipeline register stages:

1 In the HDL Workflow Advisor, select the HDL Code Generation task and select the
Optimizations tab.

2 For Input pipelining, Output pipelining, or both, enter the number of pipeline register stages.

Operation Pipelining
Operation pipelining inserts one or more registers at the output of a specific expression in your
MATLAB code. If you know a specific expression is part of the critical path, you can add a pipeline
register at its output to reduce your critical path.

To learn how to insert a pipeline register at the output of a MATLAB expression, see “Pipeline
MATLAB Expressions” on page 8-8.

 Pipelining MATLAB Code
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Pipeline MATLAB Expressions
In this section...
“How To Pipeline a MATLAB Expression” on page 8-8
“Limitations of Pipelining for MATLAB Expressions” on page 8-8

With the coder.hdl.pipeline pragma, you can specify the placement and number of pipeline
registers in the HDL code generated for a MATLAB expression.

If you insert pipeline registers and enable distributed pipelining, HDL Coder automatically moves the
pipeline registers to break the critical path.

How To Pipeline a MATLAB Expression
To insert pipeline registers at the output of an expression in MATLAB code, place the expression in
the coder.hdl.pipeline pragma. Specify the number of registers.

You can insert pipeline registers in the generated HDL code:

• At the output of the entire right side of an assignment statement.

The following code inserts three pipeline registers at the output of a MATLAB expression, a + b
* c:

    y = coder.hdl.pipeline(a + b * c, 3);

• At an intermediate stage within a longer MATLAB expression.

The following code inserts five pipeline registers after the computation of b * c within a longer
expression, a + b * c:

    y = a + coder.hdl.pipeline(b * c, 5);

• By nesting multiple instances of the pragma.

The following code inserts five pipeline registers after the computation of b * c, and two pipeline
registers at the output of the whole expression, a + b * c:

    y = coder.hdl.pipeline(a + coder.hdl.pipeline(b * c, 5),2);

Alternatively, to insert one pipeline register instead of multiple pipeline registers, you can omit the
second argument in the pragma:

y = coder.hdl.pipeline(a + b * c);

y = a + coder.hdl.pipeline(b * c);

y = coder.hdl.pipeline(a + coder.hdl.pipeline(b * c));

Limitations of Pipelining for MATLAB Expressions

Note When you use the MATLAB code inside a MATLAB Function block and select the MATLAB
Datapath architecture, these limitations do not apply.
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HDL Coder cannot insert a pipeline register at the output of a MATLAB expression if any of the
variables in the expression are:

• In a loop.
• A persistent variable that maps to a state element, like a state register or RAM.
• An output of a function. For example, in the following code, you cannot add a pipeline register for

an expression containing y:

function [y] = myfun(x)
y = x + 5;
end

• In a data feedback loop. For example, in the following code, you cannot pipeline an expression
containing the t or pvar variables:

persistent pvar;
t = u + pvar;
pvar = t + v;

You cannot use coder.hdl.pipeline to insert a pipeline register for a single variable or other no-
op expression. To learn how to insert a pipeline register for a function input variable, see “Port
Registers” on page 8-7.

See Also
coder.hdl.pipeline

More About
• “Pipelining MATLAB Code” on page 8-7
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Distributed Pipelining
In this section...
“What is Distributed Pipelining?” on page 8-10
“Benefits and Costs of Distributed Pipelining” on page 8-10
“Selected Bibliography” on page 8-10

What is Distributed Pipelining?
Distributed pipelining, or register retiming, is a speed optimization that moves existing delays in a
design to reduce the critical path while preserving functional behavior.

The HDL Coder software uses an adaptation of the Leiserson-Saxe retiming algorithm.

Benefits and Costs of Distributed Pipelining
Distributed pipelining can reduce your design’s critical path, enabling you to use a higher clock rate
and increase throughput.

However, distributed pipelining requires your design to contain a number of delays. If you need to
insert additional delays in your design to enable distributed pipelining, this increases the area and
the initial latency of your design.

Selected Bibliography
Leiserson, C.E, and James B. Saxe. “Retiming Synchronous Circuitry.” Algorithmica. Vol. 6, Number 1,
1991, pp. 5-35.
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Optimize MATLAB Loops
In this section...
“Loop Streaming” on page 8-11
“Loop Unrolling” on page 8-11
“How to Optimize MATLAB Loops” on page 8-11
“Limitations for MATLAB Loop Optimization” on page 8-12

With loop optimization, you can stream or unroll loops in generated code. Loop streaming is an area
optimization, and loop unrolling is a speed optimization. To optimize loops for MATLAB code that is
inside a MATLAB Function block, use the MATLAB Function architecture. When you use the MATLAB
Datapath architecture, the code generator unrolls loops irrespective of the loop optimization setting.

Loop Streaming
HDL Coder streams a loop by instantiating the loop body once and using that instance for each loop
iteration. The code generator oversamples the loop body instance to keep the generated loop
functionally equivalent to the original loop.

If you stream a loop, the advantage is decreased hardware resource usage because the loop body is
instantiated fewer times. The disadvantage is the hardware implementation runs at a lower speed.

You can partially stream a loop. A partially streamed loop instantiates the loop body more than once,
so it uses more area than a fully streamed loop. However, a partially streamed loop also uses less
oversampling than a fully streamed loop.

Loop Unrolling
HDL Coder unrolls a loop by instantiating multiple instances of the loop body in the generated code.
You can also partially unroll a loop. The generated code uses a loop statement that contains multiple
instances of the original loop body and fewer iterations than the original loop.

The distributed pipelining and resource sharing can optimize the unrolled code. Distributed
pipelining can increase speed. Resource sharing can decrease area.

When loop unrolling creates multiple instances, these instances are likely to increase area. Loop
unrolling also makes the code harder to read.

How to Optimize MATLAB Loops
You can specify a global loop optimization by using the HDL Workflow Advisor, or at the command
line.

You can also specify a local loop optimization for a specific loop by using the coder.hdl.loopspec
pragma in the MATLAB code. If you specify both a global and local loop optimization, the local loop
optimization overrides the global setting.

Global Loop Optimization

To specify a loop optimization in the Workflow Advisor:

 Optimize MATLAB Loops
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1 In the HDL Workflow Advisor left pane, select HDL Workflow Advisor > HDL Code
Generation.

2 In the Optimizations tab, for Loop Optimizations, select None, Unroll Loops, or Stream
Loops.

To specify a loop optimization at the command line in the MATLAB to HDL workflow, specify the
LoopOptimization property of the coder.HdlConfig object. For example, for a
coder.HdlConfig object, hdlcfg, enter one of the following commands:

hdlcfg.LoopOptimization = 'UnrollLoops'; % unroll loops

hdlcfg.LoopOptimization = 'StreamLoops'; % stream loops

hdlcfg.LoopOptimization = 'LoopNone'; % no loop optimization

Local Loop Optimization

To learn how to optimize a specific MATLAB loop, see coder.hdl.loopspec.

Note If you specify the coder.unroll pragma, this pragma takes precedence over
coder.hdl.loopspec. coder.hdl.loopspec has no effect.

Limitations for MATLAB Loop Optimization
HDL Coder cannot stream a loop if:

• The loop index counts down. The loop index must increase by 1 on each iteration.
• There are two or more nested loops at the same level of hierarchy within another loop.
• Any particular persistent variable is updated both inside and outside a loop.
• A persistent variable that is initialized to a nonzero value is updated inside the loop.

HDL Coder can stream a loop when the persistent variable is:

• Updated inside the loop and read outside the loop.
• Read within the loop and updated outside the loop.

You cannot use the coder.hdl.loopspec('stream') pragma:

• In a subfunction. You must specify it in the top-level MATLAB design function.
• For a loop that is nested within another loop.
• For a loop containing a nested loop, unless the streaming factor is equal to the number of

iterations.

See Also
coder.hdl.loopspec
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Constant Multiplier Optimization
In this section...
“What is Constant Multiplier Optimization?” on page 8-13
“Specify Constant Multiplier Optimization” on page 8-13

What is Constant Multiplier Optimization?
The Constant multiplier optimization option enables you to specify use of canonical signed digit
(CSD) or factored CSD (FCSD) optimizations for processing coefficient multiplier operations.

The following table shows the Constant multiplier optimization values.

Constant Multiplier
Optimization Value

Description

None (default) By default, HDL Coder does not perform CSD or FCSD
optimizations. Code generated for the Gain block retains multiplier
operations.

CSD When you specify this option, the generated code decreases the
area used by the model while maintaining or increasing clock
speed, using canonical signed digit (CSD) techniques. CSD
replaces multiplier operations with add and subtract operations.

CSD minimizes the number of addition operations required for
constant multiplication by representing binary numbers with a
minimum count of nonzero digits.

FCSD This option uses factored CSD (FCSD) techniques, which replace
multiplier operations with shift and add/subtract operations on
certain factors of the operands. These factors are generally prime
but can also be a number close to a power of 2, which favors area
reduction.

This option lets you achieve a greater area reduction than CSD, at
the cost of decreasing clock speed.

Auto When you specify this option, HDL Coder chooses between the
CSD or FCSD optimizations. The coder chooses the optimization
that yields the most area-efficient implementation, based on the
number of adders required.

HDL Coder does not use multipliers, unless conditions are such
that CSD or FCSD optimizations are not possible (for example, if
the design uses floating-point arithmetic).

Specify Constant Multiplier Optimization
To specify constant multiplier optimization:

1 In the HDL Workflow Advisor, select the HDL Code Generation task and select the
Optimizations tab.

 Constant Multiplier Optimization
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2 For Constant multiplier optimization, select CSD, FCSD, or Auto.
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HDL Workflow Advisor Reference

• “HDL Workflow Advisor” on page 9-2
• “MATLAB to HDL Code and Synthesis” on page 9-6
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HDL Workflow Advisor

Overview
The HDL Workflow Advisor is a tool that supports a suite of tasks covering the stages of the ASIC and
FPGA design process, including converting floating-point MATLAB algorithms to fixed-point
algorithms. Some tasks perform code validation or checking; others run the HDL code generator or
third-party tools. Each folder at the top level of the HDL Workflow Advisor contains a group of related
tasks that you can select and run.

Use the HDL Workflow Advisor to:

• Convert floating-point MATLAB algorithms to fixed-point algorithms.

If you already have a fixed-point MATLAB algorithm, set Design needs conversion to Fixed
Point? to No to skip this step.
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• Generate HDL code from fixed-point MATLAB algorithms.
• Simulate the HDL code using a third-party simulation tool.
• Synthesize the HDL code and run a mapping process that maps the synthesized logic design to the

target FPGA.
• Run a Place and Route process that takes the circuit description produced by the previous

mapping process, and emits a circuit description suitable for programming an FPGA.

Procedures
Automatically Run Tasks

To automatically run the tasks within a folder:

1 Click the Run button. The tasks run in order until a task fails.

Alternatively, right-click the folder to open the context menu. From the context menu, select Run
to run the tasks within the folder.

2 If a task in the folder fails:

a Fix the failure using the information in the results pane.
b Continue the run by clicking the Run button.

Run Individual Tasks

To run an individual task:

1 Click the Run button.

Alternatively, right-click the task to open the context menu. From the context menu, select Run to
run the selected task.

2 Review Results. The possible results are:
Pass: Move on to the next task.
Warning: Review results, decide whether to move on or fix.
Fail: Review results, do not move on without fixing.

3 If required, fix the issue using the information in the results pane.
4 Once you have fixed a Warning or Failed task, rerun the task by clicking Run.

Run to Selected Task

To run the tasks up to and including the currently selected task:

1 Select the last task that you want to run.
2 Right-click this task to open the context menu.
3 From the context menu, select Run to Selected Task.
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Note If a task before the selected task fails, the Workflow Advisor stops at the failed task.

Reset a Task

To reset a task:

1 Select the task that you want to reset.
2 Right-click this task to open the context menu.
3 From the context menu, select Reset Task to reset this and subsequent tasks.

Reset All Tasks in a Folder

To reset a task:

1 Select the folder that you want to reset.
2 Right-click this folder to open the context menu.

9 HDL Workflow Advisor Reference

9-4



3 From the context menu, select Reset Task to reset the tasks this folder and subsequent folders.
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MATLAB to HDL Code and Synthesis
In this section...
“MATLAB to HDL Code Conversion” on page 9-6
“Code Generation: Target Tab” on page 9-6
“Code Generation: Coding Style Tab” on page 9-7
“Code Generation: Clocks and Ports Tab” on page 9-8
“Code Generation: Test Bench Tab” on page 9-10
“Code Generation: Optimizations Tab” on page 9-11
“Simulation and Verification” on page 9-12
“Synthesis and Analysis” on page 9-13

MATLAB to HDL Code Conversion
The MATLAB to HDL Workflow task in the HDL Workflow Advisor generates HDL code from fixed-
point MATLAB code, and simulates and verifies the HDL against the fixed-point algorithm. HDL Coder
then runs synthesis, and optionally runs place and route to generate a circuit description suitable for
programming an ASIC or FPGA.

Code Generation: Target Tab
Select target hardware and language and required outputs.

Input Parameters

Target
Target hardware. Select from the list:

Generic ASIC/FPGA
Xilinx
Altera
Simulation

Language
Select the language (VHDL or Verilog) in which code is generated. The selected language is
referred to as the target language.

Default: VHDL
Check HDL Conformance

Enable HDL conformance checking.

Default: Off
Generate HDL

Enable generation of HDL code for the fixed-point MATLAB algorithm.

Default: On
Generate HDL Test Bench

Enable generation of HDL code for the fixed-point test bench.
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Default: Off
Generate EDA Scripts

Enable generation of script files for third-party electronic design automation (EDA) tools. These
scripts let you compile and simulate generated HDL code and synthesize generated HDL code.

Default: On

Code Generation: Coding Style Tab
Parameters that affect the style of the generated code.

Input Parameters

Preserve MATLAB code comments
Include MATLAB code comments in generated code.

Default: On
Include MATLAB source code as comments

Include MATLAB source code as comments in the generated code. The comments precede the
associated generated code. Includes the function signature in the function banner.

Default: On
Generate Report

Enable a code generation report.

Default: Off
VHDL File Extension

Specify the file name extension for generated VHDL files.

Default: .vhd
Verilog File Extension

Specify the file name extension for generated Verilog files.

Default: .v
Comment in header

Specify comment lines in header of generated HDL and test bench files.

Default: None

Text entered in this field as a character vector generates a comment line in the header of the
generated code. The code generator adds leading comment characters for the target language.
When newlines or linefeeds are included in the text, the code generator emits single-line
comments for each newline.

Package postfix
HDL Coder applies this option only if a package file is required for the design.

Default: _pkg
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Entity conflict postfix
Specify the character vector to resolve duplicate VHDL entity or Verilog module names in
generated code.

Default: _block
Reserved word postfix

Specify a character vector to append to value names, postfix values, or labels that are VHDL or
Verilog reserved words.

Default: _rsvd
Clocked process postfix

Specify a character vector to append to HDL clock process names.

Default: _process
Complex real part postfix

Specify a character vector to append to real part of complex signal names.

Default: '_re'
Complex imaginary part postfix

Specify a character vector to append to imaginary part of complex signal names.

Default: '_im'
Pipeline postfix

Specify a character vector to append to names of input or output pipeline registers.

Default: '_pipe'
Enable prefix

Specify the base name as a character vector for internal clock enables and other flow control
signals in generated code.

Default: 'enb'

Code Generation: Clocks and Ports Tab
Clock and port settings

Input Parameters

Reset type
Specify whether to use asynchronous or synchronous reset logic when generating HDL code for
registers.

Default: Asynchronous
Reset Asserted level

Specify whether the asserted (active) level of reset input signal is active-high or active-low.

Default: Active-high
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Reset input port
Enter the name for the reset input port in generated HDL code.

Default: reset
Clock input port

Specify the name for the clock input port in generated HDL code.

Default: clk
Clock enable input port

Specify the name for the clock enable input port in generated HDL code.

Default: clk
Oversampling factor

Specify frequency of global oversampling clock as a multiple of the design under test (DUT) base
rate (1).

Default: 1
Input data type

Specify the HDL data type for input ports.

For VHDL, the options are:

• std_logic_vector

Specifies VHDL type STD_LOGIC_VECTOR
• signed/unsigned

Specifies VHDL type SIGNED or UNSIGNED

Default: std_logic_vector

For Verilog, the options are:

• In generated Verilog code, the data type for all ports is ‘wire’. Therefore, Input data type is
disabled when the target language is Verilog.

Default: wire
Output data type

Specify the HDL data type for output data types.

For VHDL, the options are:

• Same as input data type

Specifies that output ports have the same type specified by Input data type.
• std_logic_vector

Specifies VHDL type STD_LOGIC_VECTOR
• signed/unsigned

Specifies VHDL type SIGNED or UNSIGNED
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Default: Same as input data type

For Verilog, the options are:

• In generated Verilog code, the data type for all ports is ‘wire’. Therefore, Output data type is
disabled when the target language is Verilog.

Default: wire

Clock enable output port
Specify the name for the clock enable input port in generated HDL code.

Default: clk_enable

Code Generation: Test Bench Tab
Test bench settings.

Input Parameters

Test bench name postfix
Specify a character vector appended to names of reference signals generated in test bench code.

Default: '_tb’
Force clock

Specify whether the test bench forces clock enable input signals.

Default: On
Clock High time (ns)

Specify the period, in nanoseconds, during which the test bench drives clock input signals high
(1).

Default: 5
Clock low time (ns)

Specify the period, in nanoseconds, during which the test bench drives clock input signals low
(0).

Default: 5
Hold time (ns)

Specify a hold time, in nanoseconds, for input signals and forced reset input signals.

Default: 2 (given the default clock period of 10 ns)
Setup time (ns)

Display setup time for data input signals.

Default: 0
Force clock enable

Specify whether the test bench forces clock enable input signals.

Default: On
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Clock enable delay (in clock cycles)
Define elapsed time (in clock cycles) between deassertion of reset and assertion of clock enable.

Default: 1
Force reset

Specify whether the test bench forces reset input signals.

Default: On
Reset length (in clock cycles)

Define length of time (in clock cycles) during which reset is asserted.

Default: 2
Hold input data between samples

Specify how long subrate signal values are held in valid state.

Default: On
Initialize testbench inputs

Specify initial value driven on test bench inputs before data is asserted to device under test
(DUT).

Default: Off
Multi file testbench

Divide generated test bench into helper functions, data, and HDL test bench code files.

Default: Off
Test bench data file name postfix

Specify suffix added to test bench data file name when generating multi-file test bench.

Default: '_data’
Test bench reference post fix

Specify a character vector to append to names of reference signals generated in test bench code.

Default: '_ref'
Ignore data checking (number of samples)

Specify number of samples during which output data checking is suppressed.

Default: 0
Use fiaccel to accelerate test bench logging

To generate a test bench, HDL Coder simulates the original MATLAB code. Use the Fixed-Point
Designer fiaccel function to accelerate this simulation and accelerate test bench logging.

Default: On

Code Generation: Optimizations Tab
Optimization settings
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Input Parameters

Map persistent array variables to RAMs
Select to map persistent array variables to RAMs instead of mapping to shift registers.

Default: Off

Dependencies:

• RAM Mapping Threshold
• Persistent variable names for RAM Mapping

RAM Mapping Threshold
Specify the minimum RAM size required for mapping persistent array variables to RAMs.

Default: 256
Persistent variable names for RAM Mapping

Provide the names of the persistent variables to map to RAMs.

Default: None
Input Pipelining

Specify number of pipeline registers to insert at top level input ports. Can improve performance
and help to meet timing constraints.

Default: 0
Output Pipelining

Specify number of pipeline registers to insert at top level output ports. Can improve performance
and help to meet timing constraints.

Default: 0
Distribute Pipeline Registers

Reduces critical path by changing placement of registers in design. Operates on all registers,
including those inserted using the Input Pipelining and Output Pipelining parameters, and
internal design registers.

Default: Off
Sharing Factor

Number of additional sources that can share a single resource, such as a multiplier. To share
resources, set Sharing Factor to 2 or higher; a value of 0 or 1 turns off sharing.

In a design that performs identical multiplication operations, HDL Coder can reduce the number
of multipliers by the sharing factor. This can significantly reduce area.

Default: 0

Simulation and Verification
Simulates the generated HDL code using the selected simulation tool.
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Input Parameters

Simulation tool
Lists the available simulation tools.

Default: None
Skip this step

Default: Off

Results and Recommended Actions

Conditions Recommended Action
No simulation tool available on system path. Add your simulation tool path to the MATLAB

system path, then restart MATLAB. For more
information, see “Synthesis Tool Path Setup”.

Synthesis and Analysis
This folder contains tasks to create a synthesis project for the HDL code. The task then runs the
synthesis and, optionally, runs place and route to generate a circuit description suitable for
programming an ASIC or FPGA.

Input Parameters

Skip this step
Default: Off

Skip this step if you are interested only in simulation or you do not have a synthesis tool.

Create Project

Create synthesis project for supported synthesis tool.

Description

This task creates a synthesis project for the selected synthesis tool and loads the project with the
HDL code generated for your MATLAB algorithm.

You can select the family, device, package, and speed that you want.

When the project creation is complete, the HDL Workflow Advisor displays a link to the project in the
right pane. Click this link to view the project in the synthesis tool's project window.

Input Parameters

Synthesis Tool
Select from the list:

• Altera Quartus II

Generate a synthesis project for Altera Quartus II. When you select this option, HDL Coder
sets:
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• Chip Family to Stratix II
• Device Name to EP2S60F1020C4

You can manually change these settings.
• Xilinx ISE

Generate a synthesis project for Xilinx ISE. When you select this option, HDL Coder:

• Sets Chip Family to Virtex4
• Sets Device Name to xc4vsx35
• Sets Package Name to ff6...
• Sets Speed Value to —...

You can manually change these settings.

Default: No Synthesis Tool Specified

When you select No Synthesis Tool Specified, HDL Coder does not generate a synthesis
project. It clears and disables the fields in the Synthesis Tool Selection pane.

Chip Family
Target device family.

Default: None
Device Name

Specific target device, within selected family.

Default: None
Package Name

Available package choices. The family and device determine these choices.

Default: None
Speed Value

Available speed choices. The family, device, and package determine these choices.

Default: None

Results and Recommended Actions

Conditions Recommended Action
Synthesis tool fails to create project. Read the error message returned by synthesis

tool, then check the synthesis tool version, and
check that you have write permission for the
project folder.

Synthesis tool does not appear in dropdown list. Add your synthesis tool path to the MATLAB
system path, then restart MATLAB. For more
information, see “Synthesis Tool Path Setup”.

Run Logic Synthesis

Launch selected synthesis tool and synthesize the generated HDL code.
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Description

This task:

• Launches the synthesis tool in the background.
• Opens the previously generated synthesis project, compiles HDL code, synthesizes the design, and

emits netlists and related files.
• Displays a synthesis log in the Result subpane.

Results and Recommended Actions

Conditions Recommended Action
Synthesis tool fails when running place and
route.

Read the error message returned by the synthesis
tool, modify the MATLAB code, then rerun from
the beginning of the HDL Coder workflow.

Run Place and Route

Launches the synthesis tool in the background and runs a Place and Route process.

Description

This task:

• Launches the synthesis tool in the background.
• Runs a Place and Route process that takes the circuit description produced by the previous

mapping process, and emits a circuit description suitable for programming an FPGA.
• Displays a log in the Result subpane.

Input Parameters

Skip this step
If you select Skip this step, the HDL Workflow Advisor executes the workflow, but omits the
Perform Place and Route, marking it Passed. You might want to select Skip this step if you
prefer to do place and route work manually.

Default: Off

Results and Recommended Actions

Conditions Recommended Action
Synthesis tool fails when running place and
route.

Read the error message returned by the synthesis
tool, modify the MATLAB code, then rerun from
the beginning of the HDL Coder workflow.
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Signal and Data Type Support
In this section...
“Buses” on page 10-2
“Enumerations” on page 10-3
“Matrices” on page 10-3
“Unsupported Signal and Data Types” on page 10-6

HDL Coder supports code generation for Simulink signal types and data types with a few special
cases.

Buses
If your DUT or other blocks in your model have many input or output signals, you can create bus
signals to improve the readability of your model. A bus signal or bus is a composite signal that
consists of other signals that are called elements.

You can generate HDL code for designs that use virtual and nonvirtual buses. For example, you can
generate code for designs that contain:

• DUT subsystem ports connected to buses.
• Simulink and Stateflow® blocks that support buses and HDL code generation.

Supported Blocks with Buses

Bus-capable blocks are blocks that can accept bus signals as input and produce bus signals as
outputs. For a list of bus-capable blocks that Simulink supports, see “Bus-Capable Blocks” (Simulink).
HDL Coder supports code generation for bus-capable blocks in the HDL Coder block library. For
more details, see the "HDL Code Generation" section of each block page. The supported blocks
include:

• Bus Assignment
• Bus Creator
• Bus Selector
• Constant
• Delay
• Multiport Switch
• Rate Transition
• Signal Conversion
• Signal Specification
• Switch
• Unit Delay
• Vector Concatenate
• Zero-Order Hold

In addition, subsystems, models, and these user-defined functions support buses for simulation and
HDL code generation:
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• Subsystem
• Model references, see “Model Referencing for HDL Code Generation” on page 27-2.
• Stateflow Chart
• MATLAB Function blocks
• MATLAB System blocks
• Vision HDL Toolbox blocks that accept a pixelcontrol bus for control input

Bus Support Limitations

Buses are not supported in the IP Core Generation workflow. In addition, you cannot generate
code for designs that use:

• A Black box model reference connected to a bus.
• A bus input to a Delay block with nonzero Initial condition.

Enumerations
You can generate code for Simulink, MATLAB, or Stateflow enumerations within your design.

Requirements

• The enumeration values must be monotonically increasing.
• The enumeration strings must have unique names and must not use a reserved keyword in the

Verilog or VHDL language.
• If your target language is Verilog, all enumeration member names must be unique within the

design.

Restrictions

Enumerations at the top-level DUT ports are not supported with the following workflows or
verification methods:

• IP Core Generation workflow
• FPGA Turnkey workflow
• Simulink Real-Time FPGA I/O workflow
• Customization for the USRP Device workflow
• FPGA-in-the-loop
• HDL Cosimulation

Matrices
You can use matrix types with these blocks in your design. For more details, see the "HDL Code
Generation" section of each block page.
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HDL Coder Block Library Supported blocks
Discontinuities These blocks are supported:

• Dead Zone
• Relay
• Saturation

Discrete These blocks are supported:

• Delay
• Discrete-Time Integrator
• Memory
• Tapped Delay
• Unit Delay
• Unit Delay Enabled Synchronous
• Unit Delay Enabled Resettable Synchronous
• Unit Delay Resettable Synchronous
• Zero-Order Hold

HDL Floating Point Operations The Rounding Function block is supported.
HDL Operations All blocks in this library are supported.
HDL RAMs Blocks in this library are not supported.
HDL Subsystems Blocks in this library are not supported.
Logic and Bit Operations These blocks are supported:

• Bit Clear
• Bit Concat
• Bit Reduce
• Bit Rotate
• Bit Set
• Bit Shift
• Bit Slice
• Extract Bits
• Logical Operator
• Relational Operator
• Shift Arithmetic

Lookup Tables Blocks in this library are not supported.
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HDL Coder Block Library Supported blocks
Math Operations These blocks are supported:

• Abs
• Add
• Assignment
• Bias
• Complex to Real-Imag
• Gain
• Product, including matrix multiplication.
• Matrix Concatenate
• Math Function
• Real-Imag to Complex
• Reshape
• Sign
• Sum
• Unary Minus
• Increment Stored Integer
• Increment Real World
• Decrement Stored Integer
• Decrement Real World
• Sum of Elements
• Product of Elements

Model Verification All blocks in this library are supported.
Model-Wide Utilities The DocBlock is supported. The Model Info block does not

support matrix data types.
Ports & Subsystems The Subsystem block is supported.
Signal Attributes These blocks are supported:

• Data Type Conversion
• Data Type Duplicate
• Probe
• Rate Transition
• Signal Conversion
• Signal Specification

Signal Routing These blocks are supported:

• Mux
• Multiport Switch
• Selector
• Switch
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HDL Coder Block Library Supported blocks
Sources These blocks are supported:

• Constant
• Enumerated Constant
• Inport

Sinks These blocks are supported:

• Display
• Outport
• Scope
• To Workspace
• To File
• XY Graph

User-Defined Functions The MATLAB Function block is supported.

The code generator does not support matrix types at the interfaces of the Subsystem that you
generate HDL code for. Use a Reshape block to convert the matrix input to a 1-D array at the
interface. Inside the Subsystem, use another Reshape block that converts the 1-D array back to the
matrix type with the dimensionality that you specified.

Unsupported Signal and Data Types
• Arrays stored in row-major layout are not supported for HDL code generation
• Variable-size signals are not supported for code generation.

See Also

Related Examples
• “Generating HDL Code for Subsystems with Array of Buses” on page 10-21

More About
• “Signal Types” (Simulink)
• “About Data Types in Simulink” (Simulink)
• “Composite Signals” (Simulink)
• “Use Enumerated Data in Simulink Models” (Simulink)
• “Enumerated Data” (Stateflow)
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Use Simulink Templates for HDL Code Generation
In this section...
“Create Model Using HDL Coder Model Template” on page 10-7
“HDL Coder Model Templates” on page 10-7

HDL Coder model templates in Simulink provide you with design patterns and best practices for
models intended for HDL code generation. Models you create from one of the HDL Coder model
templates have their configuration parameters and solver settings set up for HDL code generation. To
configure an existing model for HDL code generation, use hdlsetup.

Create Model Using HDL Coder Model Template
To model hardware for efficient HDL code generation, create a model using an HDL Coder model
template.

1 Open the Simulink Start Page. In the MATLAB Home tab, select the Simulink button.
Alternativelty, at the command line, enter:

simulink
2 In the HDL Coder section, you see templates that are preconfigured for HDL code generation.

Selecting the template opens a blank model in the Simulink Editor. To save the model, select File
> Save As.

3 To open the Simulink Library Browser and then open the HDL Coder Block Library, select the
Library Browser button in the Simulink Editor. Alternatively, at the command line, enter

slLibraryBrowser

To filter the Simulink Library Browser to show the block libraries that support HDL code
generation, use the hdllib function:

hdllib

HDL Coder Model Templates
Complex Multiplier

The Complex Multiplier template shows how to model a complex multiplier-accumulator and
manually pipeline the intermediate stages. The hardware implementation of complex multiplication
uses four multipliers and two adders.

The template applies the following best practices:

• In the Configuration Parameters dialog box, in HDL Code Generation > Global Settings, Reset
type is set to Synchronous.

• To improve speed, Delay blocks, which map to registers in hardware, are at the inputs and outputs
of the multipliers and adders.

• To support the output data of a full-precision complex multiplier, the output data word length is
manually specified to be (operand_word_length * 2) + 1.

For example, in the template, the operand word length is 18, and the output word length is 37.
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MATLAB Arithmetic

The MATLAB Arithmetic template contains MATLAB arithmetic operations that infer DSP48s in
hardware.
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For example, the ml_mul_acc MATLAB Function block shows how to write a multiply-accumulate
operation in MATLAB. hdlfimath on page 29-28 applies fixed-point math settings for HDL code
generation.
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function y = fcn(u1, u2)

% design of a 6x6 multipler 
% same reset on inputs and outputs
% followed by an adder

nt = numerictype(0,6,0);
nt2 = numerictype(0,12,0);
fm = hdlfimath;

persistent u1_reg u2_reg mul_reg add_reg;
if isempty(u1_reg)
    u1_reg = fi(0, nt, fm);
    u2_reg = fi(0, nt, fm);
    mul_reg = fi(0, nt2, fm);
    add_reg = fi(0, nt2, fm);
end

mul = mul_reg;
mul_reg = u1_reg * u2_reg;
add = add_reg;
add_reg(:) = mul+add;
u1_reg = u1;
u2_reg = u2;

y = add;

ROM

The ROM template is a design pattern that maps to a ROM in hardware.

The template applies the following best practices:

• At the output of the lookup table, there is a Delay block with ResetType = none.
• The lookup table is structured such that the spacing between breakpoints is a power of two.

Using table dimensions that are a power of two enables HDL Coder to generate shift operations
instead of division operations. If necessary, pad the table with zeros.

• The number of lookup table entries is a power of two. For some synthesis tools, a lookup table that
has a power-of-two number of entries maps better to ROM. If necessary, pad the table with zeros.
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Register

The Register template shows how to model hardware registers:

• In Simulink, using the Delay block.
• In MATLAB, using persistent variables.

This design pattern also shows how to use cast to propagate data types automatically.
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The MATLAB code in the MATLAB Function block uses a persistent variable to model the register.

function y = fcn(u)
% Unit delay implementation that maps to a register in hardware

persistent u_d;
if isempty(u_d)
    % defines initial value driven by unit delay at time step 0
    u_d = cast(0, 'like', u);
end

% return delayed input from last sample time hit
y = u_d;

% store the current input
u_d = u;

SRL

The SRL template shows how to implement a shift register that maps to an SRL16 in hardware. You
can use a similar pattern to map to an SRL32.

10 Model Design for HDL Code Generation

10-12



In the shift register subsystem, the Tapped Delay implements the shift operation, and the MATLAB
Function, select_tap, implements the output mux.

In select_tap, the zero-based address, addr increments by 1 because MATLAB indices are one-
based.
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function dout = fcn(addr, tdelay)
%#codegen

addr1 = fi(addr+1,0,5,0);
dout = tdelay(addr1);

In the generated code, HDL Coder automatically omits the increment because Verilog and VHDL are
zero-based.

The template also applies the following best practices for mapping to an SRL16 in hardware:

• For the Tapped Delay block:

• In the Block Parameters dialog box, Include current input in output vector is not enabled.
• In the HDL Block Properties dialog box, ResetType is set to none.

• For the Subsystem block, in the HDL Block Properties dialog box, FlattenHierarchy is set to on.

Simulink Hardware Patterns

The Simulink Hardware Patterns template contains design patterns for common hardware operations:

• Serial-to-parallel shift register
• Detect rising edge
• Detect falling edge
• SR latch
• RS latch
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For example, the design patterns for rising edge detection and falling edge detection:
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State Machine in MATLAB

The State Machine in MATLAB template shows how to implement Mealy and Moore state machines
using the MATLAB Function block.

To learn more about best practices for modeling state machines, see “Model a State Machine for HDL
Code Generation” on page 3-4.

See Also
hdlsetup | makehdl

More About
• “Create Simulink Model for HDL Code Generation”
• “Design Guidelines for the MATLAB Function Block” on page 29-28
• “Hardware Modeling with MATLAB Code”

10 Model Design for HDL Code Generation

10-16



Generate DUT Ports for Tunable Parameters
In this section...
“Prerequisites” on page 10-17
“Create and Add Tunable Parameter That Maps to DUT Ports” on page 10-17
“Generated Code” on page 10-18
“Limitations” on page 10-18
“Use Tunable Parameter in Other Blocks” on page 10-19

Tunable parameters that you use to adjust your model behavior during simulation can map to top-
level DUT ports in your generated HDL code. HDL Coder generates one DUT port per tunable
parameter.

You can generate a DUT port for a tunable parameter by using it in one of these blocks:

• Gain
• Constant
• MATLAB Function
• MATLAB System
• Chart
• Truth Table
• State Transition Table

These blocks with the tunable parameter can be at any level of the DUT hierarchy, including within a
model reference.

You cannot use HDL cosimulation with a DUT that uses tunable parameters in any of these blocks. If
you use a tunable parameter in a block other than these blocks, code is generated inline and does not
map to DUT ports. To use the value of a tunable parameter in a Chart or Truth Table block, see “Use
Tunable Parameter in Other Blocks” on page 10-19.

You can define and store the tunable parameters in the base workspace or a Simulink data dictionary.
However, a Simulink data dictionary provides more capabilities. For details, see “What Is a Data
Dictionary?” (Simulink).

Prerequisites
• The Simulink compiled data type for all instances of a tunable parameter must be the same.
• Simulink blocks that use tunable parameters with the same name must operate at the same data

rate.

To learn more about Simulink compiled data types, see “Control Block Parameter Data Types”
(Simulink).

Create and Add Tunable Parameter That Maps to DUT Ports
To generate a DUT port for a tunable parameter:
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1 Create a tunable parameter with StorageClass set to ExportedGlobal.

For example, to create a tunable parameter, myParam, and initialize it to 5, at the command line,
enter:

myParam = Simulink.Parameter;
myParam.Value = 5;
myParam.CoderInfo.StorageClass = 'ExportedGlobal';

Alternatively, using the Model Explorer, you can create a tunable parameter and set Storage
Class to ExportedGlobal. See “Create Data Objects from Built-In Data Class Package
Simulink” (Simulink).

2 In your Simulink design, use the tunable parameter as the:

• Constant value in a Constant block.
• Gain parameter in a Gain block.
• MATLAB function argument in a MATLAB Function block.

Generated Code
The following VHDL code is an example of code that HDL Coder generates for a Gain block with its
Gain field set to a tunable parameter, myParam. You see that the code generator creates a DUT port
and adds a comment to indicate that the port corresponds to a tunable parameter.

ENTITY s IS
  PORT( In1           : IN   std_logic_vector(15 DOWNTO 0); -- sfix16_En5
        myParam       : IN   std_logic_vector(15 DOWNTO 0); -- sfix16_En5 Tunable port
        Out1          : OUT  std_logic_vector(31 DOWNTO 0) -- sfix32_En10
        );
END s;

ARCHITECTURE rtl OF s IS

  -- Signals
  SIGNAL myParam_signed  : signed(15 DOWNTO 0); -- sfix16_En5
  SIGNAL In1_signed      : signed(15 DOWNTO 0); -- sfix16_En5
  SIGNAL Gain_out1       : signed(31 DOWNTO 0); -- sfix32_En10

BEGIN
  myParam_signed <= signed(myParam);

  In1_signed <= signed(In1);

  Gain_out1 <= myParam_signed * In1_signed;

  Out1 <= std_logic_vector(Gain_out1);

END rtl;

Limitations
Make sure that the “Use trigger signal as clock” on page 16-43 check box is left cleared by default.
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Use Tunable Parameter in Other Blocks
To use the value of a tunable parameter in a Chart or Truth Table block:

1 Create the tunable parameter and use it in a Constant block. on page 10-17
2 Add an input port to the block where you want to use the tunable parameter.
3 Connect the output of the Constant block to the new input port.

See Also

Related Examples
• “Generate Parameterized Code for Referenced Models” on page 10-20
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Generate Parameterized Code for Referenced Models
In this section...
“Parameterize Referenced Model for HDL Code Generation” on page 10-20
“Restrictions” on page 10-20

To generate parameterized code for referenced models, use model arguments. You can use model
arguments in a masked or unmasked Model block.

HDL Coder generates a single VHDL entity or Verilog module for the referenced model, even if the
DUT has multiple instances of the referenced model. In the generated code, each model argument is
a VHDL generic or a Verilog parameter.

Parameterize Referenced Model for HDL Code Generation
1 In the referenced model, create one or more model arguments.

To learn how to create a model argument, see “Specify a Different Value for Each Instance of a
Reusable Model” (Simulink).

2 In the referenced model, use each model argument parameter in a Gain or Constant block.
3 In the DUT, for each model reference, in the Model arguments table, enter values for each

model argument.

Alternatively, create a model mask for the referenced model. In the DUT, for each model
reference, enter values for each model argument.

4 Generate code for the DUT.

Restrictions
Model argument values:

• Must be scalar.
• Cannot be complex.
• Cannot be enumerated data.

See Also

Related Examples
• “Generate Reusable Code for Atomic Subsystems” on page 27-17
• “Generate DUT Ports for Tunable Parameters” on page 10-17

More About
• “Specify a Different Value for Each Instance of a Reusable Model” (Simulink)
• “Model Referencing for HDL Code Generation” on page 27-2
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Generating HDL Code for Subsystems with Array of Buses
In this section...
“How HDL Coder Generates Code for Array of Buses” on page 10-21
“Array of Buses Limitations” on page 10-23

An array of buses is an array whose elements are buses. Each element in an array of buses must be
nonvirtual and must have the same data type.

The array of buses represents structured data compactly. The array:

• Reduces the model complexity
• Reduces maintenance by organizing and routing signals in your Simulink model for vectorized

algorithms

For more information, see “Combine Buses into an Array of Buses” (Simulink).

You can generate HDL code for virtual and nonvirtual blocks that Simulink supports with an array of
buses. For more information, see “Use Arrays of Buses in Models” (Simulink).

How HDL Coder Generates Code for Array of Buses
HDL Coder expands the array of buses in your Simulink model into the corresponding scalar signals
in the generated code.

This Simulink model has an array of buses signal at the DUT interface.

The array of buses combines two nonvirtual bus elements, each having scalars a and b of types
uint16 and int32 respectively.
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The resulting HDL code expands the array of buses into scalars, and contains four scalar input and
output ports.

In the generated code, the array of bus expansion results in four scalar signals at the input and
output ports. For the first bus object, the input ports are In_1_a and In_1_b. For the second bus
object, they are In_2_a and In_2_b. At the output, for the first bus object, they are Out_1_a and
Out_1_b. For the second bus object, they are Out_2_a and Out_2_b.

ENTITY DUT IS
  PORT( In1_1_a   :   IN    std_logic_vector(15 DOWNTO 0);  -- uint16
        In1_1_b   :   IN    std_logic_vector(31 DOWNTO 0);  -- int32
        In1_2_a   :   IN    std_logic_vector(15 DOWNTO 0);  -- uint16
        In1_2_b   :   IN    std_logic_vector(31 DOWNTO 0);  -- int32
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        Out1_1_a  :   OUT   std_logic_vector(15 DOWNTO 0);  -- uint16
        Out1_1_b  :   OUT   std_logic_vector(31 DOWNTO 0);  -- int32
        Out1_2_a  :   OUT   std_logic_vector(15 DOWNTO 0);  -- uint16
        Out1_2_b  :   OUT   std_logic_vector(31 DOWNTO 0)   -- int32
        );
END DUT;

HDL Coder generates code in accordance with the order in which you specify the bus elements and
the array elements in your Simulink model. If you specify the VHDL target language for your
Simulink model that contains a bus object with arrays, HDL Coder preserves the arrays in the
generated code, and does not expand into scalars.

Array of Buses Limitations
• Do not use the array of buses inside other data types. You cannot use a bus signal that contains an

array of buses.
• MATLAB System and MATLAB Function blocks that contain System Objects are not supported

with an array of buses.

See Also

More About
• “Signal and Data Type Support” on page 10-2
• “Signal Types” (Simulink)
• “About Data Types in Simulink” (Simulink)
• “Composite Signals” (Simulink)
• “Use Enumerated Data in Simulink Models” (Simulink)
• “Enumerated Data” (Stateflow)
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Generate HDL Code for Blocks Inside For Each Subsystem
This example shows how to use blocks inside a For Each Subsystem in your Simulink™ model, and
then generate HDL code.

Why Use a For Each Subsystem?

To repeatedly perform the same algorithm on individual elements or subarrays of the input signals,
use the For Each Subsystem block. The set of blocks within the Subsystem replicate the algorithm
that is applied to individual elements or equally divided subarrays of the input signals. Using the For
Each Subsystem block, you do not have to create and connect replicas of a Subsystem block to model
the same algorithm. The For Each Subsystem:

• Supports vector processing, which reduces the simulation time of your model. You can process
individual elements or subarrays of an input signal simultaneously.

• Improves code readability by using a for-generate loop in the generated HDL code. The for-
generate loop reduces the number of lines of code, which can otherwise result in hundreds of lines
of code for large vector signals.

• Supports HDL code generation for all data types, Simulink™ blocks, and predefined and user-
defined system objects.

• Supports optimizations on and inside the block, such as resource sharing and pipelining. The
parallel processing capability of the For Each Subsystem block combined with the optimizations
that you specify produces high performance on the target FPGA device.

Modeling With the For Each Subsystem

Open the foreach_subsystem_example1 model. You see this simple algorithm modeled inside a
For Each Subsystem block.

When you simulate the model, you see that the input signals In1 and In3 are partitioned into
subarrays. To see this partitioning, double-click the For Each block. The block parameters Partition
Dimension and Partition Width specify the dimension through which the input signal is partitioned
and the width of each partition slice respectively. Based on the input signal sizes and the partitioning
that you specify, the For Each Subsystem determines the number of iterations that it requires to
compute the algorithm.

In this example, the input signals In1 and In3 of size 8 are partitioned into four subarrays, each of
size 2. The input signal In2 of size 2 is not partitioned. To compute the algorithm, the For Each
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Subsystem requires four iterations, with each iteration repeating the algorithm on each of the four
subarrays of In1 and In3.

The For Each Subsystem simplifies modeling of vectorized algorithms. This figure shows how you can
model the same algorithm by creating multiple subsystem instances. This model can become
graphically complex and difficult to maintain.

Using Complex Data Signals

The block does not support complex data types as inputs for HDL code generation. To input a
complex signal, you can convert this signal to an array of signals, and then input to the block.

To perform the same algorithm on both real and imaginary parts of the signal:

1 Separate the signal into real and imaginary parts by using a Complex to Real-Imag block.
2 Create a vector signal that consists of the real and imaginary parts by using a Mux block.

You can then input this vector to the For Each Subsystem block and replicate the same computation
on both the real and imaginary parts. At the output of the For Each Subsystem, you can convert the
vector output back to a complex signal. Use a Demux block to separate the real and imaginary scalar
parts, and then input the scalars to the Real-Imag to Complex block.
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Generate HDL Code

To generate HDL code, in the foreach_subsystem_example1 model, right-click the
Subsystem_Foreach block and select HDL Code > Generate HDL for Subsystem.

To see the generated HDL code for the Subsystem_Foreach block, in the MATLAB™ Command
Window, click the Subsystem_Foreach.vhd file. In the VHDL code snippet, you see this for-
generate loop in the HDL code.This loop creates four subsystem instances, with each instance
performing the algorithm on size 2 subarrays of inputs In1 and In3.

Certain optimizations that you specify can change the contents of the subsystems that the For Each
Subsystem instantiates. In such cases, the code generator does not use for-generate loops in the HDL
code. The HDL code does not contain for-generate loops, if you have:

• Bus or complex input signals.
• Certain optimizations enabled on the subsystem, such as resource sharing and streaming.
• Vector inputs that get partitioned into nonscalar signals in the Verilog code. To obtain for-generate

loops in the Verilog code, partition the vector signal to scalars.

Optimize the For Each Subsystem Algorithm

To optimize the algorithm contained within the For Each Subsystem, you can enable optimizations
such as resource sharing and streaming on the DUT that contains the For Each Subsystem. For
example, by using the resource sharing optimization, you can share multiple Subsystem instances
that are created by the For Each Subsystem. This optimization reuses the algorithm modeled by the
Subsystem across multiple instances and reduces the area usage on the target device.

Note: When you enable optimizations on the For Each Subsystem, the generated HDL code does not
contain for-generate loops.

This example shows how to use the resource sharing optimization on the For Each Subsystem. To
share resources, select the Subsystem block that contains the For Each Subsystem and then specify
the Sharing Factor. In this example, right-click the Subsystem_Foreach block and select HDL
Code > HDL Block Properties. Set the Sharing Factor to 4, because the For Each Subsystem
generates four Subsystem instances. Then, generate HDL code for the Subsystem_Foreach block.
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To see the effect of the resource sharing optimization, at the command-line, enter
gm_foreach_subsystem_example1 to open the generated model. In the generated model, you see
that the optimization shared the four subsystem instances generated by the For Each Subsystem into
one Subsystem For Each Subsystem_Instance1.

If you double-click the For Each Subsystem_Instance1 block, you see the algorithm computed
for the size 2 subarrays of inputs In1 and In3.

To learn more about the resource sharing optimization, see Resource Sharing.

See Also
For Each Subsystem
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Model and Debug Test Point Signals with HDL Coder™
This example shows how you can mark signals as test points in your Simulink™ model and, after HDL
code generation, debug the signals at the top level using the generated model or a test bench.

Why Use Test Points?

Test points are signals that you can use to easily debug and observe the simulation results at various
points in your Simulink™ model. You can observe signals designated as test points with a Floating
Scope block in a model. In Simulink™, you can designate any signal in a model as a test point.

After code generation, you can observe test point signals at the DUT output ports and further debug
the generated code in downstream workflows. This capability makes debugging your design easier
because the code generator can propagate test point signals deep within the subsystem hierarchy to
the DUT output ports.

Create HDL-Compatible Model

Before you designate signals as test points and generate HDL code, make sure that the model you
create is compatible for HDL code generation. See “Create Simulink Model for HDL Code
Generation”.

For this example, open the hdlcoder_simulink_test_points model that has been prepared for
HDL code generation. The DUT is an Enabled Subsystem that calculates two coefficients based on
inputs from a Selection Logic and a Comparator.

load_system('hdlcoder_test_points')
open_system('hdlcoder_test_points/DUT/MaJ Counter')
set_param('hdlcoder_test_points', 'SimulationCommand', 'update');
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Designate Signals as Test Points

To debug internal signals in this model, mark them as test points in either of these ways:

• In the Simulink Editor, to open the Signal Properties dialog box, right-click the signal, and select
Properties. Then, select Test Point.

• At the command line, get the handle to the output port of a block, and then set the port parameter
TestPoint to 'on'.

For example, enter these commands to designate the output signal from the Logical acc block that
performs the OR operation as a test point.

portHandles = get_param('hdlcoder_test_points/DUT/MaJ Counter/Logical acc', 'portHandles');
outportHandle = portHandles.Outport;
set_param(outportHandle,'TestPoint','on');

If a block has more than one output port, specify the outport handle that you want to designate as
testpoint. For example, to designate the second output of a Demux block as a test point, enter this
command:

set_param(outportHandle(2),'TestPoint','on');

Simulink™ displays an indicator on each signal for which you enable the Test point setting. If you
navigate the model, you see three additional test points. These test points are inside the Selection
Logic subsystem, the Comparator Subsystem, and the Calculate Coefficients Subsystem blocks.

To learn more, see “Configure Signals as Test Points” (Simulink).
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Enable DUT Output Port Generation for Test Points

Before you generate HDL code, to debug signals that are designated as test points, enable HDL DUT
port generation for the signals. When you generate code for the model, HDL Coder™ propagates
these signals to the DUT as an additional output port.

To enable DUT output port generation for the hdlcoder_simulink_test_points model:

• In the Configuration Parameters dialog box, on the HDL Code Generation > Global Settings >
Ports tab, select Enable HDL DUT port generation for test points.

• At the command line, use the EnableTestpoints property.

hdlset_param('hdlcoder_test_points','EnableTestpoints','on')

To learn more about this parameter, see “Enable HDL DUT port generation for test points” on page
16-44.

After you enable DUT port generation, you can run either of these workflows:

• Generate HDL code. To deploy the code onto a target FPGA, use the Generic ASIC/FPGA
workflow in the HDL Workflow Advisor.

• Map test point ports to target platform interfaces, and generate an HDL IP core by using the IP
Core Generation or Simulink Real-Time FPGA I/O workflows that use Xilinx Vivado or
Altera Quartus II as the synthesis tools.

HDL Code Generation and FPGA Targeting

If you want to see the mapping between test point ports in the HDL code and the test point signals in
your model, enable generation of the code generation report. The report displays the test point ports
with links to the corresponding test point signals in your Simulink™ model.

For example, to enable report generation for the hdlcoder_simulink_test_points model:

• In the Configuration Parameters dialog box, on the HDL Code Generation pane, select Generate
resource utilization report.

• To specify this setting at the command line, use the ResourceReport property.

hdlset_param('hdlcoder_test_points','ResourceReport','on')

To learn more about report generation, see “Create and Use Code Generation Reports” on page 25-
2.

To generate HDL code:

• Right-click the DUT Subsystem and select HDL Code > Generate HDL for Subsystem.
• At the command line, run makehdl on the DUT Subsystem.

To deploy the code onto a target platform, use the Generic ASIC/FPGA workflow. In the HDL
Workflow Advisor, on the Set Target Device and Synthesis Tool task, for Target workflow, select
Generic ASIC/FPGA, specify the Synthesis tool, and then run the workflow.

When generating code, HDL Coder™ opens the Code Generation report. The Code Interface Report
section contains links to the test point ports in the Output Ports section.
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When you click the links in the test point ports, the code generator highlights the corresponding
signals that you designated as test points in your Simulink™ model. Therefore, you can use the report
to trace back from the test point port in the generated code to the test point signals in your
Simulink™ model.

To see the test point ports in the generated HDL code, open the DUT.v file.

You can see the test point ports at the top level module declaration. These ports have the prefix tp_
and a comment to indicate that they correspond to test point ports. If you specify VHDL as the target
language, you can see the test point ports in the entity declaration.

IP Core Generation and SoC Targeting

To generate an HDL IP core, open the HDL Workflow Advisor. In the Advisor:

1 On the Set Target Device and Synthesis Tool task, for Target workflow, select IP Core
Generation, and specify a Target platform that uses Xilinx Vivado or Altera Quartus
II as the Synthesis tool. If you use the Simulink Real-Time FPGA I/O workflow, specify a
Target platform that uses Xilinx Vivado as the Synthesis tool

2 On the Set Target Reference Design task, you can specify the HDL Coder™ default reference
designs, or a custom reference design that you want to integrate the HDL IP core into. If you do
not specify unique names for test point signals, running this task can fail. To fix this error, in the
Result subpane, select the link to generate unique names for test point signals. To verify that the
task passes, rerun the task.

3 On the Set Target Interface task, you see the test point ports in the Target platform interface
table. You can map the ports to AXI4, AXI4-Lite, or External Port interfaces. After you run this

 Model and Debug Test Point Signals with HDL Coder™

10-31



task, the code generator stores this testpoint interface mapping information on the DUT. To see
this information, in the HDL Block Properties for the DUT Subsystem, on the Target
Specification tab, look for the TestPointMapping block property. You can reload this
information for the DUT across subsequent runs of the workflow.

4 On the the Generate RTL Code and IP Core task, right-click and select Run to Selected Task
to generate the IP core. The code generator opens an IP Core Generation report that displays the
mapping of test point ports to interfaces.

When you click the links in the test point ports, the code generator highlights the corresponding
signals that you designated as test points in your Simulink™ model.

If you open the generated HDL source file, you see the test point signals connected to the IP core
wrapper.

Run the workflow to generate the Software Interface model and integrate the IP core into the target
reference design that you specified in the Set Target Reference Design task.
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To learn more about the IP Core Generation workflow, see “Custom IP Core Generation” on page
40-4 and “Custom IP Core Report” on page 40-6.

Debug Test Point Signals

After you generate HDL code or generate an IP core, you can debug the test point signals.

If you generated HDL code for your model or ran the Generic ASIC/FPGA workflow, to debug the
test point signals, generate a HDL test bench, or use the generated model. To open the generated
model, at the command line, enter gm_hdlcoder_test_points.

In the generated model, you see the test points at the DUT output ports connected to a Scope block
that is commented out. To observe the simulation results for these signals, uncomment the Scope
block, and then run the simulation. If you navigate the generated model, you can see that the code
generator creates an output port at the point where you designated the signal as a test point. HDL
Coder™ then propagates these ports to the DUT as additional output ports.

If you run the IP Core Generation workflow to the Generate Software Interface Model task,
the code generator opens the Software Interface model.
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To observe the data on test point signals from the ARM processor, uncomment the Scope block, and
then run the Software Interface model.

Considerations

• Test point ports are considered similar to other output ports in the code generation process. Test
point port generation works with all optimizations such as resource sharing, streaming, and
distributed pipelining. To learn about various optimizations, see “Speed and Area Optimization”.

• If you generate a validation model, you see that the code generator does not compare the test
point signals with the test point ports at the output. You can still observe the test point signals by
uncommenting the Scope block and by running the simulation. To learn more about generated
model and validation model, see “Generated Model and Validation Model” on page 24-5.

• If you generate a cosimulation model, you see the test point ports connected to a Terminator
block. To observe the test points, remove the Terminator blocks, and connect the output ports to a
Scope block, and then run cosimulation. You can also observe the waveforms in the HDL simulator
that you run cosimulation with. To learn more about cosimulation, see “Generate a Cosimulation
Model” on page 27-30.

• If you open the generated model, you see the Scope block commented out for performance
considerations.

• You cannot specify the port ordering for the DUT test point ports. HDL Coder™ determines the
port ordering when you generate code.

• Target workflow must be Generic ASIC/FPGA, IP Core Generation, or Simulink Real-
Time FPGA I/O.

• If you use IP Core Generation or Simulink Real-Time FPGA I/O workflows, the
Synthesis tool must be Xilinx Vivado or Altera Quartus II. Xilinx ISE is not
supported.
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• If you use IP Core Generation or Simulink Real-Time FPGA I/O workflows, you map the
test point ports to AXI4, AXI4-Lite, or External Port interfaces. You cannot map the ports to AXI4-
Stream or AXI4-Stream Video interfaces.

See Also

More About
• “Configure Signals as Test Points” (Simulink)
• “Enable HDL DUT port generation for test points” on page 16-44
• “Generated Model and Validation Model” on page 24-5
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Allocate Sufficient Delays for Floating-Point Operations
In this section...
“Problem” on page 10-36
“Cause” on page 10-36
“Solution” on page 10-37

Problem
Sometimes, when generating code from your floating-point algorithm in Simulink, HDL Coder
generates an error that it is unable to allocate sufficient number of delays.

Cause
This error message generally occurs when you have Simulink™ blocks performing floating-point
operations inside a feedback loop. These blocks have a latency. HDL Coder™ is unable to allocate
delays to compensate for the latency, because the code generator needs to add delays and balance
them to maintain numerical accuracy.

If you open this example model RunningSum.slx, you see a Simulink™ model that uses single data
types.

To generate HDL code for the CumSum_Sl Subsystem, right-click the subsystem and select HDL
Code > Generate HDL for Subsystem. During code generation, HDL Coder™ generates an error:

Unable to allocate delays to compensate for the 11 delays introduced by Add in
native floating-point mode. Consider either increasing the oversampling factor,
setting the 'Latency Strategy' to 'Zero', or adding the necessary output
pipelines via HDL block properties for other blocks in the model to accommodate
for the latency introduced by this block. 

By using the path to the block mentioned in the error message, navigate to the Add block in the
model. This block is inside a feedback loop.
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The Add block has a latency of 11. When generating code, HDL Coder™ cannot allocate 11 delays for
the block, because it cannot add matching delays to other paths.

This model serves as an example to illustrate the various strategies to solve this problem.

Solution
Strategy 1: Global Oversampling

This modeling paradigm uses the clock-rate pipelining optimization to oversample your design to a
clock-rate much faster than the DUT sample rate. To enable this optimization, specify a global
oversampling factor for your Simulink model. The floating-point delays then operate at the faster
clock-rate and can be allocated successfully. For more information, see “Clock-Rate Pipelining” on
page 24-52.

1 Specify an oversampling factor that is equal to or greater than the latency of the floating-point
operators that are unable to allocate delays. For the RunningSum model, specify an
oversampling factor at least equal to 12. To learn about the latency values of the floating-point
operators, see “Simulink Blocks Supported with Native Floating-Point” on page 10-80.

To specify the oversampling factor:

a In the Apps tab, select HDL Coder. The HDL Code tab appears.
b Click Settings. In the HDL Code Generation > Global Settings tab, set Oversampling

factor to 12.
2 Enable hierarchy flattening on the DUT and make sure that subsystems inside the DUT inherit

this setting. For the RunningSum model, select the CumSum_sl subsystem and click HDL Block
Properties on the HDL Code tab, and then set FlattenHierarchy to on.
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Strategy 2: Local Oversampling

To model your design at the data rate and selectively increase the sample rate of blocks for which
HDL Coder™ is unable to allocate delays, use local oversampling. These blocks then operate at the
faster clock rate and can accommodate the required number of delays.

If you open the RunningSum_OSmanual model and navigate to the Add block, it shows how you can
increase the sample rate of the Add block and allocate delays.

• The blocks that are within the boundary of the Repeat and Zero Order Hold blocks operate at the
clock rate that is 12 times faster than the sample rate of the model.

• The subsystem has a Delay block of length 12 at the output of the Add block. When generating
code, the Add block absorbs this Delay block, which compensates for the latency of the operator.
To balance delays, the subsystem contains Delay blocks of length 12 in other paths.

You can now generate HDL code for the CumSum_sl subsystem. To generate HDL code for the
CumSum_Sl Subsystem, right-click the subsystem and select HDL Code > Generate HDL for
Subsystem.

Strategy 3: Delay Blocks

Use this modeling paradigm to model your entire design at the Simulink data rate. For blocks that are
unable to accommodate the required number of delays, add a Delay block with a sufficient Delay
length at the output of the blocks. Specify a Delay length that is equal to the latency of the floating-
point operator. Make sure that you add matching delays in other paths.

For the RunningSum model, you can add a Delay block of length 12 at the output of the Add block.
When generating code, the Add block absorbs this delay, because the block has a latency of 12.

For more information, see “Latency Considerations with Native Floating Point” on page 10-63.

Strategy 4: Use Custom Latency

You can use the Latency Strategy for various blocks to specify a custom latency value and absorb
the additional delays. Using this strategy can optimize your design for trade-offs between:
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• Clock frequency and power consumption.
• Oversmapling factor and sampling frequency.

To learn more about the trade-offs and blocks for which you can specify a custom latency, see
LatencyStrategy.

Note: When you use the custom latency strategy, make sure that the Subsystem that
contains the block for which native floating-point is unable to allocate delays is not a
conditional subsystem. That is, the Subsystem must not contain trigger, reset, or enable
ports.

To see how using a custom latency can resolve the delay allocation issue, open the model
RunningSum_Custom.slx.

The model is similar to the original RunningSum model but does not have the Enable block. Using the
Enable block can prevent the custom latency strategy from absorbing delays. Specify a custom
latency of one for the Add block. The Add block can then absorb the Unit Delay adjacent to the Add
block.

You can now generate HDL code for the CumSum_sl subsystem.

Strategy 5: Zero Latency

You can use the zero latency strategy setting for blocks in your design for which native floating point
is unable to allocate delays. By default, blocks in your design inherit the native floating-point settings
that you specify in the Configuration Parameters dialog box. To specify a zero latency strategy setting
for a block, in the HDL Block Properties dialog box for that block, on the Native Floating Point tab,
set LatencyStrategy to Zero.

For the RunningSum example, set the LatencyStrategy of the Add block to Zero. To choose the
native floating point library and specify zero latency strategy, at the command line, enter:

fc = hdlcoder.createFloatingPointTargetConfig('NativeFloatingPoint');
hdlset_param('RunningSum/CumSum_sl/Subsystem/Add','LatencyStrategy', 'Zero');
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Note To obtain good performance on the target FPGA device, it is not recommended to set Latency
Strategy to Zero from the Configuration Parameters dialog box.

See Also
FPToleranceStrategy | FPToleranceValue | createFloatingPointTargetConfig

Related Examples
• “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

More About
• “Getting Started with HDL Coder Native Floating-Point Support” on page 10-49
• “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-70
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Optimize Generated HDL Code for Multirate Designs with Large
Rate Differentials

In this section...
“Issue” on page 10-41
“Description” on page 10-41
“Recommendations” on page 10-43

Issue
When generating HDL code from your multirate algorithm in Simulink, HDL Coder might generate a
large number of pipeline registers that can prevent the HDL design from fitting into an FPGA. This
issue occurs due to modeling patterns that might result in large rate differentials. You can address
this issue by using modeling techniques to manage sample time ratios.

Description
This issue occurs when your Simulink™ model has a significantly large difference in sample rates or
uses certain block implementations or optimizations that result in different clock-rate paths, such as:

• Multicycle block implementations
• Input and output pipelining
• Distributed pipelining
• Floating-point library mapping
• Native floating-point HDL code generation
• Fixed-point math functions such as reciprocal, sqrt, or divide
• Resource sharing
• Streaming

The additional pipelines result in a latency overhead that requires the insertion of matching delays
across multiple signal paths operating at different rates. If the ratio of the fastest to the slowest clock
rate is quite large, the code generator can potentially introduce a large number of registers in the
resulting HDL code. The large number of pipeline registers can increase the size of the generated
HDL files, and can prevent the design from fitting into an FPGA.

To see an example of how this issue occurs, open this Simulink™ model.

open_system('hdlcoder_multirate_high_differential')
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When you compile the model and double-click the hdlcoder_multirate_high_differential
Subsystem, you can see that the model has a floating-point Gain block, a multicycle operator, in the
fast clock-rate region.

Generate HDL code for the hdlcoder_multirate_high_differential Subsystem and check the
output log.

Open the generated model. At the command line, enter
gm_hdlcoder_multirate_high_differential. When you compile the model and double-click
the hdlcoder_multirate_high_differential Subsystem, the model looks as displayed by the
sample time legend.
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The large output latency on the fast clock rate region of the design is introduced by the code
generator to balance delays across multiple output paths of the system. This large latency increases
the size of the generated HDL files and reduces the efficiency of the generated code.

Recommendations
Recommendation 1: Use a Single-Rate Model

Most applications that you target the HDL code for might not require such a large rate differential. In
that case, it is recommended that you use a single-rate model. In this example, you can change the
sample rate of the Constant block inside the hdlcoder_multirate_high_differential
Subsystem to be the same as that of the base model.

Open this model that has the sample time of the Constant block changed to 10E-06, which is the
same sample time as the base sample time of the model.

open_system('hdlcoder_singlerate')

When you compile the model and double-click the hdlcoder_singlerate Subsystem, you see that
the signal paths in the model operate at the same sample time of 10E-06.
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Generate HDL code for the hdlcoder_singlerate Subsystem and check the output log.

You see that the output latency has decreased significantly. Now open the generated model. At the
MATLAB™ command line, enter gm_hdlcoder_singlerate. When you compile the model and
double-click the hdlcoder_singlerate Subsystem, the model looks as displayed by the sample
time legend.
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The generated HDL code is now optimal and uses few registers. Therefore, you can deploy the design
to target FPGA platforms.

Recommendation 2: Reduce the Rate Differential

If you want to use a multirate model, it is recommended that you reduce the rate differential. Rate
differential corresponds to the ratio of the fastest to the slowest clock rate in your design. If your
target application requires two signal paths such that one signal path runs in time units of
nanoseconds (ns) and the other signal path runs in time units of microseconds (us), you can choose to
retain the multirate paths in your model. Be aware that delay balancing can introduce a significantly
large number of registers to balance the signal paths.

In this example, you can change the sample rate of the Constant block inside the
hdlcoder_multirate_high_differential Subsystem to reduce the rate differential.

Open this model that has the sample time of the Constant block changed to 0.01.

open_system ('hdlcoder_multirate_medium_differential')

When you compile the model and double-click the hdlcoder__multirate_medium_differential
Subsystem, you see that the rate differential between the two signal paths is equal to 1000.
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Generate HDL code for the hdlcoder_multirate_medium_differential Subsystem and check
the output log.

Open the generated model. At the MATLAB™ command line, enter
gm_hdlcoder_multirate_medium_differential. When you compile the generated model and
double-click the hdlcoder_multirate_medium_differential Subsystem, the model is as
displayed by the sample time legend.
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The model has a large number of registers, approximately 1000, in the fast clock rate path. The
additional cost of registers is expected when you have a control logic that runs at a sample rate that
is 1000 times faster than the sample rate of the system. When you deploy the generated code to a
target platform, be aware of the constraints in hardware resources on the target platform. This
recommendation offers a trade-off between generating optimal HDL code and targeting practical
FPGA applications that might require an extremely large rate differential.

Recommendation 3: Map Pipeline Delays to RAM

To optimize the number of registers that your design uses on the target FPGA device, you can use the
Map Pipeline Delays to RAM setting. This setting is a trade-off of the pipeline registers that are
inserted in the HDL code with RAM resources to save area footprint on the target FPGA device. You
can enable this setting in the HDL Code Generation > Optimizations > General tab of the
Configuration Parameters dialog box.

You can also specify this setting at the command line by using the MapPipelineDelaysToRAM
property with hdlset_param or makehdl. You can view the property value by using hdlget_param.
Use either of these methods.

• Pass the property as an argument to the makehdl function.
makehdl('hdlcoder_multirate_high_differential/hdlcoder_multirate_high_differential', ... 
        'MapPipelineDelaysToRAM','on')

• When you use hdlset_param, you can set the parameter on the model, and then generate HDL
code by using makehdl.
hdlset_param('hdlcoder_multirate_high_differential', ... 
            'MapPipelineDelaysToRAM','on')
makehdl('hdlcoder_multirate_high_differential/hdlcoder_multirate_high_differential')

Use this setting in combination with the previous recommendations to further improve the efficiency
of the generated HDL code and for deploying the code to the target platform.

See Also
createFloatingPointTargetConfig

 Optimize Generated HDL Code for Multirate Designs with Large Rate Differentials

10-47



Related Examples
• “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

More About
• “Getting Started with HDL Coder Native Floating-Point Support” on page 10-49
• “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-70
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Getting Started with HDL Coder Native Floating-Point Support
In this section...
“Numeric Considerations and IEEE-754 Standard Compliance” on page 10-49
“Data Type Considerations” on page 10-50

Native floating-point support in HDL Coder enables you to generate code from your floating-point
design. If your design has complex math and trigonometric operations or has data with a large
dynamic range, use native floating-point.

In your Simulink model:

• You can have single-precision and double-precision floating-point data types and operations.
• You can have a combination of integer, fixed-point, and floating-point operations. By using Data

Type Conversion blocks, you can perform conversions between single-precision and fixed-point
data types.

The generated code:

• Complies with the IEEE-754 standard of floating-point arithmetic.
• Is target-independent. You can deploy the code on any generic FPGA or an ASIC.
• Does not require floating-point processing units or hard floating-point DSP blocks on the target

ASIC or FPGA.

HDL Coder supports:

• Math and trigonometric functions
• Large subset of Simulink blocks
• Denormal numbers
• Customizing the latency of the floating-point operator

Numeric Considerations and IEEE-754 Standard Compliance
HDL Coder generates code in compliance with the IEEE 754–2008 standard of floating-point
arithmetic.

In the IEEE 754–2008 standard, the single-precision floating-point number is 32-bits. The 32-bit
number encodes a 1-bit sign, an 8-bit exponent, and a 23-bit mantissa.

This graph is the normalized representation for floating-point numbers. You can compute the actual
value of a normal number as:
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value = ( − 1)sign * (1 + Σ
23

i = 1
b23 − i2−i) * 2(e− 127)

The exponent field represents the exponent plus a bias of 127. The size of the mantissa is 24 bits. The
leading bit is a 1, so the representation encodes the lower 23 bits.

To generate code that complies with the IEEE-754 standard, HDL Coder supports:

• Round to nearest rounding mode
• Denormal numbers
• Exceptions such as NaN (Not a Number), Inf, and Zero
• Customization of ULP (Units in the Last Place) and relative accuracy

For more information, see “Numeric Considerations with Native Floating-Point” on page 10-52.

Data Type Considerations
With native floating-point support, HDL Coder supports code generation from Simulink models that
contain floating-point signals and fixed-point signals. You might want to model your design with
floating-point types to:

• Implement algorithms that have a large or unknown dynamic range that can fall outside the range
of representable fixed-point types.

• Implement complex math and trigonometric operations that are difficult to design in fixed point.
• Obtain a higher precision and better accuracy.

Floating-point designs can potentially occupy more area on the target hardware. In your Simulink
model, it is recommended to use floating-point data types in the algorithm data path and fixed-point
data types in the algorithm control logic. This figure shows a section of a Simulink model that uses
Single and fixed-point types. By using Data Type Conversion blocks, you can perform conversions
between the single and fixed-point types.
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See Also
Modeling Guidelines
“Modeling with Native Floating Point” on page 20-61

Functions
createFloatingPointTargetConfig

Properties
FPToleranceStrategy | FPToleranceValue

Related Examples
• “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

More About
• “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-70
• “Simulink Blocks Supported with Native Floating-Point” on page 10-80
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Numeric Considerations with Native Floating-Point
In this section...
“Round to Nearest Rounding Mode” on page 10-52
“Denormal Numbers” on page 10-52
“Exception Handling” on page 10-53
“Relative Accuracy and ULP Considerations” on page 10-53

Native floating-point technology can generate HDL code from your floating-point design. Floating-
point designs have better precision, higher dynamic range, and a shorter development cycle than
fixed-point designs. If your design has complex math and trigonometric operations, use native
floating-point technology.

HDL Coder generates code that complies with the IEEE-754 standard of floating-point arithmetic.
HDL Coder native floating-point supports:

• Round to nearest rounding mode
• Denormal numbers
• Exceptions such as NaN (Not a Number), Inf, and Zero
• Customization of ULP (Units in the Last Place) and relative accuracy

Round to Nearest Rounding Mode
HDL Coder native floating-point uses the round to nearest even rounding mode. This mode resolves
all ties by rounding to the nearest even digit.

This rounding method requires at least three trailing bits after the 23 bits of the mantissa. The MSB
is called Guard bit, the middle bit is called the Round bit, and the LSB is called the Sticky bit. The
table shows the rounding action that HDL Coder performs based on different values of the three
trailing bits. x denotes a don’t care value and can take either a 0 or a 1.

Rounding bits Rounding Action
0xx No action performed.
100 A tie. If the mantissa bit that precedes the Guard bit is a 1, round

up, otherwise no action is performed.
101 Round up.
11x Round up.

Denormal Numbers
Denormal numbers are numbers that have an exponent field equal to zero and a nonzero mantissa
field. The leading bit of the mantissa is zero.

value = ( − 1)sign * (0 + Σ
23

i = 1
b23 − i2−i) * 2−126

Denormal numbers have magnitudes less than the smallest floating-point number that can be
represented without leading zeros in the mantissa. The presence of denormal numbers indicates loss
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of significant digits that can accumulate over subsequent operations and eventually result in
unexpected values.

The logic to handle denormal numbers involves counting the number of leading zeros and performing
a left shift operation to obtain the normalized representation. Addition of this logic increases the area
footprint on the target device and can affect the timing of your design.

When using native floating-point support, you can specify whether you want HDL Coder to handle
denormal numbers in your design. By default, the code generator does not check for denormal
numbers, which saves area on the target platform.

Exception Handling
If you perform operations such as division by zero or compute the logarithm of a negative number,
HDL Coder detects and reports exceptions. The table summarizes the mapping from the encoding of
a floating-point number to the value of the number for various kinds of exceptions. x denotes a don’t
care value and can take either a 0 or a 1.

Sign Exponent Significand Value Description
x 0xFF 0x00000000 value = ( − 1)S∞ Infinity

x 0xFF A nonzero
value

value = NaN Not a Number

x 0x00 0x00000000 value = 0 Zero
x 0x00 A nonzero

value value = ( − 1)sign * (0 + Σ
23

i = 1
b23 − i2−i

) * 2−126

Denormal

x 0x00 < E < 0xFF x
value = ( − 1)sign * (1 + Σ

23

i = 1
b23 − i2−i

) * 2(e− 127)

Normal

Relative Accuracy and ULP Considerations
The representation of infinitely real numbers with a finite number of bits requires an approximation.
This approximation can result in rounding errors in floating-point computation. To measure the
rounding errors, the floating-point standard uses relative error and ULP (Units in the Last Place)
error.

ULP

If the exponent range is not upper-bounded, Units in Last Place (ULP) of a floating-point number x is
the distance between two closest straddling floating-point numbers a and b nearest to x. The
IEEE-754 standard requires that the result of an elementary arithmetic operation such as addition,
multiplication, and division is correctly round. A correctly rounded result means that the rounded
result is within 0.5 ULP of the exact result.

An ULP of one means adding a 1 to the decimal value of the number. The table shows the
approximation of pi to nine decimal digits and how the ULP of one changes the approximate value.
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Floating-point
number

Value in decimal IEEE-754 representation for Single
Types

ULP

3.141592741 1078530011 0|10000000|10010010000111111011011 0
3.141592979 1078530012 0|10000000|10010010000111111011100 1

The gap between two consecutively representable floating-point numbers varies according to
magnitude.

Floating-point number Value in decimal IEEE-754 representation for Single
Types

ULP

1234567 1234613304 0|10010011|00101101011010000111000 0
1234567.125 1234613305 0|10010011|00101101011010000111001 1

Relative Error

Relative error measures the difference between a floating-point number and the approximation of the
real number. Relative error returns the distance from 1.0 to the next larger number. This table shows
how the real value of a number changes with the relative accuracy.

Floating-point
number

Value in
decimal

IEEE-754 representation for
Single Types

ULP Relative error

8388608 1258291200 0|10010110|
00000000000000000000000

0 1

8388607 1258291198 0|10010101|
11111111111111111111110

1 2.3841858e-07

1 1065353216 0|01111111|
00000000000000000000000

0 1.1920929e-07

2 1073741824 0|10000000|
00000000000000000000000

1 2.3841858e-07

The magnitude of the relative error depends on the real value of the floating-point number.

In MATLAB, the eps function measures the relative accuracy of the floating-point number. For more
information, see eps.

See Also
Modeling Guidelines
“Modeling with Native Floating Point” on page 20-61

Functions
createFloatingPointTargetConfig

Properties
FPToleranceStrategy | FPToleranceValue

Related Examples
• “Single Precision Floating Point Support: Field-Oriented Control Algorithm”
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More About
• “ULP Considerations of Native Floating-Point Operators” on page 10-56
• “Getting Started with HDL Coder Native Floating-Point Support” on page 10-49
• “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-70
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ULP Considerations of Native Floating-Point Operators
In this section...
“Adherence of Native Floating Point Operators to IEEE-754 Standard” on page 10-56
“ULP Values of Floating Point Operators” on page 10-56
“Considerations” on page 10-57

The representation of infinitely real numbers with a finite number of bits requires an approximation.
This approximation can result in rounding errors in floating-point computation. To measure the
rounding errors, the floating-point standard uses relative error and ULP (Units in the Last Place)
error. To learn about relative error, see “Relative Accuracy and ULP Considerations” on page 10-53.

If the exponent range is not upper-bounded, Units in Last Place (ULP) of a floating-point number x is
the distance between two closest straddling floating-point numbers a and b nearest to x. The
IEEE-754 standard requires that the result of an elementary arithmetic operation such as addition,
multiplication, and division is correctly round. A correctly rounded result means that the rounded
result is within 0.5 ULP of the exact result.

Adherence of Native Floating Point Operators to IEEE-754 Standard
Native floating point technology in HDL Coder follows IEEE standard of floating-point arithmetic.
Basic arithmetic operations such as addition, subtraction, multiplication, division, and reciprocal are
mandated by IEEE to have zero ULP error. When you perform these operations in native floating-
point mode, the numerical results obtained from the generated HDL code match the original Simulink
model.

Certain advanced math operations such as exponential, logarithm, and trigonometric operators have
machine-specific implementation behaviors because these operators use recurring taylor series and
remez expression based implementations. When you use these operators in native floating-point
mode, there can be relatively small differences in numerical results between the Simulink model and
the generated HDL code.

You can measure the difference in numerical results as a relative error or ULP. A nonzero ULP for
these operators does not mean noncompliance with the IEEE standard. A ULP of one is equivalent to
a relative error of 10^-7. You can ignore such relatively small errors by specifying a custom
tolerance value for the ULP when generating a HDL test bench. For example, you can specify a
custom floating-point tolerance of one ULP to ignore the error when verifying the generated code.
For more information, see FPToleranceStrategy and FPToleranceValue.

ULP Values of Floating Point Operators
The table enumerates the ULP of floating-point operators that have a nonzero ULP. In addition to
these operators, the HDL Reciprocal block has a ULP of five.
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Math Functions

Simulink Blocks Units in the Last Place (ULP) error
exp 1
log 1
log10 1
10^u 1
pow 1
hypot 1

Trigonometric Functions

Simulink Blocks Units in the Last Place (ULP) error
sin 2
cos 2
tan 3
asin 2
acos 2
atan 2
atan2 5
sinh 1
cosh 1
tanh 1
asinh 2
acosh 2
atanh 3
sincos 2

Considerations
For certain floating-point input values, some blocks can produce simulation results that vary from the
MATLAB simulation results. To see the difference in results, before you generate code, enable
generation of the validation model. In the Configuration Parameters dialog box, on the HDL Code
Generation pane, select the Generate validation model check box.

• If you perform computations that involve complex numbers and an exception such as Inf or NaN,
the HDL simulation result with native floating point can potentially vary from the Simulink
simulation result. For example, if you multiply a complex input with Inf, the Simulink simulation
result is Infi whereas the HDL simulation result is NaN+Infi.

• If you compute the square root or logarithm of a negative number, the HDL simulation result with
native floating point is 0. This result matches the simulation result when you verify the design
with a SystemVerilog DPI test bench. In Simulink, the result obtained is NaN. According to the
IEEE-754 standard, if you compute the square root or logarithm of a negative number, the result is
that number itself.
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• If the input to the Direct Lookup Table (n-D) is of floating-point data type, but the elements of the
table use a smaller data type, the generated HDL code can be potentially incorrect. For example,
the input is of single type and the elements use uint8 type. To obtain accurate HDL simulation
results, use the same data type for the input signal and the elements of the lookup table.

• If you use the Cosine block with the inputs -7.729179E28 or 7.729179E28, the generated HDL
code has a ULP of 4. For all other inputs, the ULP is 2.

• When you use a Math Function block to compute mod(a,b) or rem(a,b), where a is the dividend
and b is the divisor, the simulation result in native floating-point point mode varies from the
MATLAB simulation result in these cases:

• If b is integer and ab > 232, the simulation result in native floating-point mode is zero. For such
significant difference in magnitude between the numbers a and b, this implementation saves
area on the target FPGA device.

• If ab  is close to 223, the simulation result in native floating-point mode can potentially vary from
the MATLAB simulation results.

See Also
Modeling Guidelines
“Modeling with Native Floating Point” on page 20-61

Functions
createFloatingPointTargetConfig

Properties
FPToleranceStrategy | FPToleranceValue

Related Examples
• “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

More About
• “Numeric Considerations with Native Floating-Point” on page 10-52
• “Getting Started with HDL Coder Native Floating-Point Support” on page 10-49
• “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-70
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Latency Values of Floating Point Operators
In this section...
“Math Operations” on page 10-59
“Trigonometric and Exponential Operations” on page 10-60
“Comparisons and Conversions” on page 10-61

HDL Coder native floating-point support can generate HDL code from your floating-point design. HDL
Coder supports several Simulink blocks and math and trigonometric functions in native floating-point
mode. These tables show the default latency values of these floating-point operations. You can
customize these latency values. You can also customize the latency settings for most blocks and
design for trade-offs between latency and Fmax by specifying custom latency values. To learn more,
see “Latency Considerations with Native Floating Point” on page 10-63.

You can see the latency of these floating point operators in MATLAB by entering these commands.

nfpconfig = hdlcoder.createFloatingPointTargetConfig('NativeFloatingPoint');
nfpconfig.IPConfig

Math Operations
This table shows the list of basic math operations that are supported with native floating-point in HDL
Coder and their latency information. The basic math operations include addition, subtraction,
multiplication, and so on. You can use most of these blocks with both single and double data types.
If you do not see an entry of double data type corresponding to a block, it means that the block does
not support double types.
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Basic Math Operators

Simulink Blocks Data Type Minimum Output
Latency

Maximum Output
Latency

Add Double 6 11
Single 6 11

Subtract Double 6 11
Single 6 11

Product Double 6 9
Single 6 8

Divide Double 31 61
Single 17 32

Math Function Double 30 60
Single 16 31

Multiply-Add Single 12 19
Rounding Function Single 5 5
Unary Minus Double – –

Single – –
Sign Single – –
Abs Double – –

Single – –

This table shows the math functions that are supported with native floating-point in HDL Coder and
their latency information. You can select the function using the Function setting of the Math
Function block. You can use these blocks with single data types. Double types are unsupported for
the blocks.

Math Functions

Simulink Blocks Minimum Output Latency Maximum Output Latency
HDL Reciprocal 14 21
Rem 15 24
Mod 16 26
Sqrt 16 28
Reciprocal Sqrt 16 30
Hypot 17 33

Trigonometric and Exponential Operations
This table shows the trigonometric operations that are supported with native floating-point in HDL
Coder and their latency information. You can select the function using the Function setting of the
Trigonometric Function block. You can use these blocks with single data types. Double types are
unsupported for the blocks.
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Trigonometric Functions

Simulink Blocks Minimum Output Latency Maximum Output Latency
Sin 27 27
Cos 27 27
Tan 33 33
Sincos 27 27
Asin 17 23
Acos 17 23
Atan 36 36
Atan2 42 42
Sinh 18 30
Cosh 17 27
Tanh 25 43
Asinh 94 94
Acosh 93 93
Atanh 67 67

This table shows the exponential operations that are supported with native floating-point in HDL
Coder and their latency information. You can select the function using the Function setting of the
Math Function block. You can use these blocks with single data types. Double types are
unsupported for the blocks.

Exponent/Logarithm/Power

Simulink Blocks Minimum Output Latency Maximum Output Latency
Exp 16 26
Pow 33 54
Pow10 16 26
Log 20 27
Log10 17 27

Comparisons and Conversions
This table shows operations related to comparing of numbers and data type conversions that are
supported with native floating-point in HDL Coder and their latency information. You can use these
blocks with both single and double data types except for the MinMax block. This block does not
support double data types. For the Data Type Conversion block, you can convert between double
and single data types, and between single and other fixed-point data types.
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Comparisons and Conversions

Simulink Blocks Data Type Minimum Output
Latency

Maximum Output
Latency

Data Type Conversion Double 3 6
Single 6 6

Relational Operator Double 1 3
Single 1 3

MinMax Single 3 3

See Also
Modeling Guidelines
“Modeling with Native Floating Point” on page 20-61

Functions
createFloatingPointTargetConfig

Properties
FPToleranceStrategy | FPToleranceValue

Related Examples
• “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

More About
• “Getting Started with HDL Coder Native Floating-Point Support” on page 10-49
• “Simulink Blocks Supported with Native Floating-Point” on page 10-80
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Latency Considerations with Native Floating Point
HDL Coder™ native floating-point technology can generate HDL code from your floating-point design.
Native floating-point operators have a latency. When you generate HDL code, the code generator
figures out this latency and adds matching delays to balance parallel paths.

View Latency of a Floating-Point Operator

Open the hdlcoder_nfp_delay_allocation Simulink™ model. The model uses single data
types and computes the square root. The model has a parallel path to illustrate how the code
generator balances delays.

load_system('hdlcoder_nfp_delay_allocation')
open_system('hdlcoder_nfp_delay_allocation/DUT')

To generate HDL code:

1 Right-click the DUT Subsystem and select HDL Code > Generate HDL for Subsystem.
2 To see the generated model after HDL code generation, at the command line, enter

gm_hdlcoder_nfp_delay_allocation.

The NFP Sqrt block is the floating-point operator corresponding to the Sqrt block in your model, and
has a latency of 28. The code generator determines this latency and adds a matching delay of length
28 in the parallel path. To see the latency of the square root operation, double-click the NFP Sqrt
block. The Delay length of the Sqrt_pd1 block corresponds to the operator latency.
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You can customize the latency of your design. Use custom latency settings to design for trade-offs
between latency and throughput. You can then optimize your design implementation on the target
FPGA device for area and speed. Customize the latency by using:

• Latency Strategy setting: Specify whether to map your entire Simulink™ model or individual
blocks in your model to maximum, minimum, or zero latency of the floating-point operator.

• Custom Latency: You can specify a custom latency for certain blocks that you use in your
Simulink™ model. The custom latency setting can take values from zero to the maximum latency
of the floating-point operator.

• Oversampling factor: Increasing the Oversampling factor operates the design at a faster clock
rate and absorbs the clock-rate pipelines with the latency of the floating-point operator.

• Delay blocks in the model: If your Simulink model has a latency, HDL Coder™ can absorb some or
all of the latency with the native floating-point implementation.

Latency Strategy Setting for Model

You can specify the latency strategy setting for an entire model or for individual blocks in your model.

To specify this setting for a model:

1 In the hdlcoder_nfp_delay_allocation model, right-click the DUT Subsystem and select
HDL Code > HDL Coder Properties.

2 On the HDL Code Generation > Global Settings > Floating Point Target tab, for Library,
select Native Floating Point, and then for Latency Strategy, select MAX, MIN, or ZERO.

To specify this setting from the command line:

• Create a hdlcoder.FloatingPointTargetConfig object for native floating point by using the
hdlcoder.createFloatingPointTargetConfig function.

nfpconfig = hdlcoder.createFloatingPointTargetConfig('NATIVEFLOATINGPOINT');
hdlset_param('hdlcoder_nfp_delay_allocation', 'FloatingPointTargetConfiguration', nfpconfig);
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• Specify the latency strategy by using the LatencyStrategy property of the nfpconfig
object.

nfpconfig.LibrarySettings.LatencyStrategy = 'MAX'

nfpconfig = 

  FloatingPointTargetConfig with properties:

            Library: 'NativeFloatingPoint'
    LibrarySettings: [1x1 fpconfig.NFPLatencyDrivenMode]
           IPConfig: [1x1 hdlcoder.FloatingPointTargetConfig.IPConfig]

To see the latency information, generate HDL code and then open the generated model. To open the
generated model, enter the command gm_hdlcoder_nfp_delay_allocation.

Custom Latency Strategy for Blocks

For blocks in your Simulink™ model, you can selectively customize the latency strategy. By default,
the blocks inherit the latency strategy setting you specify for the model. For certain blocks, you can
specify a custom latency value that is between zero and the maximum latency of the floating-point
operator.

By specifying a custom latency, you can customize your design for trade-offs between:

• Clock frequency and power consumption: A higher latency value increases the maximum clock
frequency (Fmax) that you can achieve, which increases the dynamic power consumption.

• Oversampling factor and sampling frequency: A combination of higher latency value and higher
oversampling factor increases the Fmax that you can achieve but reduces the sampling frequency.

To learn more about this setting and how to specify the latency strategy for a block, see
LatencyStrategy.

For example, if you have an Add block in the parallel path in your model, you can specify a custom
latency value of 2 for the Add block by entering these commands.

load_system('hdlcoder_nfp_delay_allocation_custom')
open_system('hdlcoder_nfp_delay_allocation_custom')
hdlset_param('hdlcoder_nfp_delay_allocation_custom/DUT/Add','LatencyStrategy','Custom')
hdlset_param('hdlcoder_nfp_delay_allocation_custom/DUT/Add','NFPCustomLatency',2)
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To see the latency information, generate HDL code and then open the generated model. To open the
generated model, enter the command gm_hdlcoder_nfp_delay_allocation_custom. In the
generated model, you see that the NFP Add block has a latency of 2.

Oversampling Factor

When you design the blocks in your Simulink™ model at the data rate, specify an Oversampling
factor greater than one. The Oversampling factor inserts pipeline registers at a faster clock rate,
which improves clock frequency and reduces area usage. To learn more about clock-rate pipelining,
see Clock Rate Pipelining.

To see the effect of Oversampling factor on the model, in the hdlcoder_nfp_delay_allocation
model:

1 Add a Delay block with Delay length 1 at the output of the Sqrt block.
2 Right-click the DUT and select HDL Code > HDL Coder Properties.
3 On the HDL Code Generation > Global Settings pane, enter a value of 40 for Oversampling

factor.

After HDL code generation, the generated model shows the NFP Sqrt block operating at a clock rate
that is 40 times faster than the Sqrt block in your model. The NFP Sqrt block absorbed the Delay
block in your Simulink™ model. The Delay block now operates at the clock rate. This implementation
saves area by absorbing the additional latency, and improves timing by operating at the faster clock
rate.
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Delay Absorption in the Model

If your Simulink™ model has a Delay block with sufficient Delay length adjacent to an operator, HDL
Coder™ absorbs the delays as part of the operator latency.

Note: To absorb delays, make sure that you group the delays adjacent to the block.

If the Delay length is equal to the latency of the floating-point operator, HDL Coder™ absorbs the
delays and does not introduce any additional latency.

In the hdlcoder_nfp_delay_allocation model:

1 Double-click the Delay block at the output of the Sqrt block and change the Delay length to 28.
2 Generate HDL code for the DUT Subsystem.
3 After HDL code generation, at the command line, enter

gm_hdlcoder_nfp_delay_allocation to open the generated model.

In the generated model, you see that the NFP Sqrt block absorbs the Delay block adjacent to the
Sqrt block in your original model. This delay absorption occurs because the operator latency is equal
to the Delay length. The code generator therefore avoids the additional latency in your model.

If the Delay length is less than the operator latency, HDL Coder™ absorbs the available delays and
balances parallel paths by adding matching delays.

In the hdlcoder_nfp_delay_allocation model:

1 Double-click the Delay block at the output of the Sqrt block and change the Delay length to 21.
2 Generate HDL code for the DUT Subsystem.
3 After HDL code generation, at the command line, enter

gm_hdlcoder_nfp_delay_allocation to open the generated model.
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You see that the NFP Sqrt block absorbed a Delay of length 21 and added a matching delay of length
7 in the parallel path because the square root operation requires 28 delays.

If the delay length is greater than the operator latency, the code generator absorbs a certain number
of delays equal to the latency and the excess delays appear outside the operator.

In the hdlcoder_nfp_delay_allocation model:

1 Double-click the Delay block at the output of the Sqrt block and change the Delay length to 34.
2 Generate HDL code for the DUT Subsystem.
3 After HDL code generation, at the command-line, enter

gm_hdlcoder_nfp_delay_allocation to open the generated model.

The NFP Sqrt block absorbed 28 delays because the square root operation has a latency of 28. The
excess latency of 6 is outside the operator.

See Also
Modeling Guidelines
“Modeling with Native Floating Point” on page 20-61

Functions
createFloatingPointTargetConfig

Properties
FPToleranceStrategy | FPToleranceValue
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Related Examples
• “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

More About
• “Getting Started with HDL Coder Native Floating-Point Support” on page 10-49
• “Latency Values of Floating Point Operators” on page 10-59
• “Simulink Blocks Supported with Native Floating-Point” on page 10-80
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Generate Target-Independent HDL Code with Native Floating-
Point

In this section...
“How HDL Coder Generates Target-Independent HDL Code” on page 10-70
“Enable Native Floating Point and Generate Code” on page 10-71
“View Code Generation Report” on page 10-72
“Analyze Results” on page 10-73
“Limitation” on page 10-75

HDL Coder native floating-point technology can generate target-independent HDL code from your
floating-point design. You can synthesize your floating-point design on any generic FPGA or ASIC.
Floating-point designs have better precision, higher dynamic range, and a shorter development cycle
than fixed-point designs. If your design has complex math and trigonometric operations, use native
floating-point technology.

How HDL Coder Generates Target-Independent HDL Code
This figure shows how HDL Coder generates code with the native floating-point technology.
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The Unpack and Pack blocks convert the floating-point types to the sign, exponent, and mantissa. In
the figure, S, E, and M represent the sign, exponent, and mantissa respectively. This interpretation is
based on the IEEE-754 standard of floating-point arithmetic.

The Floating-Point Algorithm Implementation block performs computations on the S, E, and M.
With this conversion, the generated HDL code is target-independent. You can deploy the design on
any generic FPGA or an ASIC.

Enable Native Floating Point and Generate Code
You can generate code in the Configuration Parameters dialog box or at the command line.

To specify the native floating-point settings and generate HDL code in the Configuration Parameters
dialog box:

1 In the Apps tab, select HDL Coder. The HDL Code tab appears.
2 Click Settings. In the HDL Code Generation > Floating Point pane, for Library, select

Native Floating Point.

3 Specify the Latency Strategy to map your design to maximum or minimum latency or no latency.
4 If you have denormal numbers in your design, select Handle Denormals. Denormal numbers

are numbers that have an exponent field equal to zero and a nonzero mantissa field. See “Handle
Denormals” on page 15-5.
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5 If your design has multipliers, to specify how you want HDL Coder to implement the
multiplication operation, use the Mantissa Multiplier Strategy. See “Mantissa Multiplier
Strategy” on page 15-6.

6 To share floating-point resources, on the HDL Code Generation > Optimizations > Resource
Sharing tab, make sure that you select Floating-point IPs. The number of blocks that get
shared depends on the SharingFactor that you specify for the subsystem.

7 Click Apply. In the HDL Code tab, click Generate HDL Code.

To generate HDL code at the command line, use the
hdlcoder.createFloatingPointTargetConfig function. You can use this function to create an
hdlcoder.FloatingPointTargetConfig object for the native floating-point library.

nfpconfig = hdlcoder.createFloatingPointTargetConfig('NATIVEFLOATINGPOINT');
hdlset_param('sfir_single', 'FloatingPointTargetConfiguration', nfpconfig);

Optionally, you can specify the latency strategy and whether you want HDL Coder to handle denormal
numbers in your design:

nfpconfig.LibrarySettings.HandleDenormals = 'on';
nfpconfig.LibrarySettings.LatencyStrategy = 'MAX';

To learn how you can verify the generated code, see “Verify the Generated Code from Native
Floating-Point” on page 10-76.

View Code Generation Report
To view the code generation reports of floating-point library mapping, before you begin code
generation, enable generation of the Resource Utilization Report and Optimization Report. To enable
the reports, on the HDL Code tab, click Settings > Report Optionsin the Configuration Parameters
dialog box, on the HDL Code Generation pane, enable Generate resource utilization report and
Generate optimization report. See also “Create and Use Code Generation Reports” on page 25-
2.

To see the list of native floating-point operators that HDL Coder supports and the floating-point
operators to which your Simulink blocks mapped to, in the Code Generation Report, select Native
Floating-Point Resource Report.

A detailed report shows the various resources that the floating-point blocks use on the target device
that you specify. See also “Create and Use Code Generation Reports” on page 25-2.
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To see the native floating-point settings that you applied to the model and whether HDL Coder
successfully generated HDL code, in the Code Generation Report, select Target Code Generation.

Analyze Results
Floating point operators have a latency. If your Simulink model does not have delays, when you
generate HDL code, the code generator figures out the operator latency and delay balances parallel
paths. Consider this Simulink model that has two single inputs and gives a single output.

The MATLAB Function block in the Simulink model contains this code.

function y = fcn(u, w)
%#codegen

y1 = (u+w) * 20;
y2 = w^16;
y3 = (u-w) / 10;
y = y1 + y2 - y3;
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When you generate HDL code, the code generator maps the blocks in your Simulink model to
synthesizable native floating-point operators. To see how the code generator implemented the
floating-point operations, open the generated model. The blocks NFP math, NFP Sqrt, and NFP trig
correspond to the floating-point implementation of the Reciprocal Sqrt, Reciprocal, sin, and cos
blocks respectively in your original model.

Every floating-point operator has a latency. The code generator inserted an additional matching delay
because the latency of the Reciprocal Sqrt is 30 and latency of Reciprocal is 31. The operator latency
is equal to the Delay length of the Delay block inside that NFP block. For example, if you double-click
the NFP sqrt block, you can get the latency by looking at the Delay length of the Delay block. See
“Latency Values of Floating Point Operators” on page 10-59.

When you use MATLAB Function blocks with floating-point data types, HDL Coder uses the MATLAB
Datapath architecture. This architecture treats the MATLAB Function block like a regular
Subsystem block. When you generate code, the code generator maps the basic operations such as
addition and multiplication to the corresponding native floating-point operators. Open the MATLAB
Function subsystem to see how the code generator implemented the MATLAB Function block.
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To learn more about the generated model, see “Generated Model and Validation Model” on page 24-
5.

Limitation
To generate HDL code in native floating-point mode, use discrete sample times. Blocks operating at a
continuous sample time are not supported.

See Also
Modeling Guidelines
“Modeling with Native Floating Point” on page 20-61

Functions
createFloatingPointTargetConfig

Properties
FPToleranceStrategy | FPToleranceValue

Related Examples
• “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

More About
• “Getting Started with HDL Coder Native Floating-Point Support” on page 10-49
• “Simulink Blocks Supported with Native Floating-Point” on page 10-80
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Verify the Generated Code from Native Floating-Point
In this section...
“Specify the Tolerance Strategy” on page 10-76
“Verify the Generated Code with HDL Test Bench” on page 10-77
“Verify the Generated Code with Cosimulation” on page 10-77
“Limitation” on page 10-79

HDL Coder native floating-point technology can generate target-independent HDL code from your
floating-point design. You can synthesize your floating-point design on any generic FPGA or ASIC.
Floating-point designs have better precision, higher dynamic range, and a shorter development cycle
than fixed-point designs. If your design has complex math and trigonometric operations, use native
floating-point technology.

When representing infinitely real numbers with a finite number of bits, there can be rounding errors
with the correct rounding range of values that the IEEE-754 standard specifies. To measure the
rounding errors, you can specify the floating-point tolerance check based on relative error or
ulp error. For more information about these rounding errors, see “Relative Accuracy and ULP
Considerations” on page 10-53.

Specify the Tolerance Strategy
Before generating the testbench, specify the floating-point tolerance check for verifying the
generated code.

To specify the tolerance check in the Configuration Parameters dialog box:

1 In the Apps tab, select HDL Coder. The HDL Code tab appears.
2 Click Settings. In the HDL Code Generation > Testbench pane, for Floating point tolerance

check based on, specify relative error or ulp error.
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3 Enter the Tolerance Value and click Apply. If you choose relative error, the default is a
tolerance value of 1e-07. If you choose ulp error, the default tolerance value is zero. To learn
more, see “Numeric Considerations with Native Floating-Point” on page 10-52.

To specify the tolerance strategy at the command-line, use:

1 Specify the floating point tolerance check setting by using FPToleranceStrategy.

hdlset_param('sfir_single', 'FPToleranceStrategy', 'Relative');  % check for floating-point tolerance based on the relative error 
hdlset_param('sfir_single', 'FPToleranceStrategy', 'ULP');       % check for floating-point tolerance based on the ULP error

2 Based on the FPToleranceStrategy setting, enter the tolerance value by using
FPToleranceValue.

hdlset_param('FP_test_16a', 'FPToleranceValue', 1e-06);  % if using relative error, enter a custom tolerance value
hdlset_param('FP_test_16a', 'FPToleranceValue', 1);      % if using ULP error, enter tolerance value greater than or equal to 1

Verify the Generated Code with HDL Test Bench
To generate an HDL test bench for verifying the generated code:

1 In the Configuration Parameters dialog box, on the HDL Code Generation > Test Bench pane,
in the Test Bench Generation Output section, select HDL test bench.

2 In the Configuration section, make sure that Use file I/O to read/write test bench data is
enabled. To generate a test bench that uses constants instead of file I/O, clear Use file I/O to
read/write test bench data.

3 Click Apply, and then click Generate Test Bench.

To learn more about how HDL test bench generation works, see “Test Bench Generation” on page 6-5.

Verify the Generated Code with Cosimulation
To generate a cosimulation model for verifying the generated code:

1 In the Configuration Parameters dialog box, on the HDL Code Generation > Test Bench pane,
for Cosimulation model for use with, select the cosimulation tool.

2 Click Apply, and then click Generate Test Bench.
3 After test bench generation, save the cosimulation model. In the model, double-click the

Compare subsystem.
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4 If you double-click the Assert_Out1 block, the block parameters show the ToleranceValue that
you specify.

5 To look inside the Assert_Out1 block, click the mask. If you specify the floating-point tolerance
check based on ulp error, the model shows a ULPChecker block.

The ULPChecker has a MATLAB Function block that shows how HDL Coder accounts for the
ULP error when checking for numerical accuracy.

If you specify the floating-point tolerance check based on relative error, the model shows a
RelErrCheck block.
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RelerrCheck has a MATLAB Function block that shows how HDL Coder accounts for the
relative error when checking for numerical accuracy.

6 In the Simulink Editor for the model, start simulation. At the end of cosimulation, check the
compare: Out1 scope.

The scope compares the difference between the result signal from the cosimulation block and the
reference signal from the DUT.

See also “Generate a Cosimulation Model” on page 27-30.

Limitation
When verifying the generated code, constructs that use IEEE standards prior to VHDL-2008 are not
supported with native floating-point.

See Also
Modeling Guidelines
“Modeling with Native Floating Point” on page 20-61

Functions
createFloatingPointTargetConfig

Properties
FPToleranceStrategy | FPToleranceValue

Related Examples
• “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

More About
• “Getting Started with HDL Coder Native Floating-Point Support” on page 10-49
• “Numeric Considerations with Native Floating-Point” on page 10-52
• “Simulink Blocks Supported with Native Floating-Point” on page 10-80
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Simulink Blocks Supported with Native Floating-Point
In this section...
“HDL Floating Point Operations Library” on page 10-80
“Supported Simulink Blocks in Math Operations Library” on page 10-80
“Supported Simulink Blocks in Other Libraries” on page 10-81
“Simulink Block Restrictions” on page 10-82

HDL Coder native floating-point can generate target-independent HDL code from your floating-point
design. You can synthesize your floating-point design on any generic FPGA or ASIC. Floating-point
designs have better precision, higher dynamic range, and a shorter development cycle than fixed-
point designs. If your design has complex math and trigonometric operations, use native floating-
point technology.

HDL Coder supports several Simulink blocks including math and trigonometric blocks with native
floating-point technology.

HDL Floating Point Operations Library
In the HDL Floating Point Operations library, HDL Coder supports all blocks that have single
and double data types in the Native Floating Point mode.

Note Certain blocks such as Discrete-Time Integrator and Discrete PID Controller are supported in
Native Floating Point mode only when they use zero latency strategy. These blocks contain
inherent feedback loops and using a nonvalue for the latency strategy can result in the code
generator being unable to allocate delays. For more information, see “Allocate Sufficient Delays for
Floating-Point Operations” on page 10-36.

Supported Simulink Blocks in Math Operations Library
In the Math Operations library, these blocks are supported:

Block Name Supported with single data
types

Supported with double
data types

Abs Yes Yes
Add Yes Yes
Assignment Yes Yes
Bias Yes Yes
Complex to Real-Imag Yes Yes
Divide Yes Yes
Dot Product Yes Yes
Gain Yes Yes
Math Function Yes No
MinMax Yes Yes
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Block Name Supported with single data
types

Supported with double
data types

Product Yes Yes
Product of Elements Yes Yes
Real-Imag to Complex Yes Yes
Reciprocal Sqrt Yes Yes
Reshape Yes Yes
Sqrt Yes Yes
Subtract Yes Yes
Sum Yes Yes
Sum of Elements Yes Yes
Trigonometric Function Yes No
Unary Minus Yes Yes
Vector Concatenate Yes Yes

Supported Simulink Blocks in Other Libraries
The table shows the list of supported blocks in other HDL Coder block libraries.

Block Library Supported blocks with single and double data types
Discrete The supported blocks include Zero Order Hold and the set

of delay blocks including Integer Delay and Tapped Delay.
HDL Operations All blocks are supported.
HDL RAMs All blocks are supported.
HDL Subsystems All blocks are supported.
Logic and Bit Operations All blocks are supported.
Lookup Tables Table data of Direct Lookup Table (n-D) and n-D Lookup

Table blocks are supported with floating-point data types.
The inputs must not use floating-point types.

Model Verification All blocks are supported.
Model-Wide Utilities All blocks are supported.
Ports & Subsystems Enable, reset, input, and output ports, model references,

and subsystem blocks are supported.
Signal Attributes All blocks are supported.
Signal Routing All blocks are supported.
Sources The supported blocks include Inport, Constant, and Ground

blocks.
Sinks All blocks are supported.
User-Defined Functions MATLAB Function blocks are supported.
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Simulink Block Restrictions
In native floating-point mode, the code generator does not support these blocks or block
architectures:

• Biquad Filter.
• Switch block with input to the control port as a floating-point type.
• Sum of Elements with complex input types.
• MATLAB System blocks.
• Dot Product in complex mode with Architecture as Tree or Linear.
• Discrete FIR Filter with Architecture other than Fully Parallel.
• Dead Zone and Dead Zone Dynamic.
• Polar to Cartesian.
• For the Data Type Conversion block:

• Stored Integer (SI) mode for Input and output to have equal setting is not supported.
• The Saturate on integer overflow check box must be left cleared.

See Also
Modeling Guidelines
“Modeling with Native Floating Point” on page 20-61

Functions
createFloatingPointTargetConfig

Properties
FPToleranceStrategy | FPToleranceValue

Related Examples
• “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

More About
• “Getting Started with HDL Coder Native Floating-Point Support” on page 10-49
• “Numeric Considerations with Native Floating-Point” on page 10-52
• “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-70
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Supported Data Types and Scope
In this section...
“Supported Data Types” on page 10-83
“Unsupported Data Types” on page 10-84
“Scope for Variables” on page 10-84

Supported Data Types
HDL Coder supports the following subset of MATLAB data types.

Types Supported Data Types Restrictions
Integer • uint8, uint16, uint32,

uint64
• int8, int16, int32, int64

In Simulink, MATLAB Function block ports
must use numeric types sfix64 or ufix64
for 64-bit data.

Real • double
• single

HDL code generated with double or
single data types can be used for
simulation, but is not synthesizable.

When you have floating-point data types, to
generate synthesizable HDL code, use:

• HDL Coder native floating-point when
you want to deploy the generated code
on any generic ASIC or FPGA. To learn
more, see “Getting Started with HDL
Coder Native Floating-Point Support” on
page 10-49.

• FPGA floating-point target libraries
when you want to map the Simulink
model to an Intel or Xilinx FPGA. To
learn more, see “Generate HDL Code
for FPGA Floating-Point Target
Libraries” on page 31-11.

Character char  
Logical logical  
Fixed point • Scaled (binary point only) fixed-

point numbers
• Custom integers (zero binary

point)

Fixed-point numbers with slope (not equal
to 1.0) and bias (not equal to 0.0) are not
supported.

Maximum word size for fixed-point
numbers is 128 bits.

Vectors • unordered {N}
• row {1, N}
• column {N, 1}

The maximum number of vector elements
allowed is 2^32.

Before a variable is subscripted, it must be
fully defined.
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Types Supported Data Types Restrictions
Matrices {N, M} Matrices are supported in the body of the

design algorithm, but are not supported as
inputs to the top-level design function.

Do not use matrices in the testbench.
Structures struct Arrays of structures are not supported.

For the FPGA Turnkey and IP Core
Generation workflows, structures are
supported in the body of the design
algorithm, but are not supported as inputs
to the top-level design function.

Enumerations enumeration Enumeration values must be monotonically
increasing.

If your target language is Verilog, all
enumeration member names must be
unique within the design.

Enumerations at the top-level DUT ports
are not supported with the following
workflows or verification methods:

• IP Core Generation workflow
• FPGA Turnkey workflow
• FPGA-in-the-Loop
• HDL Cosimulation

Unsupported Data Types
The following data types are not supported:

• Cell array
• Inf

Scope for Variables
Global variables are not supported for HDL code generation.

10 Model Design for HDL Code Generation

10-84



Import Verilog Code and Generate Simulink Model
In this section...
“HDL Import” on page 10-85
“HDL Import Requirements” on page 10-85
“How to Import HDL Code” on page 10-85
“Model Location” on page 10-86
“Errors and Warnings” on page 10-86
“Limitations of Verilog HDL Import” on page 10-86

Use HDL import to import synthesizable HDL code into the Simulink modeling environment. HDL
import parses the input HDL file and generates a Simulink model. The model is a block diagram
environment that visually represents the HDL code in terms of functionality and behavior. By
importing the HDL code into Simulink, you can verify the functionality of the HDL code by compiling
and running simulation on the model in a model-based simulation environment. You can also debug
internal signals by logging the signals as test points.

HDL Import
Round-trip code generation with HDL import is not recommended. Do not use HDL import to import
the HDL code that was previously generated from a Simulink model by using the HDL Coder
software. The Simulink model that you create is typically at a higher abstraction level. The model
generated by HDL import might be at a lower abstraction level. The HDL code you generate from this
model might not be usable for production code.

To generate production HDL code, develop your algorithm by using Simulink blocks, MATLAB code,
or Stateflow charts. Then, use HDL Coder to generate code.

HDL Import Requirements
To generate a Simulink model, make sure that the HDL file you import:

• Is free of syntax errors.
• Is synthesizable.
• Uses supported Verilog constructs for the import.

How to Import HDL Code
To import the HDL code, at the MATLAB Command Window, run the importhdl function. For
example, to import a Verilog file example.v, at the command line, enter:

importhdl('example.v')

The function parses the HDL input file that you specified and generates the corresponding Simulink
model, and provides a link to open the model.

The constructs that you use in the HDL code can infer simple Simulink blocks such as Add and
Product to RAM blocks such as Dual Rate Dual Port RAM. For examples that illustrate various
Simulink models that are inferred, see importhdl.
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Model Location
The generated Simulink model is named after the top module in the input HDL file that you specify.
The model is saved in the hdlimport/TopModule path relative to the current working folder. For
example, if you input a file named bitselectlhs.v to the importhdl function that has bitselect
as the top module name, the generated Simulink model has the name bitselect.slx, and is saved
in the hdlimport/bitselect path relative to the current folder.

Errors and Warnings
When you run the importhdl function, HDL import verifies the syntax and semantics of the input
HDL code. Semantic verification checks for module instantiation constructs, unused ports in the
module definition, the sensitivity list of an always block, and so on. If HDL import fails, importhdl
provides an error message and a link to the file name and line number.

For example, consider this Verilog code for a bitselect module:

When you run the importhdl function, HDL import generates an error message:

Parser Error: bitselectlhs.v:6:2: error: Syntax Error near '['..

The error message indicates that there is a syntax error in line 6. To fix this error, change the syntax
to an assignment statement.

assign c[0] = 0;

Limitations of Verilog HDL Import
HDL import does not support:
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• Importing of VHDL files.
• Importing of Verilog files from a read-only folder.
• Generation of the preprocessing files in a read-only file system that parse the HDL code you input

to the importhdl function.
• Attribute instances and comments, which are ignored.
• (#)delay values, such as #25, which are ignored.
• Enumeration data types.
• More than one clock signal.
• Modules that are multirate.
• Recursive module instantiation.
• Multiport Switch inference with more than 1024 inputs. If you specify more than 1024 inputs to a

Multiport Switch block that gets inferred from the Verilog code, Verilog import generates an error.
The error is generated because the Simulink modeling environment does not support more than
1024 inputs for the block.

• ROM detection from the Verilog code.
• Importing of HDL files that use unsupported Verilog constructs. See “Supported Verilog

Constructs for HDL Import” on page 10-88.
• Importing of HDL files that use unsupported dataflow modeling patterns. See “Unsupported

Verilog Dataflow Patterns” on page 10-95.

See Also
Functions
checkhdl | makehdl

Related Examples
• “Generate Simulink® Model From CORDIC Atan2 Verilog® Code”

More About
• “Supported Verilog Constructs for HDL Import” on page 10-88
• “Verilog Dataflow Modeling with HDL Import” on page 10-93
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Supported Verilog Constructs for HDL Import
In this section...
“Module Definition and Instantiations” on page 10-88
“Data Types and Vectors” on page 10-89
“Identifiers and Comments” on page 10-89
“Assignments” on page 10-90
“Operators” on page 10-90
“Conditional and Looping Statements” on page 10-91
“Procedural Blocks and Events” on page 10-91
“Other Constructs” on page 10-91

Use HDL import to import synthesizable HDL code into the Simulink modeling environment. To
import the HDL code, use the importhdl function. Make sure that the constructs used in the HDL
code are supported by HDL import.

These tables list the supported Verilog constructs that you can use when you import your HDL code.
If you use an unsupported construct, HDL import generates an error when parsing the input HDL file.
Verilog HDL import can sometimes ignore the presence of certain constructs in the HDL code. To
learn more, see the Comments section of the table.

Module Definition and Instantiations
Verilog Constructs Supported? Comments
Library declaration No –
Configuration
declaration

No –

Module declaration Yes Multiple sample rates and multiple clock inputs are
not supported.

Module parameter port
list

Yes –

Port declarations Yes INOUT ports are not supported.
Module without ports No –
Local parameter
declaration

Yes –

Parameter declaration Yes You can use parameters and constants that have a
maximum size of 64 bits. By default, the parameter
size is 32 bits.
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Verilog Constructs Supported? Comments
Module instantiation Yes • Unconnected ports in the instantiated modules

are removed when importing the Verilog code.
• Recursive module instantiation is not supported.

Instead, if your top module instantiates modules
that are defined in recursive subfolders,
importhdl parses all Verilog files. For example,
in this figure, importhdl can parse both
DFF_Instantiation.v and
TFF_Instantiation.v that are instantiated in
DFF.v.

Data Types and Vectors
Verilog Constructs Supported? Comments
Net declaration (Wire,
Supply0, Supply1)

Yes –

Real declaration No –
String declaration No –
Vector declaration Yes –
Array support and array
indexing

Yes –

Reg declaration Yes –
Integer declaration Yes –

Identifiers and Comments
Verilog Constructs Supported? Comments
Lexical tokens
(Whitespace, operator,
comment)

Yes –

Identifiers (Simple,
Escaped)

Yes –

System Functions
($signed, $unsigned)

Yes –
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Verilog Constructs Supported? Comments
Attribute instances No HDL import ignores these constructs.
Comments No HDL import ignores these constructs.
Numbers (Decimal,
Binary, Hexadecimal, and
Octal)

Yes –

Compiler directives
(`define,`undef, `ifndef,
`else if)

Yes –

Assignments
Verilog Constructs Supported? Comments
Continuous assignment Yes –
Blocking assignment Yes --
Nonblocking assignment Yes –
Procedural assignment
(Always block)

Yes –

Operators
Verilog Constructs Supported? Comments
Arithmetic operators (+,
-, *, **, /, <<<, >>>)

Yes –

Logical operators (<<,
>>, !, &&, | |, ==, !=)

Yes –

Relational operators (>,
<, >=, <=, ==, !=)

Yes –

Bitwise operators (~, &,
|, ^, ~^, ^~)

Yes –

Unary operators (+, -) Yes Supported for restricted data types
Power operators Yes Supported for restricted data types
Conditional operators
(?:)

Yes –

Concatenation Yes –
Bit Select Yes –
Reduction operators (&,
~&, |, ~|, ^, ~^, or ^~)

Yes –

For an example that illustrates how to use different operators, see “Generate Simulink Model from
Verilog Code for Various Operators”.
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Conditional and Looping Statements
Verilog Constructs Supported? Comments
If-else statement Yes –
Conditional operators (?:) Yes –
For loop Yes –
Loop Generate construct Yes Supports loop generate

constructs such as for-generate,
case-generate, and if-generate
constructs.

Conditional Generate construct No –
Generate region No –
Genvar declaration No –
Case statement Yes casex and casez statements are

also supported.

Procedural Blocks and Events
Verilog Constructs Supported? Comments
Task declaration No –
Initial construct (ROM
modeling)

No –

Sequential blocks Yes –
Block declarations Yes –
Event control statements Yes –
Function calls Yes HDL import does not support

recursive function calls.
Task enable No –
Always construct Yes –
Function declaration Yes –

Other Constructs
Verilog Constructs Supported? Comments
Gate instantiation No –
Specparams No –
Specify block No –
Semantic verification (unused
ports, correct module
instantiation)

Yes –
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Verilog Constructs Supported? Comments
Clock bundle identification Yes Multiple sample rates and

multiple clock signals are not
supported.

Register inference Yes –
Compare to Constant block
inference

Yes –

Gain block inference Yes –
RAM inference Yes –
ROM inference No –
Counter inference No –
Drive strength No –

See Also
Functions
checkhdl | makehdl

Related Examples
• “Generate Simulink® Model From CORDIC Atan2 Verilog® Code”

More About
• “Import Verilog Code and Generate Simulink Model” on page 10-85
• “Verilog Dataflow Modeling with HDL Import” on page 10-93
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Verilog Dataflow Modeling with HDL Import
In this section...
“Supported Verilog Dataflow Patterns” on page 10-93
“Unsupported Verilog Dataflow Patterns” on page 10-95

Use HDL import to import synthesizable HDL code into the Simulink modeling environment. To
import the HDL code, use the importhdl function. Make sure that the constructs used in the HDL
code are supported by HDL import.

These tables list the supported VerilogHDL dataflow patterns that you can use when importing the
HDL code. If your code uses an unsupported dataflow model such as code that infers a latch,
importhdl generates an error message with a link to the file name and line number. You can then
update the code as illustrated in the preceding examples.

Supported Verilog Dataflow Patterns
Verilog Dataflow Model Example Verilog Code
Blocking assignments in sequential
always blocks and nonblocking
assignments in combinational always
blocks.

For example, this Verilog code uses a sequential
assignment for the variable temp in a combinational
always block.

module dataconv(clk,a,b,c);

input clk; integer i;
input wire [7:0] a, b;
output wire [7:0] c;
reg [1:0] temp [0:7];

always @(*) begin
    for (i=0;i<=7;i=i+1) begin
        temp[i] <= a[i] + b[i];
    end
 end

assign c = temp;

endmodule
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Verilog Dataflow Model Example Verilog Code
Multiple assignments to the same signal.
You can use partial and complete
assignments to that signal.

This example shows the Verilog code that performs both
partial assignment and complete assignment to the
variable out1_reg.

module testPartialAndCompleteAssign
    (input [2:0] in1, in2,
     input cond, clk,
     output [2:0] out1);
  
  reg [2:0] out1_reg;
  
  always@(posedge clk) begin
    if(cond) begin
      out1_reg[0] = 1'b0;
      out1_reg[1] = 1'b0;
      out1_reg[2] = 1'b0;
    end
    else begin
      out_reg = in1 & in2;
    end
  end
  assign out1 = out1_reg;

endmodule    
    
  

Multiple assignments to the same
variable in the true or false path of a
Switch block that gets inferred.

For example, this Verilog code performs multiple
assignments to the variable out1 inside both the if and
else conditions of the always block.

module testSwitchMuxing
    (input [2:0] in1,
     input cond,
     output reg [2:0] out1);
  
  always@(*) begin
      if (cond) begin
          out1 = in1;
      end
      else begin
          out1 = 3'd2;
          out1 = 3'd1;
      end
   end
  
endmodule    
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Verilog Dataflow Model Example Verilog Code
Bit select, part select, and array
indexing operations with signals. A
Multiport Switch is inferred when array
indexing is performed at the RHS. An
array indexing operation on the LHS is
inferred as an Assign block.

For example, this Verilog code uses multiple assignments
to the variable out1 in the false branch, which is not
supported.

module ArrayIndexing 
    (In1, In2, In3, In4, 
    Sel1, Sel2, 
    Out1, Out2, Out3);

parameter w = 7;
input  [w:0] In1, In2, In3, In4;
input  [1:0] Sel1, Sel2;
output [w:0] Out1;
output [1:0] Out2;
output       Out3;

wire [w:0] v[3:0];

assign v[0] = In1;
assign v[1] = In2;
assign v[2] = In3;
assign v[3] = In4;

//Array indexing with signal Sel1
assign Out1 = v[Sel1];

//Part select on array index with signal Sel2
assign Out2 = v[Sel2][7:2];

//Bit select on array index with signal Sel
assign Out3 = v[Sel2][4];

endmodule

Unsupported Verilog Dataflow Patterns
These dataflow constructs are unsupported when you import the Verilog code. The Description and
Example Scenarios column describes each scenario with an example and illustrates how you can
avoid this scenario.
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Verilog Dataflow Model Description and Example Scenarios
Latch detection from the Verilog code. Presence of latches in the HDL code can result in

algebraic loops in the generated Simulink model and result
in model compilation failures. To avoid latch inference,
specify all branches in if-else conditions and in case
statements.

For example, when you import this Verilog code, the if-
condition is inferred as a Switch block. The block has a
true path that is specified in the code. The output of the
Switch block is fed back directly as input to the false path
which results in an algebraic loop.

module testAlgebraicLoop(input cond,
        input [2:0] in1,
        output reg [2:0] out1);

// causes latch inference - unsupported
always@(*) begin
    if (cond) begin
        out1 = in1;
    end
end

// Specify else branch to avoid latch inference
// always@(*) begin
//     if (cond) begin
//         out1 = in1;
//     end
//     else begin
//         out1 = in1 + 1;
//     end
// end

endmodule
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Verilog Dataflow Model Description and Example Scenarios
Performing operations on clock, reset,
or clock enable signals in the Verilog
code.

When you define signals using names such as clk, rst,
and enb, HDL import infers these signals to be the clock,
global reset, and clock enable signals.

For example, this Verilog code uses an explicit assignment
with the clock signal clk. This construct is not supported.

module testOperationOnClkBundle
    (input [2:0] in1,
     input clk,
     output reg [2:0] out1,
     output out2);
  
  reg [2:0] out1_reg;
  
  always@(posedge clk) begin
     out1_reg <= in1;
    end
 
  assign out2 = clk && 1'b1;

endmodule    
    
  

Make sure that your Verilog code does not perform
operations on any of the signals in the clock bundle. In
addition, for signals that you use for performing
computations in your code, make sure that the signal
names do not match any of the names that are inferred as
clock, reset, or enable signals. See the clockBundle
name-value pair of the importhdl function for possible
signal names that are inferred as signals in the clock
bundle.
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Verilog Dataflow Model Description and Example Scenarios
Sensitivity of clock or reset signal to
different clock edges or different reset
edges inside the same module.

You cannot have one always block with the clock signal
sensitive to the positive edge and the other always block
with the clock signal sensitive to the negative edge inside
the same module.

For example, this Verilog code uses the positive and
negative edges of the same clock, which is not supported.

module testMultipleClockEdges
    (input [2:0] in1, in2,
     input clk,
     output [2:0] out1, out2);
  
  reg [2:0] out1_reg, out2_reg;
  
  /* clk sensitivity to posedge */
  always@(posedge clk) begin
     out1_reg <= in1 && in2;
    end
  
  /* clk sensitivity to neegedge */
  always@(negedge clk) begin
     out2_reg <= in1 || in2;
    end
  
  assign out1 = out1_reg;
  assign out2 = out2_reg;

endmodule    
    
  

Make sure that your Verilog code does not use both edges
of the clock or reset signal in the same module. Use either
posedge or negedge of the clock.

10 Model Design for HDL Code Generation

10-98



Verilog Dataflow Model Description and Example Scenarios
Realization of synchronous and
asynchronous circuits inside the same
module.

You cannot use Verilog code realizes both circuits in the
same module as shown in the code below. Use different
modules for realization of asynchronous and synchronous
circuits.

module testSynchronousAsynchronous
    (input [2:0] in1, in2,
     input clk, reset,
     output [2:0] out1, out2);
  
  reg [2:0] out1_reg, out2_reg;
  
  /* synchronous always block */
  always@(posedge clk) begin
     out1_reg <= in1 && in2;
    end
  
  /* asynchronous always block */
  always@(posedge clk or posedge reset) 
  begin
     out2_reg <= in1 || in2;
    end
  
  assign out1 = out1_reg;
  assign out2 = out2_reg;

endmodule    
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Verilog Dataflow Model Description and Example Scenarios
Initialization of multiple RAMs that are
inferred in the same module.

For example, this Verilog code infers sample_store0 and
sample_store1 as RAMs. This construct is not
supported. Separate each RAM inference into a single
module.

module testMultipleRAMs
    (input [2:0] in1, in2,
     input clk, reset,
     output reg [2:0] read_data0, read_data1);
  
  reg [2:0] out1_reg, out2_reg;
  
  /* Inference of RAM sample_store0 */
  always@(posedge clk) begin
    if (write_enable) begin
      sample_store0[write_address] <= write_data;
    end
    read_data0 = sample_store0[read_address0]
  end
  
  /* Inference of RAM sample_store1 */
  always@(posedge clk) begin
    if (write_enable) begin
      sample_store1[write_address] <= write_data;
    end
    read_data1 = sample_store0[read_address1]
  end
  
endmodule    
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Verilog Dataflow Model Description and Example Scenarios
Usage of certain constructs when
reading initial values from an initial
block.

An initial block does not support constructs other than
assignment statements or for loops with assignments. The
RHS of the assignment statement must use only

For example, this Verilog code uses an if-else condition to
assign a value to the variable dout_a and assigns a
variable write_data to dout_c, which are not supported.

module testInitial 
        (input cond, 
        input [3:0] write_data
        output reg [3:0] dout_a, dout_b, doutc);
        
        parameter AddrWidth = 3;
        
        integer i;
        reg [3:0] ram [7:0]; 
        
        initial begin
          for (i=0; i<=2**AddrWidth - 1; i=i+1) begin
              ram[i] = 0;
          end
          dout_b = 0;

          // if-else condition - not supported
          if (cond) begin
               dout_a = 0;
          end
          else begin
               dout_a = 4;
          end
          end
          
          // Variable assignment to RHS - not supported
          dout_a = write_data;

          // Use assignment statements instead for 
          // dout_a and dout_c 
          // dout_a = 4;
          // dout_c = 32;
          // end
          // end
          
endmodule  

 Verilog Dataflow Modeling with HDL Import

10-101



Verilog Dataflow Model Description and Example Scenarios
All dimensions of signals not referenced
at time of usage.

Use all dimensions of a signal in the input Verilog code. If
you specify an additional dimension, it creates an indexed
bit select.

For example, this Verilog code creates an 8-bit variable
temp. The assignment inside the always block generates
an error because it does not use both dimensions of the
variable.

module dataconv(clk,a,b,c);

input clk; 
input wire [1:0] a, b;
output wire [1:0] c;

reg [7:0] temp_reg [1:0][1:0];

// temp_reg is not indexed 
// with both dimensions - not supported
always @(posedge clk) begin
        temp_reg [0] <= a[0] + b[0];
        temp_reg [1] <= a[1] + b[1];
    end

// Use both dimensions when indexing a variable
// always @(posedge clk) begin
//        temp_reg [0][0] <= a[0] + b[0];
//        temp_reg [0][1] <= a[0] + b[1];
//        temp_reg [1][0] <= a[1] + b[0];
//        temp_reg [1][1] <= a[1] + b[1];

// You can also perform indexed bit select
//         temp_reg [1][0][1] = 1'b0;
//  end

assign c = temp_reg;

endmodule

See Also
Functions
checkhdl | makehdl

Related Examples
• “Generate Simulink® Model From CORDIC Atan2 Verilog® Code”
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More About
• “Import Verilog Code and Generate Simulink Model” on page 10-85
• “Supported Verilog Constructs for HDL Import” on page 10-88
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Simulate and Generate HDL Code for the Float Typecast Block
This example shows how you can use the Float Typecast block to extract the sign, exponent, and
mantissa bits from a floating-point input, and then convert the bits back to a floating-point output
after performing any computations.

Open the hdlcoder_float_typecast_example model.

open_system('hdlcoder_float_typecast_example')

The model multiplies the floating-point input by two to produce the floating-point output. To multiply
the input, the algorithm increments the exponent by one. Open the HDL_DUT subsystem.

open_system('hdlcoder_float_typecast_example/HDL_DUT')
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The model is already configured for HDL compatibility by using the hdlsetup function. Simulate the
model.

sim('hdlcoder_float_typecast_example')
open_system('hdlcoder_float_typecast_example')

Before you generate HDL code, enable the Native Floating Point mode.

nfpconfig = hdlcoder.createFloatingPointTargetConfig('NATIVEFLOATINGPOINT');
hdlset_param('hdlcoder_float_typecast_example', ...
                            'FloatingPointTargetConfiguration', nfpconfig);

Generate HDL code for the HDL_DUT subsystem.

makehdl('hdlcoder_float_typecast_example')
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Code Generation Options in the HDL
Coder Dialog Boxes
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Set HDL Code Generation Options

In this section...
“HDL Code Generation Options in the Configuration Parameters Dialog Box” on page 11-2
“HDL Code Tab in Simulink Toolstrip” on page 11-3
“HDL Code Options in the Block Context Menu” on page 11-4
“The HDL Block Properties Dialog Box” on page 11-5

HDL Code Generation Options in the Configuration Parameters Dialog
Box
The following figure shows the top-level HDL Code Generation pane in the Configuration
Parameters dialog box. To open this dialog box, in the Apps gallery, click HDL Coder. The HDL Code
tab appears. In the Prepare section, click Settings.

11 Code Generation Options in the HDL Coder Dialog Boxes

11-2



Note When the HDL Code Generation pane of the Configuration Parameters dialog box appears,
clicking the Help button displays general help for the Configuration Parameters dialog box.

HDL Code Tab in Simulink Toolstrip
The Simulink Toolstrip contains contextual tabs that appear only when you need to access them. To
access the HDL Code tab, open the HDL Coder app from the Apps tab on the Simulink Toolstrip.

The HDL Code tab provides shortcuts to the HDL code generation options. You can also use this tab
to initiate code generation.

Options include:

• Workflow Advisor: Open the HDL Workflow Advisor.
• HDL Block Properties: Open the HDL-compatible block library in the Simulink Library Browser

or open the HDL Block Properties dialog box for a block that you select in your model.

Note After you open the HDL-compatible block library, to restore the Library Browser to the

default view, in the Library Browser, click the  button.
• HDL Code Advisor: Open the HDL Code Advisor for the model or the selected Subsystem.
• Settings: Open the HDL Code Generation pane in the Configuration Parameters dialog box.

• Report Options: Open the HDL Code Generation > Report pane.
• Remove HDL Configuration from Model: The HDL configuration component is internal data

that HDL Coder creates and attaches to a model. This component lets you view the HDL Code
Generation pane in the Configurations Parameters dialog box, and use the HDL Code
Generation pane to set HDL code generation options. To remove the HDL Code Generation
configuration component to or from a model, select this option. For more information, see “Add
or Remove the HDL Configuration Component” on page 25-25.

• Code for: Select the top-level Subsystem or model for which you want to generate HDL code. This
option corresponds to the Generate HDL for option in the HDL Code Generation pane of the
Configuration Parameters dialog box.

• Generate HDL Code: Initiate HDL code generation; equivalent to the Generate HDL Code
check box in the HDL Code Generation > Global Settings > Advanced tab of the
Configuration Parameters dialog box.

• Navigate to Code: Select a block in your model and navigate to the HDL code generated for that
block. To use this setting, you must have generated a traceability report.

• Open Report: Opens the Code Generation Report if this report exists on the path. Otherwise, this
button opens the HDL Check Report.

• Generate Test Bench: Initiate test bench code generation; equivalent to the Generate Test
Bench button in the Configuration Parameters dialog box. To use this button, you If you do not
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select a subsystem in the Generate HDL for menu, the Generate Test Bench menu option is not
available.

If you have HDL Verifier™ installed, you can generate a HDL cosimulation model or a
SystemVerilog DPI component.

• Share: Generate a protected model that you can share with a third party without revealing the
intellectual property of the model.

HDL Code Options in the Block Context Menu
When you right-click a block that HDL Coder supports, the context menu for the block includes an
HDL Code submenu. The code generator enables items in the submenu according to:

• The block type: for subsystems, the menu enables some options that are specific to subsystems.
• Whether or not code and traceability information has been generated for the block or subsystem.

Note You can also access the options in the context menu from the HDL Code tab in the Simulink
Toolstrip. To access this tab, open the HDL Coder app from the Apps tab.

The following summary describes the HDL Code submenu options.

Option Description Availability
Check Subsystem
Compatibility

Runs the HDL compatibility checker
(checkhdl) on the subsystem.

Available only for subsystems.

Generate HDL for
Subsystem

Runs the HDL code generator
(makehdl) and generates code for
the subsystem.

Available only for subsystems.

HDL Coder Properties Opens the Configuration Parameters
dialog box, with the top-level HDL
Code Generation pane selected.

Available for blocks or subsystems.

HDL Block Properties Opens a block properties dialog box
for the block or subsystem. See “Set
and View HDL Model and Block
Parameters” on page 21-51 for
more information.

Available for blocks or subsystems.

HDL Workflow Advisor Opens the HDL Workflow Advisor
for the subsystem.

Available only for subsystems.

Navigate to Code Activates the HTML code generation
report window, displaying the
beginning of the code generated for
the selected block or subsystem. For
more information, see “Navigate
Between Simulink Model and HDL
Code by Using Traceability” on page
25-4.

Enabled when both code and a
traceability report have been
generated for the block or
subsystem.
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The HDL Block Properties Dialog Box
HDL Coder provides selectable alternate block implementations for many block types. Each
implementation is optimized for different characteristics, such as speed or chip area. The HDL
Properties dialog box lets you choose the implementation for a selected block.

Most block implementations support a number of implementation parameters that let you control
further details of code generation for the block. The HDL Properties dialog box lets you set
implementation parameters for a block.

The following figure shows the HDL Properties dialog box for a block.

There are a number of ways to specify implementations and implementation parameters for individual
blocks or groups of blocks. See “Set and View HDL Model and Block Parameters” on page 21-51.
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HDL Code Generation Pane: General

• “HDL Code Generation Top-Level Pane Overview” on page 12-2
• “Target” on page 12-3
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HDL Code Generation Top-Level Pane Overview
The top-level HDL Code Generation pane contains buttons that initiate code generation and
compatibility checking, and sets code generation parameters.

Buttons in the HDL Code Generation Top-Level Pane
The buttons in the HDL Code Generation pane perform functions related to code generation. These
buttons are:
Generate: Initiates code generation for the system selected in the Generate HDL for menu. See
also makehdl.
Run Compatibility Checker: Invokes the compatibility checker to examine the system selected in
the Generate HDL for menu for compatibility problems. See also checkhdl.
Browse: Lets you navigate to and select the target folder to which generated code and script files are
written. The path to the target folder is entered into the Folder field.
Restore Model Defaults: Sets model parameters to their default values.
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Target
In this section...
“Generate HDL for” on page 12-3
“Language” on page 12-3
“Folder” on page 12-4
“Restore Model Defaults” on page 12-5
“Run Compatibility Checker” on page 12-5
“Generate” on page 12-5

This section contains parameters in the HDL Code Generation pane of the Configuration
Parameters dialog box. By using these parameters, you can specify the Subsystem that you want to
generate HDL code for, the target HDL language, and the target folder into which code is generated.

Generate HDL for
Select the subsystem or model from which code is generated. The list includes the path to the root
model and to subsystems in the model. When you specify this parameter and click the Generate
button, HDL Coder generates code for the Subsystem that you specify. By default, the HDL code is
generated in VHDL language and into the hdlsrc folder.

Settings

Default: The top level subsystem in the root model is selected.

Command-Line Information
Property: HDLSubsystem
Type: character vector
Value: A valid path to your subsystem
Default: Path to the top level subsystem in root model

For example, you can generate HDL code for the symmetric_fir subsystem inside the sfir_fixed
model using either of these methods.

• Specify the subsystem using the property HDLSubsystem as an argument to makehdl.

makehdl('sfir_fixed','HDLSubsystem','sfir_fixed/symmetric_fir')
• Pass in the path to the subsystem as an first argument to makehdl.

makehdl('sfir_fixed/symmetric_fir')

See also makehdl.

Language
Select the language (VHDL or Verilog) in which code is generated. The selected language is referred
to as the target language. When you specify the Language and click the Generate button, HDL
Coder generates code in that language for the Subsystem that is specified by the Generate HDL for
parameter. By default, the HDL code is generated in VHDL language and into the hdlsrc folder.

The generated HDL code complies with these standards:

 Target
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• VHDL-1993 (IEEE® 1076-1993) or later
• Verilog-2001 (IEEE 1364-2001) or later

Settings

Default: VHDL

VHDL
Generate VHDL code.

Verilog
Generate Verilog code.

Command-Line Information
Property: TargetLanguage
Type: character vector
Value: 'VHDL' | 'Verilog'
Default: 'VHDL'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, to generate Verilog code for the symmetric_fir subsystem inside the sfir_fixed
model, use either of these methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir','TargetLanguage','Verilog')

• Use hdlset_param to set the parameter on the model. Then generate HDL code using makehdl.

hdlset_param('sfir_fixed','TargetLanguage','Verilog')
makehdl('sfir_fixed/symmetric_fir')

See also makehdl.

Folder
Enter a path to the folder into which code is generated. Alternatively, click Browse to navigate to and
select a folder. The selected folder is referred to as the target folder. When you specify the Folder
and click the Generate button, HDL Coder generates code into that folder for the Subsystem that is
specified by the Generate HDL for parameter. By default, the HDL code is generated in VHDL
language and into the hdlsrc folder.

Settings

Default: The default target folder is a subfolder of your working folder, named hdlsrc. HDL Coder
writes the generated files into this subfolder. The folder name can be a complete path name, specified
as a character vector.

Command-Line Information
Property: TargetDirectory
Type: character vector
Value: A valid path to your target folder
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Default: 'hdlsrc'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, to generate HDL code into a custom target folder for the symmetric_fir subsystem
inside the sfir_fixed model, use either of these methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir','TargetDirectory','C:/Temp/hdlsrc')
• Use hdlset_param to set the parameter on the model. Then generate HDL code using makehdl.

hdlset_param('sfir_fixed','TargetDirectory','C:/Temp/hdlsrc')
makehdl('sfir_fixed/symmetric_fir')

See also makehdl.

Restore Model Defaults
This button resets the model-level HDL settings to the default values. The block settings are not
changed. To clear the block settings, use hdlrestoreparams.

Note If you clear the model-level settings, you cannot restore the previous settings. To restore the
settings, close the model without saving and then reopen the model.

Command-Line Information
Function: hdlrestoreparams
Type: character vector
Value: model name
Default: ''

Run Compatibility Checker
This setting checks whether the Subsystem that you specify by using Generate HDL for is
compatible for HDL code generation. The setting generates a HDL Check Report that displays errors,
warnings, and messages. See “Check Subsystem for HDL Compatibility” on page 20-19.

Command-Line Information
Function: checkhdl
Type: character vector
Value: subsystem or model name
Default: ''

See Also

checkhdl

Generate
This setting generates HDL code for the Subsystem that you specify by using Generate HDL for. If
the Subsystem is not HDL-compatible, the code generator displays errors in the HDL Check Report.
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Command-Line Information
Function: makehdl
Type: character vector
Value: subsystem or model name
Default: ''

See Also

makehdl
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HDL Code Generation Pane: Target

• “Target Overview” on page 13-2
• “Tool and Device” on page 13-3
• “Target Frequency” on page 13-8
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Target Overview
The Target pane enables you to specify the target hardware settings.
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Tool and Device
In this section...
“Synthesis Tool” on page 13-3
“Family” on page 13-4
“Device” on page 13-5
“Package” on page 13-5
“Speed” on page 13-6

This section contains parameters in the Tool and Device section of the HDL Code Generation >
Target pane of the Configuration Parameters dialog box. By using the parameters in this section, you
can specify the synthesis tool, and then select the Family, Device, Package, and Speed for your
synthesis target.

Synthesis Tool
Specify the synthesis tool for targeting the generated HDL code. To use HDL Coder with one of the
supported third-party FPGA synthesis tools, add the tool to the system path using the
hdlsetuptoolpath function. When you specify the Synthesis Tool, HDL Coder populates the
Family, Device, Package, and Speed with default values for that tool.

Settings

Default: No synthesis tool specified

The options are:

No synthesis tool specified
Select this option if you do not want to perform logic synthesis. You can generate HDL code from
your design.

Xilinx Vivado
Specify Xilinx Vivado as the synthesis tool.

Xilinx ISE
Specify Xilinx ISE as the synthesis tool.

Altera Quartus II
Specify Altera Quartus II as the synthesis tool.

Microsemi Libero SoC
Specify Microsemi® Libero®SoC as the synthesis tool.

If your synthesis tool is not one of the Synthesis tool options, see “Synthesis Tool Path Setup”.

Command-Line Information
Property: SynthesisTool
Type: character vector
Value: '' | 'Xilinx Vivado''Xilinx ISE''Altera Quartus II'
Default: ''
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To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can specify Altera Quartus II as the SynthesisTool when you generate HDL
code for the symmetric_fir subsystem inside the sfir_fixed model using either of these
methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'SynthesisTool','Altera Quartus II')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset_param('sfir_fixed','SynthesisTool','Altera Quartus II')
makehdl('sfir_fixed/symmetric_fir')

See Also

• makehdl
• hdlsetuptoolpath
• “Tool Setup”

Family
Specify the target device chip family for your model as a character vector. When you specify the
Synthesis Tool, HDL Coder populates the Family, Device, Package, and Speed with default values
for that tool. To find the chip family for your target device, at the MATLAB command line, enter
hdlcoder.supportedDevices. Then, open the linked report and find your target device details.

Settings

Default: ''

Specify the target device chip family for your Simulink model as a character vector.

Command-Line Information
Property: SynthesisToolChipFamily
Type: character vector
Value: A valid chip family for the target device
Default: ''

For example, if your SynthesisTool is Xilinx Vivado, you can specify Virtex7 as the
SynthesisToolChipFamily when you generate HDL code for the symmetric_fir subsystem
inside the sfir_fixed model using either of these methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'SynthesisToolChipFamily', 'Virtex7')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset_param('sfir_fixed','SynthesisToolChipFamily', 'Virtex7')
makehdl('sfir_fixed/symmetric_fir')
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See Also

• makehdl
• hdlsetuptoolpath
• “Tool Setup”

Device
Specify the target device name for your model as a character vector. When you specify the Synthesis
Tool, HDL Coder populates the Family, Device, Package, and Speed with default values for that
tool. To find the device name for your target device, at the MATLAB command line, enter
hdlcoder.supportedDevices. Then, open the linked report and find your target device details.

Settings

Default: ''

Specify the target device name for your Simulink model as a character vector.

Command-Line Information
Property: SynthesisToolDevicename
Type: character vector
Value: A valid device name for the synthesis tool
Default: ''

You can get the SynthesisToolDeviceName when you specify the SynthesisTool for your model.
Consider that the SynthesisTool is set to Xilinx Vivado and the SynthesisToolChipFamily
is set to Virtex7.

• To get the default device name. pass the property as an argument to the hdlget_param function.

hdlget_param('sfir_fixed', ... 
        'SynthesisToolDeviceName')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset_param('sfir_fixed','SynthesisToolDeviceName', 'xc7v2000t')
makehdl('sfir_fixed/symmetric_fir')

See Also

• makehdl
• hdlsetuptoolpath
• “Tool Setup”

Package
Specify the target device package name for your model as a character vector. When you specify the
Synthesis Tool, HDL Coder populates the Family, Device, Package, and Speed with default values
for that tool. To find the device name for your target device, at the MATLAB command line, enter
hdlcoder.supportedDevices. Then, open the linked report and find your target device details.

 Tool and Device
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Settings

Default: ''

Specify the target device package name for your Simulink model as a character vector.

Command-Line Information
Property: SynthesisToolPackageName
Type: character vector
Value: A valid package name for the synthesis tool
Default: ''

You can get the SynthesisToolPackageName when you specify the SynthesisTool for your
model. Consider that the SynthesisTool is set to Xilinx Vivado and the
SynthesisToolChipFamily is set to Virtex7.

• To get the default device name. pass the property as an argument to the hdlget_param function.

hdlget_param('sfir_fixed', ... 
        'SynthesisToolPackageName')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset_param('sfir_fixed','SynthesisToolPackageName', 'fhg1761')
makehdl('sfir_fixed/symmetric_fir')

See Also

• makehdl
• hdlsetuptoolpath
• “Tool Setup”

Speed
Specify the target device speed value for your model as a character vector. When you specify the
Synthesis Tool, HDL Coder populates the Family, Device, Package, and Speed with default values
for that tool. To find the chip family for your target device, at the MATLAB command line, enter
hdlcoder.supportedDevices. Then, open the linked report and find your target device details.

Settings

Default: ''

Specify the target device speed value for your Simulink model as a character vector.

Command-Line Information
Property: SynthesisToolSpeedValue
Type: character vector
Value: A valid speed value for the target device
Default: ''

You can get the SynthesisToolSpeedValue when you specify the SynthesisTool for your model.
Consider that the SynthesisTool is set to Xilinx Vivado and the SynthesisToolChipFamily
is set to Virtex7.
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• To get the default device name. pass the property as an argument to the hdlget_param function.

hdlget_param('sfir_fixed', ... 
        'SynthesisToolSpeedValue')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset_param('sfir_fixed','SynthesisToolSpeedValue', '-1')
makehdl('sfir_fixed/symmetric_fir')

See Also

• makehdl
• hdlsetuptoolpath
• “Tool Setup”
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Target Frequency
This parameter resides in the Objectives Settings section of the HDL Code Generation > Target
pane of the Configuration Parameters dialog box. By using this parameter, you can specify the target
frequency in MHz for multiple features and workflows. Before setting the target frequency, make sure
that you specify the Synthesis Tool.

Settings
Default: 0

This setting is the target frequency in MHz for multiple features and workflows that HDL Coder
supports. The supported features are:

• FPGA floating-point target library mapping: Specify the target frequency that you want the IP to
achieve when you use ALTERA MEGAFUNCTION (ALTERA FP FUNCTIONS). If you do not specify
the target frequency, HDL Coder sets the target frequency to a default value of 200 MHz. See also
“Generate HDL Code for FPGA Floating-Point Target Libraries” on page 31-11.

• Adaptive pipelining: If your design uses multipliers, specify the synthesis tool and the target
frequency. Based on these settings, HDL Coder estimates the number of pipelines that can be
inserted to improve area and timing on the target platform. If you do not specify the target
frequency, HDL Coder uses a target frequency of 0 MHz and does not insert adaptive pipelines.
See also “Adaptive Pipelining” on page 24-56.

You can also set the target frequency by using the Target Frequency (MHz) setting in the Set
Target Frequency task in the HDL Workflow Advisor.

Specify the target frequency for these workflows-

• Generic ASIC/FPGA: To specify the target frequency that you want your design to achieve. HDL
Coder generates a timing constraint file for that clock frequency. It adds the constraint to the
FPGA synthesis tool project that you create in the Create Project task. If the target frequency is
not achievable, the synthesis tool generates an error. Target frequency is not supported with
Microsemi Libero SoC.

• IP Core Generation: To specify the target frequency for HDL Coder to modify the clock
module setting in the reference design to produce the clock signal with that frequency. Enter a
target frequency value that is within the Frequency Range (MHz). If you do not specify the
target frequency, HDL Coder uses the Default (MHz) target frequency.

• Simulink Real-Time FPGA I/O: For Speedgoat I/O modules that are supported with Xilinx
ISE, specify the target frequency to generate the clock module to produce the clock signal with
that frequency.

The Speedgoat I/O modules that are supported with Xilinx Vivado use the IP Core
Generation workflow infrastructure. Specify the target frequency for HDL Coder to modify the
clock module setting in the reference design to produce the clock signal with that frequency.
Enter a target frequency value that is within the Frequency Range (MHz). If you do not specify
the target frequency, HDL Coder uses the Default (MHz) target frequency.

• FPGA Turnkey: To generate the clock module to produce the clock signal with that frequency
automatically.
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Command-Line Information
Property: TargetFrequency
Type: integer
Value: integer greater than or equal to 0
Default: 0

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can specify the TargetFrequency when you generate HDL code for the
symmetric_fir subsystem inside the sfir_fixed model using either of these methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'TargetFrequency','300')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset_param('sfir_fixed','TargetFrequency','300')
makehdl('sfir_fixed/symmetric_fir')

See Also
• makehdl
• “Set Target Frequency” on page 37-6
• “Customize Floating-Point IP Configuration” on page 31-18

 Target Frequency

13-9





HDL Code Generation Pane:
Optimization

• “Optimization Overview” on page 14-2
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• “Transform non zero initial value delay” on page 14-7
• “Multiplier partitioning threshold” on page 14-8
• “Distributed Pipelining” on page 14-9
• “Clock Rate Pipelining” on page 14-12
• “Adaptive pipelining” on page 14-15
• “Preserve design delays” on page 14-17
• “Resource Sharing of Adders and Multipliers” on page 14-18
• “Resource Sharing of Multiply-Add and Other Blocks” on page 14-24
• “Share Floating-Point IPs” on page 14-28
• “Multicycle Path Constraints” on page 14-30
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Optimization Overview
The Optimization pane enables you to specify various optimizations such as delay balancing,
resource sharing and pipelining. To improve the area and timing of your design on the target
hardware, specify these settings. This pane also contains a Multicycle Path Constraints section.
Use the settings in this section to specify the timing requirements that the Synthesis tool must meet
for your design.
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Balance delays
This parameter is in the HDL Code Generation > Optimization > General tab of the Configuration
Parameters dialog box.

When you enable certain optimizations such as pipelining or resource sharing, or specify certain
block implementations and generate code, HDL Coder introduces pipeline delays along certain signal
paths in your model. By default, the Balance delays setting is enabled. The code generator detects
these pipeline delays introduced along one path and then inserts matching delays on other paths.

To make sure that the generated model after HDL code generation is functionally equivalent to the
original Simulink model, leave this setting enabled. If you disable this setting, HDL Coder generates a
warning that numerical differences can occur in the validation model. To fix this warning, enable
Balance delays on the model or run the model check “Check delay balancing setting” on page 38-
11.

Settings
Default: On

 On
Enables delay balancing on your model. If HDL Coder detects introduction of new delays along
one path, matching delays are inserted on the other paths. When delay balancing is enabled, the
generated model is functionally equivalent to the original model.

 Off
The latency along signal paths might not be balanced, and the generated model might not be
functionally equivalent to the original model.

Command-Line Information
Property: BalanceDelays
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can enable the BalanceDelays setting when you generate HDL code for the
symmetric_fir subsystem inside the sfir_fixed model using either of these methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'BalanceDelays','on')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset_param('sfir_fixed','BalanceDelays','on')
makehdl('sfir_fixed/symmetric_fir')

 Balance delays

14-3



See Also
• makehdl
• “Delay Balancing” on page 24-27
• “BalanceDelays” on page 21-4

14 HDL Code Generation Pane: Optimization

14-4



RAM Mapping
In this section...
“Map pipeline delays to RAM” on page 14-5
“RAM mapping threshold (bits)” on page 14-6

This section contains parameters in the HDL Code Generation > Target > General tab of the
Configuration Parameters dialog box. Using the parameters in this section, you can reduce the area
usage on the target device by trading-off block RAMs for registers. The parameters specify whether
you want to map pipeline registers in the generated code to RAM, and the minimum RAM size for
mapping to block RAMs on the FPGA.

Map pipeline delays to RAM
Map pipeline registers in the generated HDL code to RAM. Certain speed or area optimizations such
as pipelining and resource sharing, or certain block implementations that you specify can insert
pipeline registers in the generated HDL code. You can save area on the target device by mapping
these pipeline registers to RAM.

Settings

Default: Off

 On
Map pipeline registers in the generated HDL code to RAM. To map these registers to block RAMs,
the RAM size must be greater than or equal to the RAM mapping threshold in bits. RAM size is
the product Delay length * Word length * Vector length * Complex length.

 Off
Do not map pipeline registers in the generated HDL code to RAM.

Command-Line Information
Property: MapPipelineDelaysToRAM
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can enable the MapPipelineDelaysToRAM setting when you generate HDL code
for the symmetric_fir subsystem inside the sfir_fixed model using either of these methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'MapPipelineDelaysToRAM','on')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset_param('sfir_fixed','MapPipelineDelaysToRAM','on')
makehdl('sfir_fixed/symmetric_fir')
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See Also

• makehdl
• “UseRAM” on page 21-25
• “RAM Mapping for MATLAB Code” on page 8-2

RAM mapping threshold (bits)
Specify the minimum RAM size in bits for mapping to block RAMs. The code generator determines
whether to use registers or RAM resources on the FPGA by comparing the RAM size of your design
with the RAM mapping threshold that you specify.

Settings

Default: 256

The RAM mapping threshold must be an integer greater than or equal to zero. HDL Coder uses the
threshold to determine whether or not to map the following elements to block RAMs instead of to
registers:

• Delay blocks
• Persistent arrays in MATLAB Function blocks

Command-Line Information
Property: RAMMappingThreshold
Type: integer
Value: integer greater than or equal to 0
Default: 256

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can set the RAMMappingThreshold to 1024 when you generate HDL code for the
symmetric_fir subsystem inside the sfir_fixed model using either of these methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'RAMMappingThreshold','1024')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset_param('sfir_fixed','RAMMappingThreshold','1024')
makehdl('sfir_fixed/symmetric_fir')

See Also

• makehdl
• “UseRAM” on page 21-25
• “RAM Mapping for MATLAB Code” on page 8-2
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Transform non zero initial value delay
This parameter is in the HDL Code Generation > Optimization > General tab of the Configuration
Parameters dialog box. Enable this option to optimize Delay blocks with non zero initial condition.

Settings
Default: On

 On
Transform Delay blocks with nonzero Initial condition in your Simulink model to Delay blocks
with zero Initial condition and some additional logic in the generated HDL code.

By using this transformation, HDL Coder can perform optimizations such as sharing, distributed
pipelining, and clock-rate pipelining more effectively, and prevent an assertion from being
triggered in the validation model.

 Off
Do not transform Delay blocks with nonzero Initial condition in your Simulink model.

Command-Line Information
Property: TransformNonZeroInitValDelay
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can set the TransformNonZeroInitValDelay property to on when you generate
HDL code for the symmetric_fir subsystem inside the sfir_fixed model using either of these
methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'TransformNonZeroInitValDelay','on')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset_param('sfir_fixed','TransformNonZeroInitValDelay','on')
makehdl('sfir_fixed/symmetric_fir')

See Also
makehdl
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Multiplier partitioning threshold
This parameter is in the HDL Code Generation > Optimization > General tab of the Configuration
Parameters dialog box. Use this parameter to specify the maximum input bit width for multipliers in
your design.

Settings
Default: Inf

N, where N is an integer greater than or equal to 2
Partition multipliers so that N is the maximum multiplier input bit width.

This parameter specifies the maximum input bit width for a multiplier. If at least one of the inputs
to the multiplier has a bit width greater than the threshold value, the code generator splits the
multiplier into smaller multipliers.

To improve hardware mapping results, set the multiplier partitioning threshold to the input bit
width of the DSP or multiplier hardware on your target device.

Inf
Do not partition multipliers.

Command-Line Information
Property: MultiplierPartitioningThreshold
Type: integer
Value: integer greater than or equal to 0
Default: Inf

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can set the MultiplierPartitioningThreshold to 16 when you generate HDL
code for the symmetric_fir subsystem inside the sfir_fixed model using either of these
methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'MultiplierPartitioningThreshold','16')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset_param('sfir_fixed', 'MultiplierPartitioningThreshold','16')
makehdl('sfir_fixed/symmetric_fir')

See Also
• makehdl
• “Multiplier promotion threshold” on page 14-22
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Distributed Pipelining
This section contains parameters in the HDL Code Generation > Optimization > Pipelining tab of
the Configuration Parameters dialog box. Using the parameters in this section, you can improve the
timing of your design on the target device. Enable the hierarchical distributed pipelining
optimization, and specify whether to prioritize the distributed pipelining algorithm for numerical
integrity or performance.

Hierarchical distributed pipelining
Hierarchical distributed pipelining extends the scope of distributed pipelining by distributing delays
across subsystem hierarchies. This optimization moves the delays within a Subsystem while
preserving the hierarchy.

Settings

Default: Off

 On
Enable retiming across a subsystem hierarchy. HDL Coder applies retiming hierarchically from
the top-level Subsystem. To move delays inside a Subsystem, in the HDL Block Properties for that
Subsystem, set DistributedPipelining to on. Hierarchical distributed pipelining stops
distributing delays when it reaches a Subsystem that has DistributedPipelining set to off.

 Off
Distributes pipelines within a Subsystem, if you have DistributedPipelining set to on for that
Subsystem.

Dependency

If you select the Preserve design delays check box, distributed pipelining does not move the design
delays.

Command-Line Information
Property: HierarchicalDistPipelining
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can enable the HierarchicalDistPipelining setting when you generate HDL
code for the symmetric_fir subsystem inside the sfir_fixed model using either of these
methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'HierarchicalDistPipelining','on')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.

 Distributed Pipelining
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hdlset_param('sfir_fixed','HierarchicalDistPipelining','on')
makehdl('sfir_fixed/symmetric_fir')

See Also

• makehdl
• “Distributed Pipelining” on page 24-42
• “DistributedPipelining” on page 21-8

Distributed pipelining priority
Specify the priority for your distributed pipelining algorithm.

Settings

Default: Numerical Integrity

Numerical Integrity
Prioritize numerical integrity when distributing pipeline registers.

This option uses a conservative retiming algorithm that does not move registers across a
component if the functional equivalence to the original design is unknown.

Performance
Prioritize performance over numerical integrity.

Use this option if your design requires a higher clock frequency and the Simulink behavior does
not need to strictly match the generated code behavior. This option uses a more aggressive
retiming algorithm that moves registers across a component even if the modified design’s
functional equivalence to the original design is unknown.

Command-Line Information
Property: DistributedPipeliningPriority
Type: character vector
Value: 'NumericalIntegrity' | 'Performance'
Default: 'NumericalIntegrity'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can use the DistributedPipeliningPriority setting when you generate HDL
code for the symmetric_fir subsystem inside the sfir_fixed model using either of these
methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'DistributedPipeliningPriority','Performance')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.
hdlset_param('sfir_fixed','DistributedPipeliningPriority','Performance')
makehdl('sfir_fixed/symmetric_fir')
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See Also

• makehdl
• “Distributed Pipelining” on page 24-42
• “DistributedPipelining” on page 21-8
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Clock Rate Pipelining
This section contains parameters in the HDL Code Generation > Optimization > Pipelining tab of
the Configuration Parameters dialog box. Using the parameters in this section, you can improve the
timing of your design on the target device. Enable clock-rate pipelining and allow clock-rate
pipelining at the DUT output ports to run the pipeline registers at a faster clock rate on the target
FPGA device.

Clock-rate pipelining
If your design contains multicycle paths, use clock-rate pipelining to insert pipeline registers at a
clock rate that is faster than the data rate. This optimization improves the clock frequency and
reduces the area usage without introducing additional latency. Clock-rate pipelining does not affect
existing design delays in your model. It is an alternative to using multicycle path constraints with
your synthesis tool.

Settings

Default: On

 On
Insert pipeline registers at the clock rate for multi-cycle paths.

 Off
Insert pipeline registers at the data rate for multi-cycle paths.

Dependency

If you specify an Oversampling factor greater than one, make sure that you select the Clock-rate
pipelining check box. Clock-rate pipelining identifies regions in your model that run at the same
slow data rate and are delimited by Delay blocks or blocks that introduce a rate transition. The code
generator converts these regions to the faster clock rate by introducing Repeat blocks at the input of
the region and Rate Transition blocks at the output of the region.

Command-Line Information
Property: ClockRatePipelining
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can use the ClockRatePipelining setting when you generate HDL code for the
symmetric_fir subsystem inside the sfir_fixed model using either of these methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'ClockRatePipelining','on')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.
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hdlset_param('sfir_fixed','ClockRatePipelining','on')
makehdl('sfir_fixed/symmetric_fir')

See Also

• “Oversampling factor” on page 16-15
• “ClockRatePipelining” on page 21-5
• “Clock-Rate Pipelining” on page 24-52

Allow clock-rate pipelining of DUT output ports
For DUT output ports, insert pipeline registers at the clock rate instead of the data rate.

Settings

Default: Off

 On
At DUT output ports, insert pipeline registers at clock rate.

 Off
At DUT output ports, insert pipeline registers at data rate.

Dependency

When you specify this parameter, make sure that you select the Clock-rate pipelining check box.

Command-Line Information
Property: ClockRatePipelineOutputPorts
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can use the ClockRatePipelineOutputPorts setting when you generate HDL
code for the symmetric_fir subsystem inside the sfir_fixed model using either of these
methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'ClockRatePipelineOutputPorts','on')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.
hdlset_param('sfir_fixed','ClockRatePipelineOutputPorts','on')
makehdl('sfir_fixed/symmetric_fir')

See Also

• “ClockRatePipelining” on page 21-5
• “Clock-Rate Pipelining” on page 24-52
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• “Oversampling factor” on page 16-15
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Adaptive pipelining
This parameter resides in the HDL Code Generation > Optimization > Pipelining tab of the
Configuration Parameters dialog box. Use this parameter to insert pipeline registers to the blocks in
your design, reduce the area usage, and maximize the achievable clock frequency on the target FPGA
device.

Settings
Default: On

 On
Insert adaptive pipeline registers in your design. For HDL Coder to insert adaptive pipelines, you
must specify the synthesis tool.

 Off
Do not insert adaptive pipeline registers.

Dependency
When you specify this parameter, in the HDL Code Generation > Targetpane:

• Specify the Synthesis Tool. If your design has multipliers, specify the Synthesis Tool and the
Target Frequency (MHz) for adaptive pipeline insertion.

• In the General tab, make sure that the Clock-rate pipelining check box is selected to insert
pipeline registers at the faster clock rate.

• In the General tab, make sure that the Balance delays check box is selected.
• In the Resource Sharing tab, enable Adders, and specify the SharingFactor on the DUT

Subsystem to share resources and insert adaptive pipelines, which saves area and improves
timing.

Command-Line Information
Property: AdaptivePipelining
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can use the ClockRatePipelineOutputPorts setting when you generate HDL
code for the symmetric_fir subsystem inside the sfir_fixed model using either of these
methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'ClockRatePipelineOutputPorts','on')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.
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hdlset_param('sfir_fixed','ClockRatePipelineOutputPorts','on')
makehdl('sfir_fixed/symmetric_fir')

See Also
• “Adaptive pipelining” on page 14-15
• “AdaptivePipelining” on page 21-4
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Preserve design delays
This parameter resides in the HDL Code Generation > Optimization > Pipelining tab of the
Configuration Parameters dialog box. Enable this parameter to prevent distributed pipelining from
moving design delays.

Settings
Default: Off

 On
Prevent distributed pipelining from moving design delays.

 Off
Do not prevent distributed pipelining from moving design delays.

Command-Line Information
Property: PreserveDesignDelays
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can use the PreserveDesignDelays setting when you generate HDL code for the
symmetric_fir subsystem inside the sfir_fixed model using either of these methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'PreserveDesignDelays','on')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.
hdlset_param('sfir_fixed','PreserveDesignDelays','on')
makehdl('sfir_fixed/symmetric_fir')

See Also
• “Distributed Pipelining” on page 24-42
• “DistributedPipelining” on page 21-8
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Resource Sharing of Adders and Multipliers
This section contains parameters in the HDL Code Generation > Optimization > Resource
sharing tab of the Configuration Parameters dialog box. Enable these parameters to save resources
on the target device by specifying whether to share adders and multipliers in your design, and the
minimum sharing bitwidth.

Share Adders
Enable this parameter to share adders with the resource sharing optimization. Resource sharing
identifies Add or Sum blocks in your design that have two inputs and replaces them with a single Add
or Sum block. This optimization saves area on the target FPGA device.

Settings

Default: Off

 On
When resource sharing is enabled, this optimization shares adders with a bit width greater than
or equal to the Adder sharing minimum bitwidth.

 Off
Do not share adders.

Dependency

• To share adders in your design, in the HDL Block Properties for the DUT Subsystem, specify the
SharingFactor.

• When you specify the Adder sharing minimum bitwidth, the code generator shares adders that
have a bit width greater than or equal to the minimum bit width. The default minimum bit width
for sharing adders is zero.

Command-Line Information
Property: ShareAdders
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can use the ShareAdders setting when you generate HDL code for the
symmetric_fir subsystem inside the sfir_fixed model using either of these methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'ShareAdders','on')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.
hdlset_param('sfir_fixed','ShareAdders','on')
makehdl('sfir_fixed/symmetric_fir')
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See Also

• “SharingFactor” on page 21-22
• “Resource Sharing” on page 24-23
• “Resource Sharing of Multiply-Add and Other Blocks” on page 14-24

Adder sharing minimum bitwidth
Use this parameter to specify the minimum bit width that is required to share adders with the
resource sharing optimization.

Settings

Default: 0

01
No minimum bit width for shared adders.

N, where N is an integer greater than 1
When resource sharing and adder sharing are enabled, share adders with a bit width greater than
or equal to N.

Dependency

To share adders in your design:

• In the Resource Sharing tab, enable the Adders setting.
• In the HDL Block Properties for the DUT Subsystem, specify the SharingFactor.

Command-Line Information
Property: AdderSharingMinimumBitwidth
Type: integer
Value: integer greater than or equal to 0
Default: 0

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can use the AdderSharingMinimumBitwidth setting when you generate HDL
code for the symmetric_fir subsystem inside the sfir_fixed model using either of these
methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'AdderSharingMinimumBitwidth',16)

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset_param('sfir_fixed','AdderSharingMinimumBitwidth',16)
makehdl('sfir_fixed/symmetric_fir')
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See Also

• “SharingFactor” on page 21-22
• “Resource Sharing” on page 24-23

Share Multipliers
Enable this parameter to share multipliers with the resource sharing optimization. Resource sharing
identifies Product or Gain blocks in your design that have two inputs and replaces them with a single
Product or Gain block. This optimization saves area on the target FPGA device.Share multipliers with
the resource sharing optimization.

Settings

Default: On

 On
When resource sharing is enabled, share multipliers with a bit width greater than or equal to the
Multiplier sharing minimum bitwidth. For successfully sharing multipliers, the input fixed-
point data types must have the same wordlength. The fraction lengths and signs of the fixed-point
data types can be different.

 Off
Do not share multipliers.

Dependency

• To share multipliers in your design, in the HDL Block Properties for the DUT Subsystem, specify
the SharingFactor.

• When you specify the Multiplier sharing minimum bitwidth, the code generator shares
multipliers that have a bit width greater than or equal to the minimum bit width. The default
minimum bit width for sharing multipliers is zero.

Command-Line Information
Property: ShareMultipliers
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can use the ShareMultipliers setting when you generate HDL code for the
symmetric_fir subsystem inside the sfir_fixed model using either of these methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'ShareMultipliers','on')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.
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hdlset_param('sfir_fixed','ShareMultipliers','on')
makehdl('sfir_fixed/symmetric_fir')

See Also

• “SharingFactor” on page 21-22
• “Resource Sharing” on page 24-23
• “Resource Sharing of Multiply-Add and Other Blocks” on page 14-24

Multiplier sharing minimum bitwidth
Use this parameter to specify the minimum bit width that is required to share multipliers with the
resource sharing optimization.

Settings

Default: 0

01
No minimum bit width for shared multipliers.

N, where N is an integer greater than 1
When resource sharing and multiplier sharing are enabled, share multipliers with a bit width
greater than or equal to N.

Dependency

To share multipliers in your design:

• In the Resource Sharing tab, make sure that the Multipliers check box is selected.
• In the HDL Block Properties for the DUT Subsystem, specify the SharingFactor.

Command-Line Information
Property: MultiplierSharingMinimumBitwidth
Type: integer
Value: integer greater than or equal to 0
Default: 0

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can use the MultiplierSharingMinimumBitwidth setting when you generate
HDL code for the symmetric_fir subsystem inside the sfir_fixed model using either of these
methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'MultiplierSharingMinimumBitwidth',16)

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.
hdlset_param('sfir_fixed','MultiplierSharingMinimumBitwidth',16)
makehdl('sfir_fixed/symmetric_fir')
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See Also

• “SharingFactor” on page 21-22
• “Resource Sharing” on page 24-23

Multiplier promotion threshold
To share smaller multipliers with other larger multipliers by using the resource sharing optimization,
specify the multiplier promotion threshold. This threshold specifies the maximum word-length by
which HDL Coder promotes a multiplier for sharing with other multipliers.

Settings

Default: 0

0
No difference in word-length between the multipliers. In other words, HDL Coder shares
multipliers that have the same word-lengths.

N, where N is an integer greater than 0
Maximum word-length by which HDL Coder promotes a multiplier for sharing with other
multipliers. HDL Coder promotes and shares multipliers with different word-lengths, if the
difference in word-lengths is less than or equal to N.

Dependency

To share multipliers in your design:

• In the Resource Sharing tab, make sure that the Multipliers check box is selected.
• In the HDL Block Properties for the DUT Subsystem, specify the SharingFactor.

Command-Line Information
Property: MultiplierPromotionThreshold
Type: integer
Value: integer greater than or equal to 0
Default: 0

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can use the MultiplierPromotionThreshold setting when you generate HDL
code for the symmetric_fir subsystem inside the sfir_fixed model using either of these
methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'MultiplierPromotionThreshold',8)

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.
hdlset_param('sfir_fixed','MultiplierPromotionThreshold',8)
makehdl('sfir_fixed/symmetric_fir')
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See Also

• “SharingFactor” on page 21-22
• “Resource Sharing” on page 24-23
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Resource Sharing of Multiply-Add and Other Blocks
This section contains parameters in the HDL Code Generation > Optimization > Resource
sharing tab of the Configuration Parameters dialog box. Enable these parameters to save resources
on the target device by specifying whether to share Multiply-Add blocks, atomic subsystems, and
MATLAB Function blocks in your design.

Share Multiply-Add blocks
Share Multiply-Add blocks with the resource sharing optimization.

Settings

Default: On

 On
When resource sharing is enabled, share Multiply-Add blocks with a bit width greater than or
equal to Multiply-Add block sharing minimum bitwidth.

 Off
Do not share Multiply-Add blocks.

Dependency

• To share Multiply-Add blocks in your design, in the HDL Block Properties for the DUT Subsystem,
specify the SharingFactor.

• When you specify the Multiply-Add block sharing minimum bitwidth, the code generator
shares Multiply-Add blocks that have a bit width greater than or equal to the minimum bit width.
The default minimum bit width for sharing Multiply-Add blocks is zero.

Command-Line Information
Property: ShareMultiplyAdds
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can use the ShareMultiplyAdds setting when you generate HDL code for the
symmetric_fir subsystem inside the sfir_fixed model using either of these methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'ShareMultiplyAdds','on')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.
hdlset_param('sfir_fixed','ShareMultiplyAdds','on')
makehdl('sfir_fixed/symmetric_fir')
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See Also

• “Resource Sharing of Adders and Multipliers” on page 14-18
• “Resource Sharing” on page 24-23
• “Resource Sharing of Adders and Multipliers” on page 14-18

Multiply-Add block sharing minimum bitwidth
Use this parameter to specify the minimum bit width that is required to share Multiply-Add with the
resource sharing optimization.

Settings

Default: 0

01
No minimum bit width for shared Multiply-Add blocks.

N, where N is an integer greater than 1
When resource sharing and Multiply-Add block sharing are enabled, share Multiply-Add blocks
with a bit width greater than or equal to N.

Dependency

To share Multiply-Add blocks in your design:

• In the Resource Sharing tab, make sure that the Multiply-Add blocks check box is selected.
• In the HDL Block Properties for the DUT Subsystem, specify the SharingFactor.

Command-Line Information
Property: MultiplierAddSharingMinimumBitwidth
Type: integer
Value: integer greater than or equal to 0
Default: 0

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can use the MultiplierAddSharingMinimumBitwidth setting when you
generate HDL code for the symmetric_fir subsystem inside the sfir_fixed model using either of
these methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'MultiplierAddSharingMinimumBitwidth',16)

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset_param('sfir_fixed',MultiplierAddSharingMinimumBitwidth',16)
makehdl('sfir_fixed/symmetric_fir')
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See Also

• “Resource Sharing of Adders and Multipliers” on page 14-18
• “Resource Sharing” on page 24-23

Share Atomic subsystems
Share atomic subsystems with the resource sharing optimization.

Settings

Default: On

 On
When resource sharing is enabled, share atomic subsystems.

 Off
Do not share atomic subsystems.

Dependency

To share Atomic Subsystem blocks in your design, in the HDL Block Properties for the parent DUT
Subsystem, specify the SharingFactor.

Command-Line Information
Property: ShareAtomicSubsystems
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can use the ShareMultiplyAdds setting when you generate HDL code for the
symmetric_fir subsystem inside the sfir_fixed model using either of these methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'ShareAtomicSubsystems','on')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.
hdlset_param('sfir_fixed','ShareAtomicSubsystems','on')
makehdl('sfir_fixed/symmetric_fir')

See Also

• “Resource Sharing of Adders and Multipliers” on page 14-18
• “Resource Sharing” on page 24-23
• “Resource Sharing of Adders and Multipliers” on page 14-18
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Share MATLAB Function blocks
Share MATLAB Function blocks with the resource sharing optimization.

Settings

Default: On

 On
When resource sharing is enabled, share MATLAB Function blocks.

 Off
Do not share MATLAB Function blocks.

Dependency

To share MATLAB Function blocks in your design, in the HDL Block Properties for the parent DUT
Subsystem, specify the SharingFactor.

Command-Line Information
Property: ShareMATLABBlocks
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can use the ShareMATLABBlocks setting when you generate HDL code for the
symmetric_fir subsystem inside the sfir_fixed model using either of these methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'ShareMATLABBlocks','on')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.
hdlset_param('sfir_fixed','ShareMATLABBlocks','on')
makehdl('sfir_fixed/symmetric_fir')

See Also

• “Resource Sharing of Adders and Multipliers” on page 14-18
• “Resource Sharing” on page 24-23
• “Resource Sharing of Adders and Multipliers” on page 14-18
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Share Floating-Point IPs
This parameter resides in the HDL Code Generation > Optimization > Resource Sharing tab of
the Configuration Parameters dialog box. Use this parameter to share floating-point IP blocks in the
target hardware with the resource sharing optimization.

Settings
Default: On

 On
When you enable resource sharing, HDL Coder shares floating-point IP blocks.

 Off
Do not share floating-point IP blocks.

Dependency
To share floating-point IPs:

• In the HDL Block Properties for the parent DUT Subsystem, specify the SharingFactor. The
number of floating-point IP blocks that get shared depends on the SharingFactor that you specify
for the subsystem.

• In the HDL Code Generation > Global Settings > Floating Point Target tab, set the Floating
Point IP Library to a value other than None.

Command-Line Information
Property: ShareFloatingPointIP
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can use the ShareFloatingPointIP setting when you generate HDL code for the
symmetric_fir subsystem inside the sfir_fixed model using either of these methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'ShareFloatingPointIP','on')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset_param('sfir_fixed','ShareFloatingPointIP','on')
makehdl('sfir_fixed/symmetric_fir')
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See Also
• “Resource Sharing of Adders and Multipliers” on page 14-18
• “Resource Sharing” on page 24-23
• “Resource Sharing of Adders and Multipliers” on page 14-18
• “Getting Started with HDL Coder Native Floating-Point Support” on page 10-49
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Multicycle Path Constraints

In this section...
“Enable based constraints” on page 14-30
“Register-to-register path info” on page 14-31

This section contains parameters in the Multicycle Path Constraints section of the HDL Code
Generation > Optimization pane of the Configuration Parameters dialog box.

Synthesis tools require that data propagates from a source register to a destination register within
one clock cycle. However, multicycle paths cannot complete their execution within one clock cycle
and therefore cannot meet the timing requirements. To meet the timing requirement of multicycle
paths, use the parameters in this section to generate a register-to-register path information file or to
generate enable-based constraints that uses the timing controller enable signals.

Enable based constraints
To meet the timing requirement of multicycle paths in your Simulink design in single clock mode, use
enable-based constraints. Enable-based constraints relax the timing requirement by allowing multiple
clock cycles for data to propagate between the registers. The constraints use the timing controller
enable signals to create enable-based register groups, with registers in each group driven by the
same clock enable.

Settings

Default: Off

 On
When you enable this setting and generate HDL code,HDL Coder generates a constraints file with
the naming convention dutname_constraints. The format of the file name depends on the
synthesis tool that you specify. The constraints file defines the timing requirements of multicycle
paths and contains information about the clock multiples for calculating the setup and hold time
information.

 Off
Do not generate a multicycle path constraints file.

Dependency

If you select the Enable based constraints check box, make sure that you clear the Clock-rate
pipelining check box. Using enable-based multicycle path constraints is an alternative to the clock-
rate pipelining optimization. You can clear the Clock-rate pipelining check box in the HDL Code
Generation > Target > Pipelining tab.

Command-Line Information
Parameter: MulticyclePathConstraints
Type: character vector
Value: 'on' | 'off'
Default: 'off'
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To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can enable the MulticyclePathConstraints setting when you generate HDL
code for the symmetric_fir subsystem inside the sfir_fixed model using either of these
methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'MulticyclePathConstraints','on')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset_param('sfir_fixed','MulticyclePathConstraints','on')
makehdl('sfir_fixed/symmetric_fir')

See Also

• makehdl
• “Meet Timing Requirements Using Enable-Based Multicycle Path Constraints” on page 40-42
• “Use Multicycle Path Constraints to Meet Timing for Slow Paths”

Register-to-register path info
Generate a text file that reports multicycle path constraint information. The text file describes one or
more multicycle path constraints that is agnostic to the synthesis tool. You must convert this
information to the format required by the synthesis tool. It is recommended that you use the enable-
based constraints setting instead to meet the timing requirements of multicycle paths. When you use
that setting, the generated constraints are more robust to name changes in synthesis tools, and are
supported with Xilinx Vivado, Xilinx ISE, and Altera Quartus II.

Settings

Default: Off

 On
Generate a text file that reports multicycle path constraint information, for use with synthesis
tools.

The file name for the multicycle path information file derives from the name of the DUT and the
postfix '_constraints', as follows:

DUTname_constraints.txt

For example, if the DUT name is symmetric_fir, the name of the multicycle path information
file is symmetric_fir_constraints.txt.

 Off
Do not generate a multicycle path information file.
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Command-Line Information
Parameter: MulticyclePathInfo
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can enable the MulticyclePathInfo setting when you generate HDL code for the
symmetric_fir subsystem inside the sfir_fixed model using either of these methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'MulticyclePathInfo','on')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset_param('sfir_fixed','MulticyclePathInfo','on')
makehdl('sfir_fixed/symmetric_fir')

See Also

• makehdl
• “Generate Multicycle Path Information Files” on page 22-16
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HDL Code Generation Pane: Floating
Point

• “Floating Point Overview” on page 15-2
• “Floating Point IP Library” on page 15-3
• “Native Floating Point” on page 15-4
• “FPGA Floating-Point Libraries” on page 15-8
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Floating Point Overview
The Floating Point pane enables you to specify the floating point IP library. You can specify whether
to generate code the native floating point support in HDL Coder or by instantiating the third-party
Intel or Xilinx floating-point libraries.

15 HDL Code Generation Pane: Floating Point
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Floating Point IP Library
This parameter resides in the HDL Code Generation > Floating Point pane of the Configuration
Parameters dialog box. Use this parameter to specify the floating-point target library.

Settings
Default: NONE

The options are:

None
Select this option if you do not want the design to map to floating-point target libraries.

Native Floating Point
Specify native floating-point as the library. You can specify the latency strategy and whether to
handle denormal numbers in your design.

Altera Megafunctions (ALTERA FP FUNCTIONS)
Specify Altera Megafunctions (ALTERA FP FUNCTIONS) as the floating-point target library. You
can provide the IP Target frequency.

Altera Megafunctions (ALTFP)
Specify Altera Megafunctions (ALTFP) as the floating-point target library. You can provide the
objective and latency strategy for the IP.

Xilinx LogiCORE
Specify Xilinx LogiCORE® as the floating-point target library. You can provide the objective and
latency strategy for the IP.

Command-Line Information
To set the floating-point library:

1 Create a floating-point target configuration object for the floating-point library. This example
shows how to create an hdlcoder.FloatingPointTargetConfig object for the Native
Floating Point library:
fpconfig = hdlcoder.createFloatingPointTargetConfig('NativeFloatingPoint');

2 Set the floating-point target configuration on the model and then generate HDL code. This
example shows how to set the configuration on the sfir_single model and generate HDL code
for the symmetric_fir subsystem:

hdlset_param('sfir_single','FloatingPointTargetConfig',fpconfig)
makehdl('sfir_single/symmetric_fir')

See Also
• createFloatingPointTargetConfig
• “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-70
• “Generate HDL Code for FPGA Floating-Point Target Libraries” on page 31-11
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Native Floating Point
This section contains parameters in the HDL Code Generation > Floating Point pane of the
Configuration Parameters dialog box. Use these parameters to specify the latency strategy, whether
to handle denormal numbers in your design, and how to perform mantissa multiplication. To specify
these settings, Floating Point IP Library must be set to Native Floating Point.

Latency Strategy
Specify whether you want the design to map to minimum or maximum latency with native floating-
point libraries.

Settings

Default: MAX

The options are:

MIN
Maps to minimum latency for the native floating-point libraries.

MAX
Maps to maximum latency for the native floating-point libraries.

ZERO
Does not use any latency for the native floating-point libraries.

Dependency

To specify this parameter, set the Floating Point IP Library to Native Floating Point.

Command-Line Information

To specify the latency strategy:

1 Create a floating-point target configuration object for Native Floating Point as the floating-
point library.
fpconfig = hdlcoder.createFloatingPointTargetConfig('NativeFloatingPoint');

2 Specify the LatencyStrategy property of the LibrarySettings attribute of the floating-point
target configuration object.

fpconfig.LibrarySettings.LatencyStrategy = 'MIN';
3 Set the floating-point target configuration on the model and then generate HDL code. This

example shows how to set the configuration on the sfir_single model and generate HDL code
for the symmetric_fir subsystem:

hdlset_param('sfir_single','FloatingPointTargetConfig',fpconfig)
makehdl('sfir_single/symmetric_fir')

See also

• “LatencyStrategy” on page 21-32
• createFloatingPointTargetConfig
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• “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-70
• “Latency Considerations with Native Floating Point” on page 10-63

Handle Denormals
Specify whether you want to handle denormal numbers in your design. Denormal numbers are
nonzero numbers that are smaller than the smallest normal number.

Settings

Default: Off

 On
Inserts additional logic to handle the denormal numbers in your design.

 Off
Does not add additional logic to handle the denormal numbers in your design. If the input is a
denormal value, HDL Coder treats the value as zero before performing computations.

Dependency

To specify this parameter, set the Floating Point IP Library to Native Floating Point.

Command-Line Information

To specify the latency strategy:

1 Create a floating-point target configuration object for Native Floating Point as the floating-
point library.

fpconfig = hdlcoder.createFloatingPointTargetConfig('NativeFloatingPoint');

2 Specify the HandleDenormals property of the LibrarySettings attribute of the floating-point
target configuration object.

fpconfig.LibrarySettings.HandleDenormals = 'on';

3 Set the floating-point target configuration on the model and then generate HDL code. This
example shows how to set the configuration on the sfir_single model and generate HDL code
for the symmetric_fir subsystem:

hdlset_param('sfir_single','FloatingPointTargetConfig',fpconfig)
makehdl('sfir_single/symmetric_fir')

See also

• “HandleDenormals” on page 21-31
• createFloatingPointTargetConfig
• “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-70
• “Numeric Considerations with Native Floating-Point” on page 10-52
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Mantissa Multiplier Strategy
Specify how you want HDL Coder to implement the mantissa multiplication operation when you have
Product blocks in your design.

Settings

Default: Auto

The options are:

Auto
This default option automatically determines how to implement the mantissa multiplication
depending on the Synthesis tool that you specify.

• If you do not specify a Synthesis tool, this setting selects the Full Multiplier
implementation by default.

• If you specify Altera Quartus II as the Synthesis tool, this setting selects the Full
Multiplier implementation.

• If you specify Xilinx Vivado or Xilinx ISE as the Synthesis tool, this setting selects the
Part Multiplier Part AddShift implementation.

Full Multiplier
Specify this option to use only multipliers for implementing the mantissa multiplication. The
multipliers can utilize DSP units on the target device.

Part Multiplier Part AddShift
Specify this option to split the implementation into two parts. One part is implemented with
multipliers. The other part is implemented with a combination of adders and shifters. The
multipliers can utilize the DSP units on the target device. The combination of adders and shifters
does not utilize the DSP.

No Multiplier Full AddShift
Select this option to use a combination of adders and multipliers to implement the mantissa
multiplication. This option does not utilize DSP units on the target device. You can also use this
option if your target device does not contain DSP units.

Dependency

To specify this parameter, set the Floating Point IP Library to Native Floating Point.

Command-Line Information

To specify the latency strategy:

1 Create a floating-point target configuration object for Native Floating Point as the floating-
point library.
fpconfig = hdlcoder.createFloatingPointTargetConfig('NativeFloatingPoint');

2 Specify the MantissaMultiplyStrategy property of the LibrarySettings attribute of the
floating-point target configuration object.
fpconfig.LibrarySettings.MantissaMultiplyStrategy = 'PartMultiplierPartAddShift';
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3 Set the floating-point target configuration on the model and then generate HDL code. This
example shows how to set the configuration on the sfir_single model and generate HDL code
for the symmetric_fir subsystem:

hdlset_param('sfir_single','FloatingPointTargetConfig',fpconfig)
makehdl('sfir_single/symmetric_fir')

See also

• “MantissaMultiplyStrategy” on page 21-35
• createFloatingPointTargetConfig
• “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-70
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FPGA Floating-Point Libraries
This section contains parameters in the HDL Code Generation > Floating Point pane of the
Configuration Parameters dialog box. Use these parameters to specify the latency strategy, objective,
and whether to initialize the pipeline registers in the floating-point target IP to zero.

Initialize IP Pipelines To Zero
Inserts additional logic during HDL code generation to initialize the values of pipeline registers in the
Altera floating-point target IP to zero. If you do not select this check box, HDL Coder reports a
warning during HDL code generation.

Settings

Default: On

 On
Inserts additional logic to initialize pipeline registers in the floating-point target IP to zero.

 Off
Does not add additional logic to initialize pipeline registers in the floating-point target IP to zero.

Dependency

To specify this parameter, set the Floating Point IP Library to Altera Megafunctions (ALTERA
FP FUNCTIONS). Before you set the floating-point library, specify the path to your synthesis tool by
using the hdlsetuptoolpath function.

Command-Line Information

To specify this setting:

1 Create a floating-point target configuration object with Altera Megafunctions (ALTERA FP
FUNCTIONS) as the floating-point target library.
fpconfig = hdlcoder.createFloatingPointTargetConfig('AlteraFPFunctions');

2 Specify the InitializeIPPipelinesToZero property of the LibrarySettings attribute of
the floating-point target configuration object.
fpconfig.LibrarySettings.InitializeIPPipelinesToZero = 0;

3 Set the floating-point target configuration on the model and then generate HDL code. This
example shows how to set the configuration on the sfir_single model and generate HDL code
for the symmetric_fir subsystem:

hdlset_param('sfir_single','FloatingPointTargetConfig',fpconfig)
makehdl('sfir_single/symmetric_fir')

See Also

• createFloatingPointTargetConfig
• “Target Frequency” on page 13-8
• “Generate HDL Code for FPGA Floating-Point Target Libraries” on page 31-11
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Latency Strategy
Specify whether you want the design to map to minimum or maximum latency with Xilinx LogiCORE
or ALTFP Altera megafunction IPs.

Settings

Default: MIN

The options are:

MIN
Maps to minimum latency for the specified floating-point target IP.

MAX
Maps to maximum latency for the specified floating-point target IP.

Dependency

To specify this parameter, set the Floating Point IP Library to Altera Megafunctions (ALTFP)
or Xilinx LogiCORE. Before you set the floating-point library, specify the path to your synthesis tool
by using the hdlsetuptoolpath function.

Command-Line Information

To specify this setting:

1 Create a floating-point target configuration object with Altera Megafunctions (ALTERA FP
FUNCTIONS) as the floating-point target library.
fpconfig = hdlcoder.createFloatingPointTargetConfig('ALTFP');

2 Specify the LatencyStrategy property of the LibrarySettings attribute of the floating-point
target configuration object.

fpconfig.LibrarySettings.LatencyStrategy = 'MAX';
3 Set the floating-point target configuration on the model and then generate HDL code. This

example shows how to set the configuration on the sfir_single model and generate HDL code
for the symmetric_fir subsystem:

hdlset_param('sfir_single','FloatingPointTargetConfig',fpconfig)
makehdl('sfir_single/symmetric_fir')

See also

• createFloatingPointTargetConfig
• “Generate HDL Code for FPGA Floating-Point Target Libraries” on page 31-11
• “Customize Floating-Point IP Configuration” on page 31-18

Objective
Specify whether you want to optimize the design for speed or area when mapping to floating-point
target libraries.

 FPGA Floating-Point Libraries
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Settings

Default: SPEED

The options are:

NONE
Select this option if you do not want to optimize the design for speed or area.

SPEED
Select this option to optimize the design for speed.

AREA
Select this option to optimize the design for area.

Dependency

To specify this parameter, set the Floating Point IP Library to Altera Megafunctions (ALTFP)
or Xilinx LogiCORE. Before you set the floating-point library, specify the path to your synthesis tool
by using the hdlsetuptoolpath function.

Command-Line Information

To specify this setting:

1 Create a floating-point target configuration object with Altera Megafunctions (ALTERA FP
FUNCTIONS) as the floating-point target library.
fpconfig = hdlcoder.createFloatingPointTargetConfig('ALTFP');

2 Specify the Objective property of the LibrarySettings attribute of the floating-point target
configuration object.

fpconfig.LibrarySettings.Objective = 'AREA';
3 Set the floating-point target configuration on the model and then generate HDL code. This

example shows how to set the configuration on the sfir_single model and generate HDL code
for the symmetric_fir subsystem:

hdlset_param('sfir_single','FloatingPointTargetConfig',fpconfig)
makehdl('sfir_single/symmetric_fir')

See also

• createFloatingPointTargetConfig
• “Generate HDL Code for FPGA Floating-Point Target Libraries” on page 31-11
• “Customize Floating-Point IP Configuration” on page 31-18

IP Settings
The IP Settings section has an IP configuration table with the IP names and data types and
additional options to specify a custom latency and any extra arguments.

The options in the IP configuration table depend on the library that you specify.

• If you specify the ALTERA MEGAFUNCTION (ALTERA FP FUNCTIONS) library, HDL Coder infers
the latency value from the Target Frequency (MHz) value.
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• If you specify the ALTERA MEGAFUNCTION (ALTFP) or XILINX LOGICORE libraries, HDL Coder
infers the IP latency from the Latency Strategy setting. The IP configuration table has two
additional columns, MinLatency and MaxLatency, that contain the minimum and maximum
latency values for each IP in the table.

The IP configuration table has these sections:

• Name: Contains a list of IP names that HDL Coder map the Simulink blocks to, such as ABS,
ADDSUB, and CONVERT.

• DataType: Contains a list of IP data types for each IP in the table. These are mostly SINGLE and
DOUBLE data types. The CONVERT IP blocks can have DOUBLE_TO_NUMERICTYPE,
NUMERICTYPE_TO_DOUBLE data types, and so on.

• Latency: The default latency value of –1 means that the IP inherits the latency value from the
target frequency or the latency strategy setting depending on the library that you choose. To
customize the latency of the IP that your Simulink blocks map to, enter your own custom value for
the latency.

• ExtraArgs: Specify any additional settings that is specific to the IP.

For example, if you have an Add block with Single data types in your Simulink model, HDL Coder
maps the block to the ADDSUB IP. If you want to specify a custom latency value, say 8, for the IP,
enter the value in the Latency column for the IP.

cmultusage is a parameter that you can specify with the Xilinx LogiCORE libraries.

Dependency

To specify this parameter, set the Floating Point IP Library to Altera Megafunctions (ALTFP)
or Xilinx LogiCORE. Before you set the floating-point library, specify the path to your synthesis tool
by using the hdlsetuptoolpath function.

Command-Line Information

To specify this setting:

1 Create a floating-point target configuration object with Altera Megafunctions (ALTERA FP
FUNCTIONS) as the floating-point target library.
fpconfig = hdlcoder.createFloatingPointTargetConfig('ALTFP');

2 To view the floating-point IP configuration, use the IPConfig object.

fpconfig.IPConfig
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3 To customize the latency or specify additional arguments, use the customize method.

fpconfig.IPConfig.customize('ADDSUB','Single','Latency',6);
4 Set the floating-point target configuration on the model and then generate HDL code. This

example shows how to set the configuration on the sfir_single model and generate HDL code
for the symmetric_fir subsystem:

hdlset_param('sfir_single','FloatingPointTargetConfig',fpconfig)
makehdl('sfir_single/symmetric_fir')

See also

• createFloatingPointTargetConfig
• customize
• “Generate HDL Code for FPGA Floating-Point Target Libraries” on page 31-11
• “Customize Floating-Point IP Configuration” on page 31-18

15 HDL Code Generation Pane: Floating Point

15-12



HDL Code Generation Pane: Global
Settings

• “Global Settings Overview” on page 16-3
• “Clock Settings and Timing Controller Postfix” on page 16-4
• “Reset Settings” on page 16-8
• “Clock Enable Settings” on page 16-12
• “Oversampling factor” on page 16-15
• “Comment in header” on page 16-17
• “Language-Specific File Extensions” on page 16-19
• “Language-Specific Identifiers” on page 16-21
• “Split entity and architecture” on page 16-24
• “Complex Signals Postfix” on page 16-27
• “VHDL Architecture and Library Name” on page 16-28
• “Pipeline postfix” on page 16-29
• “Generate VHDL code for model references into a single library” on page 16-30
• “Generate Statement Labels” on page 16-31
• “Vector and Component Instances Labels” on page 16-33
• “Map file postfix” on page 16-35
• “Input and Output Port Data Types” on page 16-36
• “Clock Enable output port” on page 16-38
• “Minimize Clock Enables and Reset Signals” on page 16-39
• “Use trigger signal as clock” on page 16-43
• “Enable HDL DUT port generation for test points” on page 16-44
• “RTL Annotations” on page 16-45
• “RTL Customizations for Constants and MATLAB Function Blocks” on page 16-50
• “RTL Customizations for RAMs” on page 16-52
• “No-reset registers initialization” on page 16-54
• “RTL Style” on page 16-56
• “Timing Controller Settings” on page 16-63
• “File Comment Customization” on page 16-65
• “Choose Coding Standard and Report Options” on page 16-67
• “Basic Coding Practices” on page 16-69
• “RTL Description Rules for clock enables and resets” on page 16-74
• “RTL Description Rules for Conditionals” on page 16-77
• “Other RTL Description Rules” on page 16-80
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• “RTL Design Rules” on page 16-83
• “Model Generation for HDL Code” on page 16-85
• “Naming Options” on page 16-88
• “Layout Options” on page 16-90
• “Diagnostics for Optimizations” on page 16-93
• “Diagnostics for Reals and Black Box Interfaces” on page 16-96
• “Code Generation Output” on page 16-98
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Global Settings Overview
The Global Settings pane enables you to specify detailed characteristics of the generated code, such
as HDL element naming, and whether to map to a floating-point IP library.

 Global Settings Overview
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Clock Settings and Timing Controller Postfix
This section contains parameters in the Clock settings section of the HDL Code Generation >
Global Settings pane of the Configuration Parameters dialog box. Use these parameters to specify
the clock signal name, the number of clock inputs, the active clock edge, and the postfix for the clock
process and the timing controller.

Clock input port
Specify the name for the clock input port in generated HDL code.

Settings

Default: clk

Enter the clock signal name in generated HDL code as a character vector.

For a generated entity my_filter, if you specify 'filter_clock' as the clock signal name, the
entity declaration is as shown in this code snippet:

ENTITY my_filter IS
   PORT( filter_clock   :  IN  std_logic;
         clk_enable     :  IN  std_logic;
         reset          :  IN  std_logic;
         my_filter_in   :  IN  std_logic_vector (15 DOWNTO 0); -- sfix16_En15
         my_filter_out  :  OUT std_logic_vector (15 DOWNTO 0); -- sfix16_En15
         );
END my_filter;
 

If you specify a VHDL or Verilog reserved word, the code generator appends a reserved word postfix
string to form a valid VHDL or Verilog identifier. For example, if you specify the reserved word
signal, the resulting name string would be signal_rsvd.

Command-Line Information
Property: ClockInputPort
Type: character vector
Value: A valid identifier in the target language
Default: 'clk'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can specify this property while generating HDL code for the symmetric_fir
subsystem inside the sfir_fixed model using either of these methods.

• Use hdlset_param to set the parameter on the model. Then generate HDL code using makehdl.

hdlset_param('sfir_fixed','ClockInputPort','system_clk')
makehdl('sfir_fixed/symmetric_fir')

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir','ClockInputPort','system_clk')

See Also

makehdl
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Clock inputs
Specify generation of single or multiple clock inputs.

Settings

Default: Single

Single
Generates a single clock input for the DUT. If the DUT is multirate, the input clock is the master
clock rate, and a timing controller is synthesized to generate additional clocks as required. It is
recommended that you use a single clock signal in your design.

Multiple
Generates a unique clock for each Simulink rate in the DUT. The number of timing controllers
generated depends on the contents of the DUT. The oversample factor must be 1 (default) to
specify multiple clocks.

Command-Line Information
Property: ClockInputs
Type: character vector
Value: 'Single' | 'Multiple'
Default: 'Single'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can specify this property while generating HDL code for the symmetric_fir
subsystem inside the sfir_fixed model using either of these methods.

• Use hdlset_param to set the parameter on the model. Then generate HDL code using makehdl.

hdlset_param('sfir_fixed','ClockInputs','Multiple')
makehdl('sfir_fixed/symmetric_fir')

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir','ClockInputs','Multiple')

See Also

• makehdl
• “Check clock settings” on page 38-43

Clock edge
Specify the active clock edge that triggers Verilog always blocks or VHDL process blocks in the
generated HDL code.

Settings

Default: Rising.

Rising
The rising edge, or 0-to-1 transition, is the active clock edge.

 Clock Settings and Timing Controller Postfix

16-5



Falling
The falling edge, or 1-to-0 transition, is the active clock edge.

Command-Line Information
Property: ClockEdge
Type: character vector
Value: 'Rising' | 'Falling'
Default: 'Rising'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can specify this property while generating HDL code for the symmetric_fir
subsystem inside the sfir_fixed model using either of these methods.

• Use hdlset_param to set the parameter on the model. Then generate HDL code using makehdl.

hdlset_param('sfir_fixed','ClockEdge','Falling')
makehdl('sfir_fixed/symmetric_fir')

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir','ClockEdge','Falling')

See Also

• makehdl
• “Check clock settings” on page 38-43

Clocked process postfix
Specify the postfix as a character vector. The code generator appends this postfix to HDL clock
process names.

Settings

Default: _process

HDL Coder uses process blocks for register operations. The label for each of these blocks is derived
from a register name and the postfix _process. For example, the code generator derives the label
delay_pipeline_process in the following block declaration from the register name
delay_pipeline and the default postfix _process.

delay_pipeline_process : PROCESS (clk, reset)
BEGIN
  .
  .
  .

Command-Line Information
Property: ClockProcessPostfix
Type: character vector
Default: '_process'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.
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For example, you can specify this property while generating HDL code for the symmetric_fir
subsystem inside the sfir_fixed model using either of these methods.

• Use hdlset_param to set the parameter on the model. Then generate HDL code using makehdl.

hdlset_param('sfir_fixed','ClockProcessPostfix','delay_postfix')
makehdl('sfir_fixed/symmetric_fir')

• Pass the property as an argument to the makehdl function.
makehdl('sfir_fixed/symmetric_fir','ClockProcessPostfix','delay_postfix')

See Also

makehdl

Timing controller postfix
Specify the postfix as a character vector. The code generator appends this suffix to the DUT name to
form the timing controller name.

Settings

Default: '_tc'

A timing controller file is generated if the design uses multiple rates, for example:

• When code is generated for a multirate model.
• When an area or speed optimization, or block architecture, introduces local multirate.

The timing controller name is based on the name of the DUT. For example, if the name of your DUT is
my_test, by default, HDL Coder adds the postfix _tc to form the timing controller name,
my_test_tc.

Command-Line Information
Property: TimingControllerPostfix
Type: character vector
Default: '_tc'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.
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Reset Settings
This section contains parameters in the Clock Settings section of the HDL Code Generation >
Global Settings pane of the Configuration Parameters dialog box. Using these parameters, you can
specify the reset name, whether to use a synchronous or asynchronous reset, and whether the reset
is asserted active-high or active-low.

Reset type
Specify whether to use asynchronous or synchronous reset logic when generating HDL code for
registers. It is recommended that you specify the Reset type as Synchronous when you use a Xilinx
device and Asynchronous when you use an Altera device.

Settings

Default: Asynchronous

Asynchronous
Use asynchronous reset logic. This reset logic samples the reset independent of the clock signal.

The following process block, generated by a Unit Delay block, illustrates the use of asynchronous
resets. When the reset signal is asserted, the process block performs a reset, without checking
for a clock event.
Unit_Delay1_process : PROCESS (clk, reset)
  BEGIN
    IF reset = '1' THEN
      Unit_Delay1_out1 <= (OTHERS => '0');
    ELSIF clk'event AND clk = '1' THEN
      IF clk_enable = '1' THEN
        Unit_Delay1_out1 <= signed(x_in);
      END IF;
    END IF; 
  END PROCESS Unit_Delay1_process;

Synchronous
Use synchronous reset logic. This reset logic samples the reset with respect to the clock signal.

The following process block, generated by a Unit Delay block, checks for a clock event, the rising
edge, before performing a reset:
Unit_Delay1_process : PROCESS (clk)
  BEGIN
    IF rising_edge(clk) THEN
      IF reset = '1' THEN
        Unit_Delay1_out1 <= (OTHERS => '0');
      ELSIF clk_enable = '1' THEN
        Unit_Delay1_out1 <= signed(x_in);
      END IF;
    END IF; 
  END PROCESS Unit_Delay1_process;

Command-Line Information
Property: ResetType
Type: character vector
Value: 'async' | 'sync'
Default: 'async'
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To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can specify sync as the ResetType when you generate HDL code for the
symmetric_fir subsystem inside the sfir_fixed model using either of these methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'ResetType','async')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset_param('sfir_fixed','ResetType','async')
makehdl('sfir_fixed/symmetric_fir')

See Also

• makehdl
• “Check for global reset setting for Xilinx and Altera devices” on page 38-7

Reset asserted level
Specify whether the asserted or active level of the reset input signal is active-high or active-low.

Settings

Default: Active-high

Active-high
Specify that the asserted level of reset input signal is active-high. For example, the following code
fragment checks whether reset is active high before populating the delay_pipeline register:

Delay_Pipeline_Process : PROCESS (clk, reset)
BEGIN
  IF reset = '1' THEN
    delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));
.
.
.

Active-low
Specify that the asserted level of reset input signal is active-low. For example, the following code
fragment checks whether reset is active low before populating the delay_pipeline register:

Delay_Pipeline_Process : PROCESS (clk, reset)
BEGIN
  IF reset = '0' THEN
    delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));
.
.
.
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Dependency

If you input a logic high value to the Reset input port, to reset the registers in your design, set
Reset asserted level to Active-high. if you input a logic low value to the Reset input port, to
reset the registers in your design, set Reset asserted level to Active-low.

Command-Line Information
Property: ResetAssertedLevel
Type: character vector
Value: 'active-high' | 'active-low'
Default: 'active-high'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can specify this property while generating HDL code for the symmetric_fir
subsystem inside the sfir_fixed model using either of these methods.

• Use hdlset_param to set the parameter on the model. Then generate HDL code using makehdl.

hdlset_param('sfir_fixed','ResetAssertedLevel','active-high')
makehdl('sfir_fixed/symmetric_fir')

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir','ResetAssertedLevel','active-high')

See Also

• makehdl
• “Reset input port” on page 16-10

Reset input port
Enter the name for the reset input port in generated HDL code.

Settings

Default: reset

Enter a character vector for the reset input port name in generated HDL code.

For example, if you override the default with 'chip_reset' for the generating system myfilter,
the generated entity declaration might look as follows:

ENTITY myfilter IS
   PORT( clk             :  IN  std_logic;
         clk_enable      :  IN  std_logic;
         chip_reset      :  IN  std_logic;
         myfilter_in     :  IN  std_logic_vector (15 DOWNTO 0); 
         myfilter_out    :  OUT std_logic_vector (15 DOWNTO 0); 
         );
END myfilter;

If you specify a VHDL or Verilog reserved word, the code generator appends a reserved word postfix
string to form a valid VHDL or Verilog identifier. For example, if you specify the reserved word
signal, the resulting name string would be signal_rsvd.
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Dependency

If you specify active-high for Reset asserted level, the reset input signal is asserted active-high. To
reset the registers in the entity, the input value to the Reset input port must be high. If you specify
active-low for Reset asserted level, the reset input signal is asserted active-low. To reset the
registers in the entity, the input value to the Reset input port must be low.

Command-Line Information
Property: ResetInputPort
Type: character vector
Value: A valid identifier in the target language
Default: 'reset'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can specify sync as the ResetType when you generate HDL code for the
symmetric_fir subsystem inside the sfir_fixed model using either of these methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'ResetInputPort','rstx')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset_param('sfir_fixed','ResetInputPort','rstx')
makehdl('sfir_fixed/symmetric_fir')

See Also

• makehdl
• “Reset asserted level” on page 16-9

 Reset Settings

16-11



Clock Enable Settings
This section contains parameters in the Clock Settings section of theHDL Code Generation >
Global Settings pane of the Configuration Parameters dialog box. Using these parameters, you can
specify the name of the clock enable input port and for internal clock enable signals in the generated
code.

Clock enable input port
Specify the name for the clock enable input port in generated HDL code.

Settings

Default: clk_enable

Enter the clock enable input port name in generated HDL code as a character vector.

For example, if you specify 'filter_clock_enable' for the generating subsystem
filter_subsys, the generated entity declaration might look as follows:
ENTITY filter_subsys IS
   PORT( clk                 :  IN  std_logic;
         filter_clock_enable :  IN  std_logic;
         reset               :  IN  std_logic;
         filter_subsys_in    :  IN  std_logic_vector (15 DOWNTO 0);
         filter_subsys_out   :  OUT std_logic_vector (15 DOWNTO 0);
         );
END filter_subsys;

The clock enable input signal is asserted active-high (1). Thus, the input value must be high for the
generated entity's registers to be updated.

If you specify a VHDL or Verilog reserved word, the code generator appends a reserved word postfix
string to form a valid VHDL or Verilog identifier. For example, if you specify the reserved word
signal, the resulting name string would be signal_rsvd.

Command-Line Information
Property: ClockEnableInputPort
Type: character vector
Value: A valid identifier in the target language
Default: 'clk_enable'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can specify this property when you generate HDL code for the symmetric_fir
subsystem inside the sfir_fixed model using either of these methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'ClockEnableInputPort','clken')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.

hdlset_param('sfir_fixed','ClockEnableInputPort','clken')
makehdl('sfir_fixed/symmetric_fir')
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See Also

• makehdl
• “Clock Enable output port” on page 16-38
• “Clock input port” on page 16-4
• “Reset input port” on page 16-10

Enable prefix
Specify the base name as a character vector for internal clock enables and other flow control signals
in generated code.

Settings

Default: 'enb'

Where only a single clock enable is generated, Enable prefix specifies the signal name for the
internal clock enable signal.

In some cases, the code generator can generate multiple clock enable signals. For example, if you
specify a cascade block implementation for certain blocks, multiple clock enable signals are
generated. In such cases, Enable prefix specifies a base signal name for the first clock enable that is
generated. For other clock enable signals, numeric tags are appended to Enable prefix to form
unique signal names. For example, the following code fragment illustrates two clock enables that
were generated when Enable prefix was set to 'test_clk_enable':

COMPONENT mysys_tc
    PORT( clk                   :   IN    std_logic;
          reset                 :   IN    std_logic;
          clk_enable            :   IN    std_logic;
          test_clk_enable       :   OUT   std_logic;
          test_clk_enable_5_1_0 :   OUT   std_logic
          );
  END COMPONENT;

Command-Line Information
Property: EnablePrefix
Type: character vector
Default: 'enb'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can specify this property when you generate HDL code for the symmetric_fir
subsystem inside the sfir_fixed model using either of these methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'EnablePrefix','int_enable')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.
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hdlset_param('sfir_fixed','EnablePrefix','int_enable')
makehdl('sfir_fixed/symmetric_fir')

See Also

• makehdl
• “Clock Enable output port” on page 16-38
• “Clock enable input port” on page 16-12
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Oversampling factor
This parameter resides in the Clock Settings section of theHDL Code Generation > Global
Settings pane of the Configuration Parameters dialog box. Use this parameter to specify the
frequency of the global oversampling clock as a multiple of the model's base rate.

Settings
Default: 1.

Oversampling factor specifies the factor by which the global clock signal is a multiple of the base
rate at which the model operates. Use the Oversampling factor to integrate the DUT with a larger
system that supplies timing signals to other components in the system at the global oversampling
clock.

By default, HDL Coder does not generate a global oversampling clock. To generate a global
oversampling clock, specify an integer greater than one. If you use a multirate DUT, make sure that
other rates in the DUT divide evenly into the global oversampling rate.

Generation of the global oversampling clock affects the generated HDL code and does not affect the
simulation behavior of your model.

Dependency
• if you use multiple clocks, the Oversampling factor must be set to one. If you want to use an

Oversampling factor greater than one, set ClockInputs to Single.
• If you specify an Oversampling factor greater than one, make sure that the clock-rate pipelining

optimization is enabled. You can specify this setting in the HDL Code Generation > Target and
Optimizations > Pipelining tab.

Clock-rate pipelining uses the Oversampling factor to convert the slow regions in your model
that operate at the base sample rate to the faster clock rate.

Command-Line Information
Property: Oversampling
Type: int
Value: integer greater than or equal to 1
Default: 1

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can specify this property when you generate HDL code for the symmetric_fir
subsystem inside the sfir_fixed model using either of these methods.

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ... 
        'Oversampling',5)

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.

 Oversampling factor
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hdlset_param('sfir_fixed','Oversampling',5)
makehdl('sfir_fixed/symmetric_fir')

See Also
• makehdl
• “Generate a Global Oversampling Clock” on page 22-8
• “Clock Rate Pipelining” on page 14-12
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Comment in header
This parameter resides in the General tab of the HDL Code Generation > Global Settings pane of
the Configuration Parameters dialog box. Use this parameter to specify comment lines in header of
generated HDL and test bench files.

Settings
Default: None

Text entered in this field generates a comment line in the header of generated model and test bench
files. The code generator adds leading comment characters for the target language. When newlines
or linefeeds are included, the code generator emits single-line comments for each newline.

For example, if you specify this comment 'This is a comment line.\nThis is a second
line.' for the symmetric_fir subsystem inside the sfir_fixed model and generate HDL code,
the resulting header comment block appears as follows:
-- -------------------------------------------------------------
--
-- Module: symmetric_fir
-- Simulink Path: sfir_fixed/symmetric_fir
-- Created: 2006-11-20 15:55:25
-- Hierarchy Level: 0
--
-- This is a comment line.
-- This is a second line.
--
-- Simulink model description for sfir_fixed:
  -- This model shows how to use HDL Coder to check, generate,
  -- and verify HDL for a fixed-point symmetric FIR filter. 
--
-- -------------------------------------------------------------

Command-Line Information
Property: UserComment
Type: character vector

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can specify this property when you generate HDL code for the symmetric_fir
subsystem inside the sfir_fixed model using either of these methods.

• Pass the property as an argument to the makehdl function.
makehdl('sfir_fixed/symmetric_fir', ... 
        'UserComment','This is a comment line.\nThis is a second line.')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.
hdlset_param('sfir_fixed', ... 
    'UserComment','This is a comment line.\nThis is a second line.')
makehdl('sfir_fixed/symmetric_fir')

See Also
• makehdl
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• “File Comment Customization” on page 16-65
• “Generate Code with Annotations or Comments” on page 25-13
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Language-Specific File Extensions

Verilog file extension
Specify the file name extension for generated Verilog files.

Settings

Default: .v

This field specifies the file name extension for generated Verilog files.

Dependency

To enable this option, set the target language to Verilog. You can specify the target language by using
the Language parameter in the HDL Code Generation pane.

Command-Line Information
Property: VerilogFileExtension
Type: character vector
Default: '.v'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can specify this property when you generate HDL code for the symmetric_fir
subsystem inside the sfir_fixed model using either of these methods.

• Pass the property as an argument to the makehdl function.
makehdl('sfir_fixed/symmetric_fir', ... 
        'VerilogFileExtension','.v')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.
hdlset_param('sfir_fixed','VerilogFileExtension','.v')
makehdl('sfir_fixed/symmetric_fir')

See Also

• makehdl
• “Target” on page 12-3

VHDL file extension
Specify the file name extension for generated VHDL files.

Settings

Default: .vhd

This field specifies the file name extension for generated VHDL files.
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Dependency

To enable this option, set the target language to VHDL. You can specify the target language by using
the Language parameter in the HDL Code Generation pane.

Command-Line Information
Property: VHDLFileExtension
Type: character vector
Default: '.vhd'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can specify this property when you generate HDL code for the symmetric_fir
subsystem inside the sfir_fixed model using either of these methods.

• Pass the property as an argument to the makehdl function.
makehdl('sfir_fixed/symmetric_fir', ... 
        'VHDLFileExtension','.vhd')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.
hdlset_param('sfir_fixed','VHDLFileExtension','.vhd')
makehdl('sfir_fixed/symmetric_fir')

See Also

• makehdl
• “Target” on page 12-3
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Language-Specific Identifiers
This section contains parameters in the Clock Settings section of theHDL Code Generation >
Global Settings pane of the Configuration Parameters dialog box. Using these parameters, you can
specify the entity, module, and package name postfix, and the prefix for module names.

Entity conflict postfix
Specify the text as a character vector to resolve duplicate VHDL entity or Verilog module names in
generated code.

Settings

Default: _block

The specified postfix resolves duplicate VHDL entity or Verilog module names.

For example, if HDL Coder detects two entities with the name MyFilter, the coder names the first
entity MyFilter and the second entity MyFilter_block.

Command-Line Information
Property: EntityConflictPostfix
Type: character vector
Value: A valid character vector in the target language
Default: '_block'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can specify this property when you generate HDL code for the symmetric_fir
subsystem inside the sfir_fixed model using either of these methods.

• Pass the property as an argument to the makehdl function.
makehdl('sfir_fixed/symmetric_fir', ... 
        'EntityConflictPostfix','_entity')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.
hdlset_param('sfir_fixed','EntityConflictPostfix','_entity')
makehdl('sfir_fixed/symmetric_fir')

See Also

makehdl

Package postfix
Specify a text as a character vector to append to the model or subsystem name to form name of a
package file.

Settings

Default: _pkg

 Language-Specific Identifiers

16-21



HDL Coder applies this option only if a package file is required for the design.

Dependency

This option is enabled when:

The target language (specified by the Language option) is VHDL.

The target language (specified by the Language option) is Verilog, and the Multi-file test bench
option is selected.

Command-Line Information
Property: PackagePostfix
Type: character vector
Value: A character vector that is legal in a VHDL package file name
Default: '_pkg'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can specify this property when you generate HDL code for the symmetric_fir
subsystem inside the sfir_fixed model using either of these methods.

• Pass the property as an argument to the makehdl function.
makehdl('sfir_fixed/symmetric_fir', ... 
        'PackagePostfix','_pkg')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.
hdlset_param('sfir_fixed','PackagePostfix','_pkg')
makehdl('sfir_fixed/symmetric_fir')

Reserved word postfix
Specify a text as a character vector to append to value names, postfix values, or labels that are VHDL
or Verilog reserved words.

Settings

Default: _rsvd

The reserved word postfix is applied to identifiers (for entities, signals, constants, or other model
elements) that conflict with VHDL or Verilog reserved words. For example, if your generating model
contains a signal named mod, HDL Coder adds the postfix _rsvd to form the name mod_rsvd.

Command-Line Information
Property: ReservedWordPostfix
Type: character vector
Default: '_rsvd'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can specify this property when you generate HDL code for the symmetric_fir
subsystem inside the sfir_fixed model using either of these methods.
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• Pass the property as an argument to the makehdl function.
makehdl('sfir_fixed/symmetric_fir', ... 
        'ReservedWordPostfix','_reserved')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.
hdlset_param('sfir_fixed','ReservedWordPostfix','_reserved)
makehdl('sfir_fixed/symmetric_fir')

Module name prefix
Specify a prefix for every module or entity name in the generated HDL code.

Settings

Default: ''

Specify a prefix for every module or entity name in the generated HDL code. HDL Coder also applies
this prefix to generated script file names.

You can specify the module name prefix to avoid name collisions if you plan to instantiate the
generated HDL code multiple times in a larger system.

Command-Line Information
Property: ModulePrefix
Type: character vector
Default: ''

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

Suppose you have a DUT, myDut, containing an internal module, myUnit. You can prefix the modules
within your design with unit1_ by using either of these methods.

• Pass the property as an argument to the makehdl function.
makehdl('myDUT', ... 
        'ModulePrefix','unit1_')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.
hdlset_param('myUnit/myDUT','ModulePrefix','unit1_')
makehdl('myDUT')

In the generated code, your HDL module names are unit1_myDut and unit1_myUnit, with
corresponding HDL file names. Generated script file names also have the unit1_ prefix.
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Split entity and architecture
These settings correspond to the parameters in the HDL Code Generation > Global Settings >
General tab of the Configuration Parameters dialog box.

Split entity file postfix
Enter a character vector to be appended to the model name to form the name of a generated VHDL
entity file.

You can specify an empty character vector for either the Split entity file postfix or the Split arch
file postfix. Both VHDL entity and architecture files cannot have empty postfix values. When you
specify both values, make sure that you use different values for the Split entity file postfix and the
Split arch file postfix.

If you input special characters for Split entity file postfix, the code generator changes the entity
name to a valid HDL name before generating code.

Settings

Default: _entity

Dependency

This parameter is enabled by selecting the Split entity and architecture check box. When you
select this check box, HDL Coder places the VHDL entity and architecture code in separate files.

Command-Line Information
Property: SplitEntityFilePostfix
Type: character vector
Default: '_entity'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

Split arch file postfix
Enter a character vector to be appended to the model name to form the name of a generated VHDL
architecture file.

You can specify an empty character vector for either the Split arch file postfix or the Split entity
file postfix. Both VHDL entity and architecture files cannot have empty postfix values. When you
specify both values, make sure that you use different values for the Split entity file postfix and the
Split arch file postfix.

If you input special characters for Split arch file postfix, the code generator changes the
architecture name to a valid HDL name before generating code.

Settings

Default: _arch
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Dependency

This parameter is enabled by selecting the Split entity and architecture check box. When you
select this check box, HDL Coder places the VHDL entity and architecture code in separate files.

Command-Line Information
Property: SplitArchFilePostfix
Type: character vector
Default: '_arch'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

Split entity and architecture
Specify whether generated VHDL entity and architecture code is written to a single VHDL file or to
separate files.

Settings

Default: Off

 On
VHDL entity and architecture definitions are written to separate files.

 Off
VHDL entity and architecture code is written to a single VHDL file.

Tips

The names of the entity and architecture files derive from the base file name (as specified by the
generating model or subsystem name). By default, postfix strings identifying the file as an entity
(_entity) or architecture (_arch) are appended to the base file name. You can override the default
and specify your own postfix as a character vector.

For example, instead of all generated code residing in MyFIR.vhd, you can specify that the code
reside in MyFIR_entity.vhd and MyFIR_arch.vhd.

Dependency

This option is enabled when the target language (specified by the Language option) is VHDL.

Selecting this option enables the following parameters:

• Split entity file postfix
• Split architecture file postfix

You can specify an empty character vector for either the Split arch file postfix or the Split entity
file postfix. Both VHDL entity and architecture files cannot have empty postfix values. When you
specify both values, make sure that you use different values for the Split entity file postfix and the
Split arch file postfix.

 Split entity and architecture
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If you input special characters for the Split entity file postfix or the Split arch file postfix, the
code generator changes the entity name or the architecture name to a valid HDL name before
generating code.

Command-Line Information
Property: SplitEntityArch
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.
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Complex Signals Postfix

Complex real part postfix
Specify the character vector to append to real part of complex signal names.

Settings

Default: '_re'

Enter a text to be appended to the names generated for the real part of complex signals.

Command-Line Information
Property: ComplexRealPostfix
Type: character vector
Default: '_re'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

Complex imaginary part postfix
Specify character vector to append to imaginary part of complex signal names.

Settings

Default: '_im'

Enter a character vector to be appended to the names generated for the imaginary part of complex
signals.

Command-Line Information
Property: ComplexImagPostfix
Type: character vector
Default: '_im'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

 Complex Signals Postfix
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VHDL Architecture and Library Name

VHDL architecture name
Specify the architecture name for your DUT in the generated HDL code.

Settings

Default: 'rtl'

Specify the VHDL architecture name for your DUT in the generated HDL code as a character vector.

Command-Line Information
Property: VHDLArchitectureName
Type: character vector
Default: 'rtl'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

VHDL library name
Specify the target library name for the generated VHDL code.

Settings

Default: 'work'

Target library name for generated VHDL code.

Command-Line Information
Property: VHDLLibraryName
Type: character vector
Default: 'work'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.
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Pipeline postfix
Specify the postfix as a character vector to append to names of input or output pipeline registers
generated for pipelined block implementations.

Settings
Default: '_pipe'

You can specify a generation of input and/or output pipeline registers for selected blocks. The
Pipeline postfix option defines a character vector that HDL Coder appends to names of input or
output pipeline registers when generating code.

Command-Line Information
Property: PipelinePostfix
Type: character vector
Default: '_pipe'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

Suppose you specify a pipelined output implementation for a Product block in a model, as in the
following code:
 hdlset_param('sfir_fixed/symmetric_fir/Product','OutputPipeline', 2)

To append a postfix 'testpipe' to the generated pipeline register names, use either of these
methods:

• Pass the property as an argument to the makehdl function.
makehdl(gcb,'PipelinePostfix','testpipe')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.
hdlset_param(gcs,'PipelinePostfix','testpipe')
makehdl('myDUT')

The following excerpt from generated VHDL code shows process the PROCESS code, with postfixed
identifiers, that implements two pipeline stages:
Product_outtestpipe_process : PROCESS (clk, reset)
  BEGIN
    IF reset = '1' THEN
      Product_outtestpipe_reg <= (OTHERS => to_signed(0, 33));
    ELSIF clk'EVENT AND clk = '1' THEN
      IF enb = '1' THEN
        Product_outtestpipe_reg(0) <= Product_out1;
        Product_outtestpipe_reg(1) <= Product_outtestpipe_reg(0);
      END IF;
    END IF;
  END PROCESS Product_outtestpipe_process;

 Pipeline postfix
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Generate VHDL code for model references into a single library
Specify whether VHDL code generated for model references is in a single library, or in separate
libraries.

Settings
Default: Off

 On
Generate VHDL code for model references into a single library.

 Off
For each model reference, generate a separate VHDL library.

Dependency
This option is enabled when the target language (specified by the Language option) is VHDL.

Command-Line Information
Property: UseSingleLibrary
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.
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Generate Statement Labels

Block generate label
Specify postfix to block labels used for HDL GENERATE statements.

Settings

Default: '_gen'

Specify the postfix as a character vector. HDL Coder appends the postfix to block labels used for HDL
GENERATE statements.

Command-Line Information
Property: BlockGenerateLabel
Type: character vector
Default: '_gen'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

Output generate label
Specify postfix to output assignment block labels for VHDL GENERATE statements.

Settings

Default: 'outputgen'

Specify the postfix as a character vector. HDL Coder appends this postfix to output assignment block
labels in VHDL GENERATE statements.

Command-Line Information
Property: OutputGenerateLabel
Type: character vector
Default: 'outputgen'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

Instance generate label
Specify text to append to instance section labels in VHDL GENERATE statements.

Settings

Default: '_gen'

Specify the postfix as a character vector. HDL Coder appends the postfix to instance section labels in
VHDL GENERATE statements.
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Command-Line Information
Property: InstanceGenerateLabel
Type: character vector
Default: '_gen'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.
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Vector and Component Instances Labels

Vector prefix
Specify prefix to vector names in generated code.

Settings

Default: 'vector_of_'

Specify the prefix as a character vector. HDL Coder appends this prefix to vector names in generated
code.

Command-Line Information
Property: VectorPrefix
Type: character vector
Default: 'vector_of_'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

Instance postfix
Specify postfix to generated component instance names.

Settings

Default: '' (no postfix appended)

Specify the postfix as a character vector. HDL Coder appends the postfix to component instance
names in generated code.

Command-Line Information
Property: InstancePostfix
Type: character vector
Default: ''

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

Instance prefix
Specify prefix to generated component instance names.

Settings

Default: 'u_'

Specify the prefix as a character vector. HDL Coder appends the prefix to component instance names
in generated code.

 Vector and Component Instances Labels
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Command-Line Information
Property: InstancePrefix
Type: character vector
Default: 'u_'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.
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Map file postfix
Specify postfix appended to file name for generated mapping file.

Settings
Default: '_map.txt'

Specify the postfix as a character vector. HDL Coder appends the postfix to file name for generated
mapping file.

For example, if the name of the device under test is my_design, HDL Coder adds the postfix
_map.txt to form the name my_design_map.txt.

Command-Line Information
Property: HDLMapFilePostfix
Type: character vector
Default: '_map.txt'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.
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Input and Output Port Data Types

Input data type
Specify the HDL data type for the input ports of the model.

Settings

For VHDL, the options are:

Default: std_logic_vector

std_logic_vector
Specifies VHDL type STD_LOGIC_VECTOR.

signed/unsigned
Specifies VHDL type SIGNED or UNSIGNED.

For Verilog, the options are:

Default: wire

In generated Verilog code, the data type for all ports is 'wire', and cannot be modified. Therefore,
Input data type is disabled when the target language is Verilog.

Dependency

This option is enabled when the target language (specified by the Language option) is VHDL.

Command-Line Information
Property: InputType
Type: character vector
Value: (for VHDL)'std_logic_vector' | 'signed/unsigned'
(for Verilog) 'wire'
Default: (for VHDL) 'std_logic_vector'
(for Verilog) 'wire'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

Output data type
Specify the HDL data type for the output ports of the model.

Settings

For VHDL, the options are:

Default: Same as input data type

Same as input data type
Specifies that output ports of the model have the same type specified by Input data type.
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std_logic_vector
Specifies VHDL type STD_LOGIC_VECTOR as the data type of the output port.

signed/unsigned
Specifies VHDL type SIGNED or UNSIGNED as the data type of the output port.

For Verilog, the options are:

Default: wire

In generated Verilog code, the data type for all ports is 'wire', and cannot be modified. Therefore,
Output data type is disabled when the target language is Verilog.

Dependency

This option is enabled when the target language (specified by the Language option) is VHDL.

Command-Line Information
Property: OutputType
Type: character vector
Value: (for VHDL)'std_logic_vector' | 'signed/unsigned'
(for Verilog) 'wire'
Default: If the property is left unspecified, output ports have the same type specified by InputType.

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

 Input and Output Port Data Types
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Clock Enable output port
Specify the name for the generated clock enable output port as a character vector.

Settings
Default: ce_out

A clock enable output is generated when the design requires one.

Command-Line Information
Property: ClockEnableOutputPort
Type: character vector
Default: 'ce_out'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
“Clock Enable Settings” on page 16-12
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Minimize Clock Enables and Reset Signals

Minimize clock enables
Omit generation of clock enable logic for single-rate designs.

Settings

Default: Off

 On
For single-rate models, omit generation of clock enable logic wherever possible. The following
VHDL code example does not define or examine a clock enable signal. When the clock signal
(clk) goes high, the current signal value is output.

Unit_Delay_process : PROCESS (clk, reset)
  BEGIN
    IF reset = '1' THEN
      Unit_Delay_out1 <= to_signed(0, 32);
    ELSIF clk'EVENT AND clk = '1' THEN
      Unit_Delay_out1 <= In1_signed;
    END IF;
  END PROCESS Unit_Delay_process;

 Off
Generate clock enable logic. The following VHDL code extract represents a register with a clock
enable (enb)

Unit_Delay_process : PROCESS (clk, reset)
  BEGIN
    IF reset = '1' THEN
      Unit_Delay_out1 <= to_signed(0, 32);
    ELSIF clk'EVENT AND clk = '1' THEN
      IF enb = '1' THEN
        Unit_Delay_out1 <= In1_signed;
      END IF;
    END IF;
  END PROCESS Unit_Delay_process;

Exceptions

In some cases, HDL Coder emits clock enables even when Minimize clock enables is selected.
These cases are:

• Registers inside Enabled, State-Enabled, and Triggered subsystems.
• Multirate models.
• The coder always emits clock enables for the following blocks:

• commseqgen2/PN Sequence Generator
• dspsigops/NCO

 Minimize Clock Enables and Reset Signals
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Note HDL support for the NCO block will be removed in a future release. Use the NCO HDL
Optimized block instead.

• dspsrcs4/Sine Wave
• hdldemolib/HDL FFT
• built-in/DiscreteFir
• dspmlti4/CIC Decimation
• dspmlti4/CIC Interpolation
• dspmlti4/FIR Decimation
• dspmlti4/FIR Interpolation
• dspadpt3/LMS Filter
• dsparch4/Biquad Filter

Note If your design uses a RAM block such as a Dual Rate Dual Port RAM with the RAM
Architecture set to Generic RAM without Clock Enable, the code generator ignores the
Minimize clock enables setting.

Command-Line Information
Property: MinimizeClockEnables
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, to minimize Clock Enable signals when you generate HDL code for the symmetric_fir
subsystem inside the sfir_fixed model, use either of these methods.

• Pass the property as an argument to the makehdl function.
makehdl('sfir_fixed/symmetric_fir', ... 
        'MinimizeClockEnables','on')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.
hdlset_param('sfir_fixed','MinimizeClockEnables','on')
makehdl('sfir_fixed/symmetric_fir')

Minimize global resets
Omit generation of reset logic in the HDL code.

Settings

Default: Off

 On
When you enable this setting, the code generator tries to minimize or remove the global reset
logic from the HDL code. This code snippet corresponds to the Verilog code generated for a Delay
block in the Simulink model. The code snippet shows that HDL Coder removed the reset logic.
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 always @(posedge clk)
    begin : Delay_Synchronous_process
      if (enb) begin
        Delay_Synchronous_out1 <= DataIn;
      end
    end

 Off
When you disable this parameter, HDL Coder generates the global reset logic in the HDL code.
This Verilog code snippet shows the reset logic generated for the Delay block.

  always @(posedge clk or posedge reset)
    begin : Delay_Synchronous_process
      if (reset == 1'b1) begin
        Delay_Synchronous_out1 <= 1'b0;
      end
      else begin
        if (enb) begin
          Delay_Synchronous_out1 <= DataIn;
        end
      end
    end

Dependency

If you select Minimize global resets, the generated HDL code contains registers that do not have a
reset port. If you do not initialize these registers, there can be potential numerical mismatches in the
HDL simulation results. To avoid simulation mismatches, you can initialize the registers by using the
“No-reset registers initialization” on page 16-54 setting.

By default, the No-reset registers initialization setting has the value Generate
initialization inside module, which means that the code generator initializes the registers as
part of the HDL code generated for the DUT. To initialize the registers with the script, set No-reset
registers initialization to Generate an external script. You must use a zero initial value for
the blocks in your Simulink model.

Exceptions

Sometimes, when you select Minimize global resets, HDL Coder generates the reset logic, if you
have:

• Blocks with state that have a nonzero initial value, such as a Delay block with non-zero Initial
Condition.

• Enumerated data types for blocks with state.
• Subsystem blocks with BlackBox HDL architecture where you request a reset signal.
• Multirate models with Timing controller architecture set to default.

If you set Timing controller architecture to resettable, HDL Coder generates a reset port for
the timing controller. If you set Minimize global reset signals to 'on', the code generator
removes this reset port.

• Truth Table

 Minimize Clock Enables and Reset Signals
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• Chart
• MATLAB Function block

Command-Line Information
Property: MinimizeGlobalResets
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, to minimize global reset signals when you generate HDL code for the symmetric_fir
subsystem inside the sfir_fixed model, use either of these methods.

• Pass the property as an argument to the makehdl function.
makehdl('sfir_fixed/symmetric_fir', ... 
        'MinimizeGlobalResets','on')

• When you use hdlset_param, you can set the parameter on the model and then generate HDL
code using makehdl.
hdlset_param('sfir_fixed','MinimizeGlobalResets','on')
makehdl('sfir_fixed/symmetric_fir')
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Use trigger signal as clock
This setting is a parameter in the HDL Code Generation > Global Settings > Ports tab of the
Configuration Parameters dialog box.

Settings
Default: Off

 On
For triggered subsystems, use the trigger input signal as a clock in the generated HDL code.
Make sure that the Clock edge setting in the Configuration Parameters dialog box matches the
Trigger type of the Trigger block inside the triggered subsystem.

 Off
For triggered subsystems, do not use the trigger input signal as a clock in the generated HDL
code.

Command-Line Information
Property: TriggerAsClock
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, to generate HDL code that uses the trigger signal as clock for triggered subsystems
within the sfir_fixed/symmetric_fir DUT subsystem, use either of these methods:

• Pass the property as an argument to the makehdl function.

makehdl ('sfir_fixed/symmetric_sfir','TriggerAsClock','on')
• When you use hdlset_param, you can set the parameter on the model and then generate HDL

code using makehdl.
hdlset_param('sfir_fixed','TriggerAsClock','on')
makehdl('sfir_fixed/symmetric_fir')
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Enable HDL DUT port generation for test points
Enable this setting to create DUT output ports for the test point signals in the generated HDL code.

Settings
Default: Off

 On
When you enable this setting, the code generator creates DUT output ports for the test point
signals in the generated HDL code. You can observe the test point signals and debug your design
by connecting a Scope block to the output ports corresponding to these signals.

 Off
When you disable this setting, the code generator preserves the test point signals and does not
create DUT output ports in the generated HDL code.

Note The code generator ignores this setting when you designate test points for states inside a
Stateflow Chart.

Command-Line Information
Property: EnableTestpoints
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, after you designate signals as testpoints for the sfir_fixed/symmetric_fir DUT
subsystem, to generate DUT output ports in the HDL code, use either of these methods:

• Pass the property as an argument to the makehdl function.

makehdl ('sfir_fixed/symmetric_sfir','EnableTestpoints','on')
• When you use hdlset_param, you can set the parameter on the model and then generate HDL

code using makehdl.
hdlset_param('sfir_fixed','EnableTestpoints','on')
makehdl('sfir_fixed/symmetric_fir')

See Also
“Model and Debug Test Point Signals with HDL Coder™” on page 10-28
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RTL Annotations

Use Verilog `timescale directives
Specify use of compiler `timescale directives in generated Verilog code.

Settings

Default: On

 On
Use compiler `timescale directives in generated Verilog code.

 Off
Suppress the use of compiler `timescale directives in generated Verilog code.

Tip

The `timescale directive provides a way of specifying different delay values for multiple modules in
a Verilog file. This setting does not affect the generated test bench.

Dependency

This option is enabled when the target language (specified by the Language option) is Verilog.

Command-Line Information
Property: UseVerilogTimescale
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

Verilog timescale specification
Specify the timescale that you want to use in the generated Verilog code.

Settings

Default: `timescale 1 ns/1 ns

HDL Coder applies this option to the timescale directive in the generated Verilog code. You can
customize the default timescale and specify a valid, compilable timescale directive. The Verilog
language uses this directive to determine the time units and the precision for calculating delay
values.

By default, both the time units and precision are 1ns. For example, if you customized the timescale to
`timescale 1 ns/1 ps, a delay unit becomes 1ns and the value is precise to the nearest 1 ps.

Dependency

This option is enabled when:
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• The target language (specified by the Language option) is Verilog.
• The Use Verilog `timescale directives option is enabled.

Command-Line Information
Property: Timescale
Type: character vector
Value: A character vector that is a valid timescale value
Default: `timescale 1 ns/1 ns

Inline VHDL configuration
Specify whether generated VHDL code includes inline configurations.

Settings

Default: On

 On
Include VHDL configurations in files that instantiate a component.

 Off
Suppress the generation of configurations and require user-supplied external configurations. Use
this setting if you are creating your own VHDL configuration files.

Tip

HDL configurations can be either inline with the rest of the VHDL code for an entity or external in
separate VHDL source files. By default, HDL Coder includes configurations for a model within the
generated VHDL code. If you are creating your own VHDL configuration files, suppress the
generation of inline configurations.

Dependency

This option is enabled when the target language (specified by the Language option) is VHDL.

Command-Line Information
Property: InlineConfigurations
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

Concatenate type safe zeros
Specify use of syntax for concatenated zeros in generated VHDL code.

Settings

Default: On
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 On
Use the type-safe syntax, '0' & '0', for concatenated zeros. Typically, this syntax is preferred.

 Off
Use the syntax "000000..." for concatenated zeros. This syntax can be easier to read and more
compact, but it can lead to ambiguous types.

Dependency

This option is enabled when the target language (specified by the Language option) is VHDL.

Command-Line Information
Property: SafeZeroConcat
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

Generate obfuscated HDL code
Specify generation of obfuscated HDL code. By using obfuscation, you can share the HDL code with a
third-party without revealing the intellectual property. Obfuscation reduces readability of the code.
The generated HDL code does not have comments, newlines or spaces, and replaces identifier names
with other random names.

Settings

Default: Off

 On
Generate obfuscated HDL code.

 Off
Do not generate obfuscated HDL code.

Dependency

To enable this parameter, the Generate HDL Code check box must be selected.

Command-Line Information
Property: ObfuscateGeneratedHDLCode
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

• To generate obfuscated HDL code by using makehdl:

makehdl('dutname', 'ObfuscateGeneratedHDLCode', 'on')
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• To generate obfuscated HDL code by using hdlset_param:

hdlset_param('modelname', 'ObfuscateGeneratedHDLCode', 'on')
makehdl('dutname')

Emit time/date stamp in header
Specify whether or not to include time and date information in the generated HDL file header.

Settings

Default: On

 On
Include time/date stamp in the generated HDL file header.

 -- ----------------------------------------------------
 -- 
 -- File Name: hdlsrc\symmetric_fir.vhd
 -- Created: 2011-02-14 07:21:36
 -- 

 Off
Omit time/date stamp in the generated HDL file header.

 -- ----------------------------------------------------
 -- 
 -- File Name: hdlsrc\symmetric_fir.vhd
 -- 

By omitting the time/date stamp in the file header, you can more easily determine if two HDL files
contain identical code. You can also avoid redundant revisions of the same file when checking in
HDL files to a source code management (SCM) system.

Command-Line Information
Property: DateComment
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

Include requirements in block comments
Enable or disable generation of requirements comments as comments in code or code generation
reports.

Settings

Default: On
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 On
If the model contains requirements comments, include them as comments in code or code
generation reports. See “Requirements Comments and Hyperlinks” on page 25-13.

 Off
Do not include requirements as comments in code or code generation reports.

Command-Line Information
Property: RequirementComments
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.
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RTL Customizations for Constants and MATLAB Function Blocks

Inline MATLAB Function block code
Inline HDL code for MATLAB Function blocks.

Settings

Default: Off

 On
Inline HDL code for MATLAB Function blocks to avoid instantiation of code for custom blocks.

 Off
Instantiate HDL code for MATLAB Function blocks and do not inline.

Command-Line Information
Property: InlineMATLABBlockCode
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, to enable inlining of the code:

mdl = 'my_custom_block_model';
hdlset_param(mdl,'InlineMATLABBlockCode','on');

For example, to enable instantiation of HDL code:

mdl = 'my_custom_block_model';
hdlset_param(mdl,'InlineMATLABBlockCode','off');

Represent constant values by aggregates
Specify whether constants in VHDL code are represented by aggregates, including constants that are
less than 32 bits.

Settings

Default: Off

 On
HDL Coder represents constants as aggregates. The following VHDL constant declarations show
a scalar less than 32 bits represented as an aggregate:

GainFactor_gainparam <= (14 => '1',  OTHERS => '0');
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 Off
The coder represents constants less than 32 bits as scalars and constants greater than or equal to
32 bits as aggregates. The following VHDL code was generated by default for a value less than 32
bits:

GainFactor_gainparam <= to_signed(16384, 16);

Dependency

This option is enabled when the target language (specified by the Language option) is VHDL.

Command-Line Information
Property: UseAggregatesForConst
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.
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RTL Customizations for RAMs

Initialize all RAM blocks
Enable or suppress generation of initial signal value for RAM blocks. If you specify a nonzero initial
value for the RAM, this setting is ignored.

Settings

Default: On

 On
For RAM blocks, generate initial values of '0' for both the RAM signal and the output temporary
signal.

 Off
For RAM blocks, do not generate initial values for either the RAM signal or the output temporary
signal.

Tip

This parameter applies to these RAM blocks in the HDL Coder > HDL RAMs Block Library in the
Simulink Library Browser:

• Dual Port RAM
• Simple Dual Port RAM
• Single Port RAM
• Dual Rate Dual Port RAM

Command-Line Information
Property: InitializeBlockRAM
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

RAM Architecture
Select RAM architecture with clock enable, or without clock enable, for all RAMs in DUT subsystem.

Settings

Default: RAM with clock enable

Select one of the following options from the menu:

• RAM with clock enable: Generate RAMs with clock enable.
• Generic RAM without clock enable: Generate RAMs without clock enable.
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Command-Line Information
Property: RAMArchitecture
Type: character vector
Value: 'WithClockEnable' | 'WithoutClockEnable'
Default: 'WithClockEnable'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.
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No-reset registers initialization
Specify whether you want to initialize registers without reset and the mode of initialization.

Settings
Default: Generate initialization inside module

The options are:

Do not initialize
HDL Coder does not initialize the registers without a reset port.

Generate an external script
HDL Coder generates a script to initialize registers that do not have a reset port in the generated
code.

Generate initialization inside module
HDL Coder initializes the registers that do not have a reset port as part of the HDL code
generated for the DUT. In Verilog, an initial construct in the corresponding module definition
initializes the no-reset registers. In VHDL, the initialization code is part of the signal declaration
statements.

Usage Notes
If you have blocks with ResetType on page 21-20 set to none in your Simulink model or specify the
adaptive pipelining optimization, the generated HDL code can contain registers without a reset port.
If you do not initialize these registers, there can be potential numerical mismatches in the HDL
simulation results, because the registers are insensitive to the global reset logic. To avoid simulation
mismatches, use this setting to initialize these registers in the generated code. For better simulation
results, if you have registers without a reset port at the boundaries of the DUT, select Initialize test
bench inputs in the Test Bench pane. Setting this property provides an initial value for the data
driven to the DUT, and initializes the registers with these values.

Functionality Script None value InsideModule
Generated HDL
code for DUT

The script is generated
externally and does not
affect the HDL code for the
DUT.

HDL Coder does not
initialize the registers
in the generated code.

The code for initializing the
registers is part of the HDL
code for the DUT.

HDL simulator
support

The syntax of the script is
compliant with ModelSim®

10.2c or later. Other HDL
simulators or older
ModelSim versions do not
support the syntax of the
initialization script. This
mode does not support
enumeration types, and
initializing the registers
with non zero values.

There can be
numerical mismatches
in the HDL simulation
results, because this
mode does not
initialize the registers
that do not have a
reset port.

All HDL simulators support
this initialization mode, and
initialize the no-reset
registers with appropriate
values.
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Functionality Script None value InsideModule
Synthesis tool
support

As the script does not affect
the HDL code generated for
the DUT, all synthesis tools
support this initialization
mode.

Synthesis tools do not
initialize the no-reset
registers in this mode.

Later versions of synthesis
tools support the initialization
constructs in the generated
code. However, it is possible
that older versions do not
synthesize the initialization
constructs. To avoid such
issues, make sure that
synthesis tools can synthesize
the generated code.

Command-Line Information
Property: NoResetInitializationMode
Type: character vector
Value: 'InsideModule' | 'None''Script'
Default: 'InsideModule'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
“Minimize global resets” on page 16-40
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RTL Style
Use “rising_edge/falling_edge” style for registers
Specify whether generated code uses the VHDL rising_edge or falling_edge function to detect
clock transitions.

Settings

Default: Off

 On
Generated code uses the VHDL rising_edge or falling_edge function.

For example, the following code, generated from a Unit Delay block, uses rising_edge to detect
positive clock transitions:

Unit_Delay1_process : PROCESS (clk, reset)
  BEGIN
    IF reset = '1' THEN
      Unit_Delay1_out1 <= (OTHERS => '0');
    ELSIF rising_edge(clk) THEN
      IF clk_enable = '1' THEN
        Unit_Delay1_out1 <= signed(x_in);
      END IF;
    END IF; 
  END PROCESS Unit_Delay1_process;

 Off
Generated code uses the 'event syntax.

For example, the following code, generated from a Unit Delay block, uses clk'event AND clk
= '1' to detect positive clock transitions:

Unit_Delay1_process : PROCESS (clk, reset)
  BEGIN
    IF reset = '1' THEN
      Unit_Delay1_out1 <= (OTHERS => '0');
    ELSIF clk'event AND clk = '1' THEN
      IF clk_enable = '1' THEN
        Unit_Delay1_out1 <= signed(x_in);
      END IF;
    END IF; 
  END PROCESS Unit_Delay1_process;

Dependency

This option is enabled when the target language is VHDL.

Command-Line Information
Property: UseRisingEdge
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.
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Minimize intermediate signals
Specify whether to optimize HDL code for debuggability or code coverage.

Settings

Default: Off

 On
Optimize for code coverage by minimizing intermediate signals. For example, suppose that the
generated code with this setting off is:
const3 <= to_signed(24, 7);
subtractor_sub_cast <= resize(const3, 8);
subtractor_sub_cast_1 <= resize(delayout, 8);
subtractor_sub_temp <= subtractor_sub_cast - subtractor_sub_cast_1;

With this setting on, HDL Coder optimizes the output to:
subtractor_sub_temp <= 24 - (resize(delayout, 8));

The code generator removes the intermediate signals const3, subtractor_sub_cast, and
subtractor_sub_cast_1.

 Off
Optimize for debuggability by preserving intermediate signals.

Command-Line Information
Property: MinimizeIntermediateSignals
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

Scalarize vector ports
Flatten vector ports into a structure of scalar ports in VHDL code

Settings

Default: Off

 On
When generating code for a vector port, generate a structure of scalar ports.

 Off
When generating code for a vector port, generate a type definition and port declaration for the
vector port.

Dependency

This option is enabled when the target language (specified by the Language option) is VHDL.
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Command-Line Information
Property: ScalarizePorts
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

Usage Notes

The ScalarizePorts property lets you control how HDL Coder generates VHDL code for vector
ports.

For example, consider the subsystem vsum in the following figure.

By default, ScalarizePorts is 'off'. The coder generates a type definition and port declaration
for the vector port In1 like the following:
PACKAGE simplevectorsum_pkg IS
  TYPE vector_of_std_logic_vector16 IS ARRAY (NATURAL RANGE <>) 
     OF std_logic_vector(15 DOWNTO 0);
  TYPE vector_of_signed16 IS ARRAY (NATURAL RANGE <>) OF signed(15 DOWNTO 0);
END simplevectorsum_pkg;
.
.
.
ENTITY vsum IS
  PORT( In1     :  IN    vector_of_std_logic_vector16(0 TO 9);  -- int16 [10]
        Out1    :  OUT   std_logic_vector(19 DOWNTO 0)  -- sfix20
        );
END vsum;

Under VHDL typing rules two types declared in this manner are not compatible across design units.
This may cause problems if you need to interface two or more generated VHDL code modules.

You can flatten such a vector port into a structure of scalar ports by enabling ScalarizePorts in
your makehdl command, as in the following example.
 makehdl(gcs,'ScalarizePorts','on')

The listing below shows the generated ports.
ENTITY vsum IS
  PORT( In1_0                :   IN    std_logic_vector(15 DOWNTO 0);  -- int16
        In1_1                :   IN    std_logic_vector(15 DOWNTO 0);  -- int16
        In1_2                :   IN    std_logic_vector(15 DOWNTO 0);  -- int16
        In1_3                :   IN    std_logic_vector(15 DOWNTO 0);  -- int16
        In1_4                :   IN    std_logic_vector(15 DOWNTO 0);  -- int16
        In1_5                :   IN    std_logic_vector(15 DOWNTO 0);  -- int16
        In1_6                :   IN    std_logic_vector(15 DOWNTO 0);  -- int16
        In1_7                :   IN    std_logic_vector(15 DOWNTO 0);  -- int16
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        In1_8                :   IN    std_logic_vector(15 DOWNTO 0);  -- int16
        In1_9                :   IN    std_logic_vector(15 DOWNTO 0);  -- int16
        Out1                 :   OUT   std_logic_vector(19 DOWNTO 0)  -- sfix20
        );
END vsum;

Unroll for Generate Loops in VHDL code
Specify whether VHDL FOR and GENERATE loops are unrolled and omitted from generated VHDL
code.

Settings

Default: Off

 On
Unroll and omit FOR and GENERATE loops from the generated VHDL code. (In Verilog code, loops
are always unrolled.)

 Off
Include FOR and GENERATE loops in the generated VHDL code.

Tip

• If you are using an electronic design automation (EDA) tool that does not support GENERATE
loops, select this option to omit loops from your generated VHDL code.

• Setting this option does not affect results obtained from simulation or synthesis of generated
VHDL code.

Dependency

This option is enabled when the target language (specified by the Language option) is VHDL.

Command-Line Information
Property: LoopUnrolling
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

Generate parameterized HDL code from masked subsystem
Generate reusable HDL code for subsystems with the same tunable mask parameters, but with
different values.

Settings

Default: Off
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 On
Generate one reusable HDL file for multiple masked subsystems with different values for the
mask parameters. HDL Coder automatically detects subsystems with tunable mask parameters
that are sharable.

Inside the subsystem, you can use the mask parameter only in the following blocks and
parameters.

Block Parameter Limitation
Constant Constant value on the Main

tab of the dialog box
None

Gain Gain on the Main tab of the
dialog box

Parameter data type must
be the same for all Gain
blocks.

 Off
Generate a separate HDL file for each masked subsystem.

Command-Line Information
Property: MaskParameterAsGeneric
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“Generate Reusable Code for Atomic Subsystems” on page 27-17

Enumerated Type Encoding Scheme
Specify the encoding scheme to represent enumeration types in the generated HDL code.

Settings

Default: default

Use default, onehot, twohot, or binary encoding scheme to represent enumerated types in the
generated HDL code.

default
The code generator uses decimal encoding in Verilog and VHDL-native enumerated types in
VHDL. This example shows the verilog code snippet of this encoding scheme for a Stateflow
Chart that has four states.

parameter 
is_Chart_IN_s_idle = 2'd0, 
is_Chart_IN_s_rx = 2'd1, 
is_Chart_IN_s_wait_0 = 2'd2, 
is_Chart_IN_s_wait_tb = 2'd3;
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onehot
The code generator uses a one-hot encoding scheme where a single bit is high to represent each
enumeration value. This example shows the verilog code snippet of this encoding scheme for a
Stateflow Chart that has four states.

parameter 
is_Chart_IN_s_idle = 4'b0001, 
is_Chart_IN_s_rx = 4'b0010, 
is_Chart_IN_s_wait_0 = 4'b0100, 
is_Chart_IN_s_wait_tb = 4'b1000;

This encoding scheme does not support more than 64 enumeration values or number of states.
twohot

The code generator uses a two-hot encoding scheme where two bits are high to represent each
enumeration value. This example shows the verilog code snippet of this encoding scheme for a
Stateflow Chart that has four states.

parameter 
is_Chart_IN_s_idle = 4'b0011, 
is_Chart_IN_s_rx = 4'b0101, 
is_Chart_IN_s_wait_0 = 4'b0110, 
is_Chart_IN_s_wait_tb = 4'b1001;

binary
The code generator uses a binary encoding scheme to represent each enumeration value. This
example shows the verilog code snippet of this encoding scheme for a Stateflow Chart that has
four states.

parameter 
is_Chart_IN_s_idle = 2'b00, 
is_Chart_IN_s_rx = 2'b01, 
is_Chart_IN_s_wait_0 = 2'b10, 
is_Chart_IN_s_wait_tb = 2'b11;

In VHDL, the generated code uses CONSTANT types to encode nondefault enumeration values in the
generated code. For example, this code snippet shows the generated VHDL code when you use the
two-hot state encoding for a Stateflow Chart that has four states.

 PACKAGE s_pkg IS
  -- Constants
  -- Two-hot encoded enumeration values for type state_type_is_Chart
  CONSTANT IN_s_idle         : std_logic_vector(3 DOWNTO 0) := 
    "0011";
  CONSTANT IN_s_rx           : std_logic_vector(3 DOWNTO 0) := 
    "0101";
  CONSTANT IN_s_wait_0       : std_logic_vector(3 DOWNTO 0) := 
    "0110";
  CONSTANT IN_s_wait_tb      : std_logic_vector(3 DOWNTO 0) := 
    "1001";

END s_pkg;

Command-Line Information
Property: EnumEncodingScheme
Type: character vector
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Value: 'default' | 'onehot' | 'twohot''binary'
Default: 'default'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.
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Timing Controller Settings

Optimize timing controller
Optimize timing controller entity for speed and code size by implementing separate counters per rate.

Settings

Default: On

 On
HDL Coder generates multiple counters (one counter for each rate in the model) in the timing
controller code. The benefit of this optimization is that it generates faster logic, and the size of
the generated code is usually much smaller.

 Off
The coder generates a timing controller that uses one counter to generate all rates in the model.

Tip

A timing controller code file is generated if required by the design, for example:

• When code is generated for a multirate model
• When a cascade block implementation for certain blocks is specified

This file contains a module defining timing signals (clock, reset, external clock enable inputs and
clock enable output) in a separate entity or module. In a multirate model, the timing controller entity
generates the required rates from a single master clock using one or more counters and multiple
clock enables.

The timing controller name derives from the name of the subsystem that is selected for code
generation (the DUT), and the current value of the property TimingControllerPostfix. For
example, if the name of your DUT is my_test, in the default case the coder adds the
TimingControllerPostfix _tc to form the timing controller name my_test_tc.

Command-Line Information
Property: OptimizeTimingController
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

Timing controller architecture
Specify whether to generate a reset for the timing controller.

Settings

Default: default

 Timing Controller Settings
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resettable
Generate a reset for the timing controller. If you select this option, the Clock inputs value must
be Single.

default
Do not generate a reset for the timing controller.

Command-Line Information
Property: TimingControllerArch
Type: character vector
Value: 'resettable' | 'default'
Default: 'default'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.
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File Comment Customization

Custom File Header Comment
Specify a custom file header comment in the generated HDL code.

Default: ''

With Custom File Header Comment, you can enter custom comments to appear as header in the
generated HDL file for your design.

For example, you can specify arguments such as title, author, modified date, and so on.

// =======================================================
// Title           : <%Title%>
// Project         : <%Project%>
// Author          : <%Author%>
//
// Revision           : $Revision$
// Date Modified      : $Date$
// =======================================================

Command-Line Information
Property: CustomFileHeaderComment
Type: character vector
Default: ''

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

Custom File Footer Comment
Specify a custom file header comment in the generated HDL code.

Default: ''

With Custom File Footer Comment, you can enter custom comments to appear as footer in the
generated HDL file for your design.

For example, you can specify arguments such as revision, generated log file, revision number, and so
on.

//======================================================== 
//  xxxxxx 
//======================================================== 
//  $Log$ 
//  Revision 1.2  2009/12/14 04:38:51  sxxxxxx 
//  Initial revision 
// 
//======================================================== 
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Command-Line Information
Property: CustomFileFooterComment
Type: character vector
Default: ''

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.
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Choose Coding Standard and Report Options
This section contains parameters in the Coding standards tab of the HDL Code Generation >
Global Settings pane of the Configuration Parameters dialog box. Use these parameters to generate
HDL code that adheres to the guidelines recommended by Industry coding standards.

HDL coding standard
Specify whether to enable the Industry coding standard guidelines that the generated HDL code must
conform to.

Settings

Default: None

None
Generate generic synthesizable HDL code. The generated code need not conform with the
Industry standard guidelines.

Industry
Generate synthesizable HDL code that follows the industry standard rules supported by HDL
Coder. When you specify the Industry setting, the code generator enables the Report options
check box and rules that you can customize in the Coding Standards tab.

When you specify the Industry setting and generate code, HDL Coder generates a standards
compliance report. The report displays errors, warnings, messages, and lists the corresponding
rules. To filter the report such that the passing rules do not appear, clear the Report options
check box.

Command-Line Information
Property: HDLCodingStandard
Type: character vector
Value: 'None' | 'Industry'
Default: 'None'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can enable the Industry standard guidelines compliance for the symmetric_fir
subsystem inside the sfir_fixed model using either of these methods.

• Use hdlset_param to set the parameter on the model. Then generate HDL code using makehdl.

hdlset_param('sfir_fixed','HDLCodingStandard','Industry')
makehdl('sfir_fixed/symmetric_fir')

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir','HDLCodingStandard','Industry')

See Also

• makehdl
• “HDL Coding Standards” on page 26-4
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• HDL Coding Standard Customization Properties

Report options
Specify whether to filter the coding standard report such that the passing rules do not appear. By
default, the report displays pass, errors, warnings, messages, and lists the corresponding rules.

Settings

Default: Off

 On
Show only rules with errors or warnings. The code generator filters out messages and passing
rules from the report.

 Off
Show all rules in the report including the messages and passing rules.

Dependency

To clear the Report options check box, set the HDL coding standard parameter to Industry.

Command-Line Information

To set this property:

1 Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');

2 Set the ShowPassingRules property of the HDL coding standard customization object.

For example, to omit passing rules from the report, enter:

cso.ShowPassingRules.enable = false;

3 Set the HDLCodingStandardCustomizations property to the HDL coding standard
customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:

makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry', ...
        'HDLCodingStandardCustomizations',cso);

See Also

• makehdl
• “HDL Coding Standards” on page 26-4
• hdlcoder.CodingStandard
• HDL Coding Standard Customization
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Basic Coding Practices
These parameters belong to the Basic coding rules section of the Coding standards tab of the
HDL Code Generation > Global Settings pane of the Configuration Parameters dialog box. Use
these parameters to customize basic coding rules that are specified by the Industry standard
guidelines. These rules correspond to naming conventions that your design uses.

Check for duplicate names
Specify whether to check for duplicate names in the design. This check corresponds to CGSL-1.A.A.5
of the Industry standard guidelines.

Settings

Default: On

 On
Check for duplicate names.

 Off
Do not check for duplicate names.

Dependency

To clear the Check for duplicate names check box, set the HDL coding standard parameter to
Industry.

Command-Line Information

To set this property:

1 Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');
2 Set the DetectDuplicateNamesCheck property of the HDL coding standard customization

object.

For example, to disable the check for duplicate names, enter:

cso.DetectDuplicateNamesCheck.enable = false;
3 Set the HDLCodingStandardCustomizations property to the HDL coding standard

customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:
makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry', ...
        'HDLCodingStandardCustomizations',cso);

See Also

• makehdl
• “Basic Coding Practices” on page 26-9
• hdlcoder.CodingStandard
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Check for HDL keywords in design names
Specify whether to check for HDL keywords in design names. This check corresponds to
CGSL-1.A.A.3 of the Industry standard guidelines.

Settings

Default: On

 On
Check for HDL keywords in design names.

 Off
Do not check for HDL keywords in design names.

Dependency

To clear the Check for HDL keywords in design names check box, set the HDL coding standard
parameter to Industry.

Command-Line Information

To set this property:

1 Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');
2 Set the HDLKeywords property of the HDL coding standard customization object.

For example, to disable the check for HDL keywords in design names, enter:

cso.HDLKeywords.enable = false;
3 Set the HDLCodingStandardCustomizations property to the HDL coding standard

customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:
makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry', ...
        'HDLCodingStandardCustomizations',cso);

See Also

• makehdl
• “Basic Coding Practices” on page 26-9
• hdlcoder.CodingStandard
• HDL Coding Standard Customization

Check module, instance, entity name length
Specify whether to check module, instance, and entity name length. This check corresponds to
CGSL-1.A.C.3 of the Industry standard guidelines.
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Settings

Default: On

 On
Check module, instance, and entity name length.
Minimum

Minimum name length, specified as a positive integer. The default is 2.
Maximum

Maximum name length, specified as a positive integer. The default is 32.

 Off
Do not check module, instance, and entity name length.

Dependency

To clear the Check module, instance, entity name length check box, set the HDL coding
standard parameter to Industry.

Command-Line Information

To set this property:

1 Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');

2 Set the ModuleInstanceEntityNameLength property of the HDL coding standard
customization object.

For example, to enable the check for module, instance, and entity name length, with 5 as the
minimum length and 30 as the maximum length, enter:

cso.ModuleInstanceEntityNameLength.enable = true;
cso.ModuleInstanceEntityNameLength.length = [5 30];

3 Set the HDLCodingStandardCustomizations property to the HDL coding standard
customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:

makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry', ...
        'HDLCodingStandardCustomizations',cso);

See Also

• makehdl
• “Basic Coding Practices” on page 26-9
• hdlcoder.CodingStandard
• HDL Coding Standard Customization
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Check signal, port, and parameter name length
Specify whether to check signal, port, and parameter name length. This check corresponds to
CGSL-1.A.B.1 of the Industry standard guidelines.

Settings

Default: On

 On
Check signal, port, and parameter name length.
Minimum

Minimum name length, specified as a positive integer. The default is 2.
Maximum

Maximum name length, specified as a positive integer. The default is 40.

 Off
Do not check signal, port, and parameter name length.

Dependency

To clear the Check signal, port, and parameter name length check box, set the HDL coding
standard parameter to Industry.

Command-Line Information

To set this property:

1 Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');
2 Set the SignalPortParamNameLength property of the HDL coding standard customization

object.

For example, to enable the check for signal, port, and parameter name length, with 5 as the
minimum length and 30 as the maximum length, enter:

cso.SignalPortParamNameLength.enable = true;
cso.SignalPortParamNameLength.length = [5 30];

3 Set the HDLCodingStandardCustomizations property to the HDL coding standard
customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:
makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry', ...
        'HDLCodingStandardCustomizations',cso);

See Also

• makehdl
• “Basic Coding Practices” on page 26-9
• hdlcoder.CodingStandard
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RTL Description Rules for clock enables and resets
These parameters belong to the RTL description rules section of the Coding standards tab of the
HDL Code Generation > Global Settings pane of the Configuration Parameters dialog box. Use
these parameters to customize RTL description rules for clock enable and reset signals that are
specified by the Industry standard guidelines.

Check for clock enable signals
Specify whether to check for clock enable signals in the generated code. This check corresponds to
CGSL-2.C.C.4 of the Industry standard guidelines.

Settings

Default: Off

 On
Minimize clock enables during code generation, then check for clock enable signals in the
generated code.

 Off
Do not check for clock enable signals in the generated code.

Dependency

To select the Check for clock enable signals check box, set the HDL coding standard parameter
to Industry.

Command-Line Information

To set this property:

1 Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');
2 Set the MinimizeClockEnableCheck property of the HDL coding standard customization

object.

For example, to minimize clock enables and check for clock enable signals in the generated code,
enter:

cso.MinimizeClockEnableCheck.enable = true;
3 Set the HDLCodingStandardCustomizations property to the HDL coding standard

customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:
makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry', ...
        'HDLCodingStandardCustomizations',cso);

See Also

• makehdl
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• “RTL Description Techniques” on page 26-18
• hdlcoder.CodingStandard
• HDL Coding Standard Customization

Detect usage of reset signals
Specify whether to check for reset signals in the generated code. This check corresponds to
CGSL-2.C.C.5 of the Industry standard guidelines.

Settings

Default: Off

 On
Minimize reset signals in the generated code, then check for reset signals after code generation.

 Off
Do not check for reset signals in the generated code.

Dependency

To select the Detect usage of reset signals check box, set the HDL coding standard parameter to
Industry.

Command-Line Information

To set this property:

1 Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');
2 Set the RemoveResetCheck property of the HDL coding standard customization object.

For example, to check for reset signals, enter:

cso.RemoveResetCheck.enable = true;
3 Set the HDLCodingStandardCustomizations property to the HDL coding standard

customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:
makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry', ...
        'HDLCodingStandardCustomizations',cso);

See Also

• makehdl
• “RTL Description Techniques” on page 26-18
• hdlcoder.CodingStandard
• HDL Coding Standard Customization
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Detect usage of asynchronous reset signals
Specify whether to check for asynchronous reset signals in the generated code. This check
corresponds to CGSL-2.C.C.6 of the Industry standard guidelines.

Settings

Default: Off

 On
Check for asynchronous reset signals in the generated code.

 Off
Do not check for asynchronous reset signals in the generated code.

Dependency

To clear the Detect usage of asynchronous reset signals check box, set the HDL coding
standard parameter to Industry.

Command-Line Information

To set this property:

1 Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');
2 Set the AsynchronousResetCheck property of the HDL coding standard customization object.

For example, to minimize use of variables, enter:

cso.AsynchronousResetCheck.enable = true;
3 Set the HDLCodingStandardCustomizations property to the HDL coding standard

customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:
makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry', ...
        'HDLCodingStandardCustomizations',cso);

See Also

• makehdl
• “RTL Description Techniques” on page 26-18
• hdlcoder.CodingStandard
• HDL Coding Standard Customization
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RTL Description Rules for Conditionals
These parameters belong to the RTL description rules section of the Coding standards tab of the
HDL Code Generation > Global Settings pane of the Configuration Parameters dialog box. Use
these parameters to customize RTL description rules for conditional and if-else statements that are
specified by the Industry standard guidelines.

Check for conditional statements in processes
Specify whether to check for length of conditional statements that are described separately within a
process. This check corresponds to CGSL-2.F.B.1 of the Industry standard guidelines.

Settings

Default: On

 On
Check for length of conditional statements in a process. The default length is 1.

 Off
Do not check for length of conditional statements in a process.

Dependency

To clear the Check for conditional statements in processes check box, set the HDL coding
standard parameter to Industry.

Command-Line Information

To set this property:

1 Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');
2 Set the ConditionalRegionCheck property of the HDL coding standard customization object.

For example, to check for four conditional statements in a process, enter:

cso.ConditionalRegionCheck.enable = true;
cso.ConditionalRegionCheck.length = 4;

3 Set the HDLCodingStandardCustomizations property to the HDL coding standard
customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:
makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry', ...
        'HDLCodingStandardCustomizations',cso);

See Also

• makehdl
• “RTL Description Techniques” on page 26-18
• hdlcoder.CodingStandard
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Check if-else statement chain length
Specify whether to check if-else statement chain length. This check corresponds to CGSL-2.G.C.1c of
the Industry standard guidelines.

Settings

Default: On

 On
Check if-else statement chain length.
Length

Maximum if-else statement chain length, specified as a positive integer. The default is 7.

 Off
Do not check if-else statement chain length.

Dependency

To clear the Check if-else statement chain length check box, set the HDL coding standard
parameter to Industry.

Command-Line Information

To set this property:

1 Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');
2 Set the IfElseChain property of the HDL coding standard customization object.

For example, to check for if-else statement chains with length greater than 5, enter:

cso.IfElseChain.enable = true;
cso.IfElseChain.length = 5;

3 Set the HDLCodingStandardCustomizations property to the HDL coding standard
customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:
makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry', ...
        'HDLCodingStandardCustomizations',cso);

See Also

• makehdl
• “RTL Description Techniques” on page 26-18
• hdlcoder.CodingStandard
• HDL Coding Standard Customization
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Check if-else statement nesting depth
Specify whether to check if-else statement nesting depth. This check corresponds to CGSL-2.G.C.1a of
the Industry standard guidelines.

Settings

Default: On

 On
Check if-else statement nesting depth.
Depth

Maximum if-else statement nesting depth, specified as a positive integer. The default is 3.

 Off
Do not check if-else statement nesting depth.

Dependency

To clear the Check if-else statement nesting depth check box, set the HDL coding standard
parameter to Industry.

Command-Line Information

To set this property:

1 Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');
2 Set the IfElseNesting property of the HDL coding standard customization object.

For example, to enable the check for if-else statement nesting depth with a maximum depth of 5,
enter:

cso.IfElseNesting.enable = true;
cso.IfElseNesting.depth = 5;

3 Set the HDLCodingStandardCustomizations property to the HDL coding standard
customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:
makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry', ...
        'HDLCodingStandardCustomizations',cso);

See Also

• makehdl
• “RTL Description Techniques” on page 26-18
• hdlcoder.CodingStandard
• HDL Coding Standard Customization
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Other RTL Description Rules
These parameters belong to the RTL description rules section of the Coding standards tab of the
HDL Code Generation > Global Settings pane of the Configuration Parameters dialog box. Use
these parameters to customize RTL description rules of the Industry standard guidelines. These rules
pertain to checking the multiplier width, whether to minimize use of variables, and initial statements
to provide initial value for RAMs.

Minimize use of variables
Specify whether to minimize use of variables. This check corresponds to CGSL-2.G of the Industry
standard guidelines.

Settings

Default: Off

 On
Minimize use of variables.

 Off
Do not minimize use of variables.

Dependency

To select the Minimize use of variables check box, set the HDL coding standard parameter to
Industry.

Command-Line Information

To set this property:

1 Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');
2 Set the MinimizeVariableUsage property of the HDL coding standard customization object.

For example, to minimize use of variables, enter:

cso.MinimizeVariableUsage.enable = true;
3 Set the HDLCodingStandardCustomizations property to the HDL coding standard

customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:
makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry', ...
        'HDLCodingStandardCustomizations',cso);

See Also

• makehdl
• “RTL Description Techniques” on page 26-18
• hdlcoder.CodingStandard

16 HDL Code Generation Pane: Global Settings

16-80



• HDL Coding Standard Customization

Check for initial statements that set RAM initial values
Specify whether to check for initial statements that set RAM initial values. This check corresponds to
CGSL-2.C.D.1 of the Industry standard guidelines.

Settings

Default: On

 On
Check for initial statements that set RAM initial values

 Off
Do not check for initial statements that set RAM initial values.

Dependency

To clear the Check for initial statements that set RAM initial values check box, set the HDL
coding standard parameter to Industry.

Command-Line Information

To set this property:

1 Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');
2 Set the InitialStatements property of the HDL coding standard customization object.

For example, to disable the check for initial statements that set RAM initial values, enter:

cso.InitialStatements.enable = false;
3 Set the HDLCodingStandardCustomizations property to the HDL coding standard

customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:
makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry', ...
        'HDLCodingStandardCustomizations',cso);

See Also

• makehdl
• “RTL Description Techniques” on page 26-18
• hdlcoder.CodingStandard
• HDL Coding Standard Customization

Check multiplier width
Specify whether to check multiplier bit width. This check corresponds to CGSL-2.J.F.5 of the Industry
standard guidelines.
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Settings

Default: On

 On
Check multiplier width.
Maximum

Maximum multiplier bit width, specified as a positive integer. The default is 16.

 Off
Do not check multiplier width.

Dependency

To clear the Check multiplier width check box, set the HDL coding standard parameter to
Industry.

Command-Line Information

To set this property:

1 Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');
2 Set the MultiplierBitWidth property of the HDL coding standard customization object.

For example, to enable the check for multiplier width with a maximum bit width of 32, enter:

cso.MultiplierBitWidth.enable = true;
cso.MultiplierBitWidth.width = 32;

3 Set the HDLCodingStandardCustomizations property to the HDL coding standard
customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:
makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry', ...
        'HDLCodingStandardCustomizations',cso);

See Also

• makehdl
• “RTL Description Techniques” on page 26-18
• hdlcoder.CodingStandard
• HDL Coding Standard Customization
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RTL Design Rules
This section contains parameters in the RTL design rules section of the Coding standards tab of
the HDL Code Generation > Global Settings pane of the Configuration Parameters dialog box. Use
these parameters to check for presence of non-integer constants and the line wrap length in the
generated HDL code.

Check for non-integer constants
Specify whether to check for non-integer constants. This check corresponds to CGSL-3.B.D.1 of the
Industry standard guidelines.

Settings

Default: On

 On
Check for non-integer constants.

 Off
Do not check for non-integer constants.

Dependency

To clear the Check for non-integer constants check box, set the HDL coding standard parameter
to Industry.

Command-Line Information

To set this property:

1 Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');
2 Set the NonIntegerTypes property of the HDL coding standard customization object.

For example, to disable the check for non-integer constants, enter:

cso.NonIntegerTypes.enable = false;
3 Set the HDLCodingStandardCustomizations property to the HDL coding standard

customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:
makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry', ...
        'HDLCodingStandardCustomizations',cso);

See Also

• makehdl
• “RTL Design Rules” on page 16-83
• hdlcoder.CodingStandard
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Check line length
Specify whether to check line lengths in the generated HDL code. This check corresponds to
CGSL-3.A.D.5 of the Industry standard guidelines.

Settings

Default: On

 On
Check line length.
Maximum

Maximum number of characters in a line, specified as a positive integer. The default is 110.

 Off
Do not check line length.

Dependency

To clear the Check line length check box, set the HDL coding standard parameter to Industry.

Command-Line Information

To set this property:

1 Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');
2 Set the LineLength property of the HDL coding standard customization object.

For example, to enable the check line length with a maximum character length of 80, enter:

cso.HDLKeywordsLineLength.enable = true;
cso.HDLKeywordsLineLength.length = 80;

3 Set the HDLCodingStandardCustomizations property to the HDL coding standard
customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:
makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry', ...
        'HDLCodingStandardCustomizations',cso);

See Also

• makehdl
• “RTL Design Rules” on page 16-83
• hdlcoder.CodingStandard
• HDL Coding Standard Customization
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Model Generation for HDL Code
In the Configuration Parameter dialog box, you can select the types of the model that you want to
generate. Select HDL Code Generation > Global Settings > Model Generation.

You can customize the name of the generated model and the validation model by using “Naming
Options” on page 16-88. To control the layout of the generated models, use the “Layout Options” on
page 16-90.

Generated model
Enable or disable generation of the generated model that shows latency and numeric differences
between your Simulink DUT and the generated HDL code. Delays that the coder inserts are
highlighted in the generated model.

Note When you select Generated model, the Naming options and Layout options become
available.

Settings

Default: On

 On
Select this setting to generate the generated model. By default, HDL Coder generates code and
the generated model. To generate only the generated model, clear the Generate HDL code
check box.

 Off
Clear this setting when you do not want to generate the generated model. When you click the
Generate button, HDL Coder generates code for the model.

Command-Line Information
Property: GenerateModel
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

By default, the GenerateHDLCode property is enabled. You can use this property in conjunction with
the GenerateModel property to specify whether to generate the generated model and the HDL code.
To generate the code and the generated model, run makehdl.

makehdl('sfir_fixed/symmetric_fir')

If you want to generate only the generated model, disable the GenerateHDLCode property and run
makehdl.

hdlset_param('sfir_fixed', 'GenerateModel','on');
hdlset_param('sfir_fixed', 'GenerateHDLCode',off');
makehdl('sfir_fixed/symmetric_fir'
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See Also

• “Balance delays” on page 14-3
• “Generated Model and Validation Model” on page 24-5
• “Prefix for generated model name” on page 16-88

Validation model
Enable or disable generation of a validation model that verifies the functional equivalence of the
original model with the generated model. The validation model contains the original and the
generated DUT models. You can use the generated DUT model to observe the effect of block settings
and optimizations such as resource sharing, streaming, and delay balancing.

If you enable generation of a validation model, make sure that delay balancing is enabled on the
model. In the HDL Code Generation > Optimization > General tab, select the Balance delays
check box. Delay balancing keeps the generated DUT model synchronized with the original DUT
model. Validation fails when there is a mismatch between delays in the original DUT model and
delays in the generated DUT model.

Settings

Default: Off

 On
Select this setting to generate the validation model. By default, HDL Coder generates code and
the validation model. To generate only the validation model, clear the Generate HDL code check
box.

 Off
Clear this setting when you do not want to generate the validation model. When you click the
Generate button, HDL Coder generates code for the model.

Command-Line Information
Property: GenerateValidationModel
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

By default, the GenerateHDLCode property is enabled. You can use this property in conjunction with
the GenerateValidationModel property to specify whether to generate the validation model and
the HDL code. To generate the code and the validation model, enable the
GenerateValidationModel property with makehdl.

hdlset_param('sfir_fixed', 'GenerateValidationModel','on');
makehdl('sfir_fixed/symmetric_fir')

If you want to generate only the validation model, disable the GenerateHDLCode property and
enable the GenerateValidationModel property with makehdl.
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hdlset_param('sfir_fixed', 'GenerateValidationModel','on');
hdlset_param('sfir_fixed', 'GenerateHDLCode',off');
makehdl('sfir_fixed/symmetric_fir'

See Also

• “Balance delays” on page 14-3
• “Generated Model and Validation Model” on page 24-5
• “Suffix for validation model name” on page 16-88
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Naming Options
This section contains different naming options available in HDL Code Generation > Global
Settings pane under Model Generation tab. You can control the prefix for the generated model
name and the suffix for the validation model name.

Prefix for generated model name
Specify the prefix to the generated model name.

Settings

Default: 'gm_'

Specify the prefix as a character vector. HDL Coder appends the prefix to name of generated model.

Command-Line Information
Property: GeneratedModelNamePrefix
Type: character vector
Default: 'gm_'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, to indicate that you are using the generated model as a software interface model, you
can use the prefix sm_. Specify this property when you generate HDL code for the symmetric_fir
subsystem inside the sfir_fixed model by using either of these methods:

• Pass the property as an argument to the makehdl function.
makehdl('sfir_fixed/symmetric_fir', ... 
        'GeneratedModelNamePrefix','sm_')

• When you use hdlset_param, set the parameter on the model, and then generate HDL code by
using makehdl.
hdlset_param('sfir_fixed','GeneratedModelNamePrefix','sm_')
makehdl('sfir_fixed/symmetric_fir')

Dependency

To specify Prefix for generated model, select Generated model.

See Also

• “Generated Model” on page 24-5
• “Suffix for validation model name” on page 16-88
• “Generated Model and Validation Model” on page 24-5

Suffix for validation model name
Specify the suffix for the validation model name.

Settings

Default:'_vnl'
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Specify the suffix as a character vector. HDL Coder appends the suffix to name of validation model.

Command-Line Information
Property: ValidationModelNameSuffix
Type: character vector
Default: '_vnl'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, to indicate that you are using the generated model as a software interface model, you
can use the suffix _sm for the validation model name. Specify this property when you generate HDL
code for the symmetric_fir subsystem inside the sfir_fixed model by using either of these
methods:

• Pass the property as an argument to the makehdl function.
makehdl('sfir_fixed/symmetric_fir', ... 
        'ValidationModelNameSuffix','_sm')

• When you use hdlset_param, set the parameter on the model, and then generate HDL code by
using makehdl.
hdlset_param('sfir_fixed','ValidationModelNameSuffix','_sm')
makehdl('sfir_fixed/symmetric_fir')

Dependency

To specify Suffix for validation model, select Generated model and Validation model.

See Also

• “Validation model” on page 16-86
• “Prefix for generated model name” on page 16-88
• “Generated Model and Validation Model” on page 24-5
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Layout Options
Different layout options are available in HDL Code Generation > Global Settings pane under the
Model Generation tab. You can control placement of blocks, routing of signals within the models,
and scaling of blocks.

Auto block placement
Specify automatic placement of blocks in the HDL model.

Settings

Default: On

Command-Line Information
Property: autoplace
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param:

hdlset_param(gcs,'autoplace','on')

Dependency

To select Auto block placement, first select Generated model.

See Also

“Model Generation for HDL Code” on page 16-85

Auto signal routing
Specify automatic routing of signals in the generated HDL model.

Settings

Default: On

Command-Line Information
Property: autoroute
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param:

hdlset_param(gcs,'autoroute','on')

Dependency

To select Auto signal routing, first select Auto block placement.
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See Also

“Model Generation for HDL Code” on page 16-85

Inter-block horizontal scaling
Scale the generated model horizontally. You can use this setting with Inter-block vertical scaling
depending on how tightly packed or loosely packed you want the model to appear.

Settings

Default: 1.7

Command-Line Information
Property: InterBlkHorzScale
Type: positive integer | positive double
Default: 1.7

To set this property, use hdlset_param:

hdlset_param(gcs,'InterBlkHorzScale', 1.7)

Dependency

To select Inter-block horizontal scaling, first select Auto block placement.

See Also

“Model Generation for HDL Code” on page 16-85

Inter-block vertical scaling
Scale the generated model vertically. You can use this setting with Inter-block horizontal scaling
depending on how tightly packed or loosely packed you want the model to appear.

Settings

Default: 1.2

Command-Line Information
Property: InterBlkVertScale
Type: positive integer | positive double
Default: 1.2

To set this property, use hdlset_param:

hdlset_param(gcs,'InterBlkVertScale', 1.2)

Dependency

To select Inter-block vertical scaling, first select Auto block placement.
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See Also

“Model Generation for HDL Code” on page 16-85
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Diagnostics for Optimizations
This section contains parameters in the Diagnostics option under Advanced tab in the Configuration
Parameters dialog box. Select HDL Code Generation > Global Settings. To highlight blocks and
feedback loops that inhibit delay balancing, distributed pipelining, clock-rate pipelining, and other
optimizations, use these parameters.

Highlight feedback loops inhibiting delay balancing and optimizations
Feedback loops in your Simulink model can inhibit delay balancing and optimizations such as
resource sharing and streaming. Use this setting to generate a script that highlights feedback loops.

When you generate the feedback loop highlighting script, HDL Coder generates another script that
clears the highlighting of feedback loops in your model. To turn off highlighting, click the link to the
clearhighlighting script.

Settings

Default: On

 On
Generate a MATLAB script that highlights feedback loops in the original model and the generated
model. When you run the script, the code generator highlights the feedback loops using different
colors. The highlighting script is saved in the same target folder as the generated HDL code.

It is recommended that you leave this setting enabled so that you can identify the feedback loops
and further optimize your design.

 Off
Do not generate a script to highlight feedback loops.

Command-Line Information
Property: HighlightFeedbackLoops
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can specify this property while generating HDL code for the symmetric_fir
subsystem inside the sfir_fixed model using either of these methods.

• Use hdlset_param to set the parameter on the model. Then generate HDL code using makehdl.

hdlset_param('sfir_fixed','HighlightFeedbackLoops','off')
makehdl('sfir_fixed/symmetric_fir')

• Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir','HighlightFeedbackLoops','off')
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See Also

• “Find Feedback Loops” on page 24-32
• “Delay Balancing” on page 24-27
• “Generated Model and Validation Model” on page 24-5

Highlight blocks inhibiting clock-rate pipelining
Certain blocks in your Simulink model can inhibit clock-rate pipelining and therefore delimit clock-
rate pipelining regions. Use this setting to generate a script to highlight the blocks.

When you generate the clock-rate pipelining highlighting script, HDL Coder generates another script
that clears the highlighting. To turn off highlighting, click the link to the clearhighlighting script.

Settings

Default: On

 On
Generate a MATLAB script that highlights blocks in the original model and the generated model
that are inhibiting clock-rate pipelining.

It is recommended that you leave this setting enabled so that you can identify the blocks that
delimit the clock-rate pipelining regions and further optimize your design.

 Off
Do not generate a script to highlight blocks that are inhibiting clock-rate pipelining.

Command-Line Information
Property: HighlightClockRatePipeliningDiagnostic
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can specify this property while generating HDL code for the symmetric_fir
subsystem inside the sfir_fixed model using either of these methods.

• Use hdlset_param to set the parameter on the model. Then generate HDL code using makehdl.
hdlset_param('sfir_fixed','HighlightClockRatePipeliningDiagnostic','off')
makehdl('sfir_fixed/symmetric_fir')

• Pass the property as an argument to the makehdl function.
makehdl('sfir_fixed/symmetric_fir','HighlightClockRatePipeliningDiagnostic','off')

See Also

• “Clock Rate Pipelining” on page 14-12
• “Diagnostics for Reals and Black Box Interfaces” on page 16-96
• “Generated Model and Validation Model” on page 24-5
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Highlight blocks inhibiting distributed pipelining
Certain blocks in your Simulink model can act as barriers for the distributed pipelining optimization.
Use this setting to generate a script to highlight the blocks that are inhibiting distributed pipelining.

When you generate the highlighting script that displays distributed pipelining barriers, HDL Coder
generates another script that clears the highlighting. To turn off highlighting, click the link to the
clearhighlighting script.

Settings

Default: On

 On
Generate a MATLAB script that highlights blocks that are inhibiting distributed pipelining in the
original model and the generated model.

It is recommended that you leave this setting enabled so that you can identify the blocks that are
barriers for distributed pipelining and further optimize your design.

 Off
Do not generate a script to highlight blocks that are inhibiting distributed pipelining.

Command-Line Information
Property: DistributedPipeliningBarriers
Type: character vector
Value: 'on' | 'off'
Default: 'on'

For example, you can specify this property while generating HDL code for the symmetric_fir
subsystem inside the sfir_fixed model using either of these methods.

• Use hdlset_param to set the parameter on the model. Then generate HDL code using makehdl.
hdlset_param('sfir_fixed','DistributedPipeliningBarriers','off')
makehdl('sfir_fixed/symmetric_fir')

• Pass the property as an argument to the makehdl function.
makehdl('sfir_fixed/symmetric_fir','DistributedPipeliningBarriers','off')

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Distributed Pipelining” on page 14-9
• “Diagnostics for Reals and Black Box Interfaces” on page 16-96
• “Generated Model and Validation Model” on page 24-5
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Diagnostics for Reals and Black Box Interfaces
This section contains parameters in the Diagnostics option under Advanced tab in the Configuration
Parameters dialog box. Select HDL Code Generation > Global Settings. To check for name
conflicts in black box interfaces and for the presence of reals in the generated HDL code, use these
parameters.

Check for name conflicts in black box interfaces
Specify whether to check for duplicate module or entity names in generated HDL code and black box
interface HDL code.

Settings

Default: Warning

None
Do not check for black box subsystems that have the same HDL module name as a generated
HDL module name.

Warning
Check for black box subsystems that have the same HDL module name as a generated HDL
module name. Display a warning if matching names are found.

Error
Check for black box subsystems that have the same HDL module name as a generated HDL
module name. Display an error if matching names are found.

Command-Line Information
Property: DetectBlackBoxNameCollision
Type: character vector
Value: 'None' | 'Warning' | 'Error'
Default: 'Warning'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can specify this property while generating HDL code for the symmetric_fir
subsystem inside the sfir_fixed model using either of these methods.

• Use hdlset_param to set the parameter on the model. Then generate HDL code using makehdl.
hdlset_param('sfir_fixed','DetectBlackBoxNameCollision','None')
makehdl('sfir_fixed/symmetric_fir')

• Pass the property as an argument to the makehdl function.
makehdl('sfir_fixed/symmetric_fir','DetectBlackBoxNameCollision','None')

See Also

• makehdl
• “Generate Black Box Interface for Subsystem” on page 27-4
• “Diagnostics for Optimizations” on page 16-93
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Check for presence of reals in generated HDL code
Specify whether to check for reals in the generated HDL code.

Settings

Default: Error

None
Do not check for reals in the generated HDL code.

Warning
Checks and warns of presence of real data types in the generated HDL code. Real data types in
the generated HDL code are not synthesizable on target FPGA devices.

Error
Checks and generates an error if the generated HDL code uses real data types. If you are
generating code for simulation purposes and not for synthesizing your design, you can change
this setting to Warning or None. To generate synthesizable HDL code, set the Floating Point IP
Library to Native Floating Point.

Command-Line Information
Property: TreatRealsInGeneratedCodeAs
Type: character vector
Value: 'None' | 'Warning' | 'Error'
Default: 'Error'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can specify this property while generating HDL code for the symmetric_fir
subsystem inside the sfir_fixed model using either of these methods.

• Use hdlset_param to set the parameter on the model. Then generate HDL code using makehdl.
hdlset_param('sfir_fixed','TreatRealsInGeneratedCodeAs','Warning')
makehdl('sfir_fixed/symmetric_fir')

• Pass the property as an argument to the makehdl function.
makehdl('sfir_fixed/symmetric_fir','TreatRealsInGeneratedCodeAs','Warning')

See Also

• makehdl
• “Getting Started with HDL Coder Native Floating-Point Support” on page 10-49
• “Diagnostics for Optimizations” on page 16-93
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Code Generation Output
You can specify whether or not to generate HDL code by using the Generate HDL code parameter.
In the Configuration Parameters dialog box, select HDL Code Generation > Global Settings >
Advanced > Code generation output.

Generate HDL code
Enable or disable HDL code generation for the model or Subsystem. To specify the Subsystem that
you want to generate HDL code for, use the Generate HDL for parameter. Then, click the Generate
button in the HDL Code Generation pane. By default, the HDL code is generated in VHDL language
and put into the hdlsrc folder.

Settings

Default: On

 On
Select this setting to generate HDL code.

 Off
When you clear this setting, you cannot generate HDL code for the model.

Command-Line Information
Property: GenerateHDLCode
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

By default, the GenerateHDLCode property is selected. To generate code, use the makehdl function.
For example, this command generates HDL code for the symmetric_fir subsystem inside the
sfir_fixed model.

makehdl('sfir_fixed/symmetric_fir')

Control Code Generation Output
Property: CodeGenerationOutput
Type: character vector
Value: 'GenerateHDLCode' |
'GenerateHDLCodeAndDisplayGeneratedModel''DisplayGeneratedModelOnly'
Default: 'GenerateHDLCode'

By default, HDL Coder creates a model called the generated model when you generate HDL code.
The generated model uses HDL-specific block implementations, and it implements the area and speed
optimizations that you specify in your Simulink model. The code generator creates the generated
model but does not display the model by default. To control display of the generated model, use the
CodeGenerationOutput property.

This example shows how to generate HDL code, and then display the generated model by using
makehdl.
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makehdl('sfir_fixed/symmetric_fir', ... 
        'CodeGenerationOutput','GenerateHDLCodeAndDisplayGeneratedModel')

If you specify DisplayGeneratedModelOnly, the code generator displays the generated model but
does not proceed to code generation.

See Also

• makehdl
• “Generated Model and Validation Model” on page 24-5
• “Model Generation for HDL Code” on page 16-85
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HDL Code Generation Pane: Report

• “Report Overview” on page 17-2
• “Generate traceability report” on page 17-3
• “Traceability style” on page 17-5
• “Generate model Web view” on page 17-7
• “Generate resource utilization report” on page 17-9
• “Generate high-level timing critical path report” on page 17-10
• “Generate optimization report” on page 17-12
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Report Overview
When you use the parameters in the Report pane, HDL Coder creates a Code Generation Report
when generating HDL code for your model or Subsystem. The Code Generation Report contains a
Summary, a Code Interface Report, and one or more of these reports.

• A traceability report that you can use to trace from the generated HDL code to the model and
from the model to HDL code.

• A resource utilization report that contains the number of hardware resources used in the HDL
code.

• An optimization report that displays the result of optimizations such as streaming, sharing,
distributed pipelining, and floating-point target-specific information that was implemented in the
generated code.

• A web view of the model that you can use to navigate between the generate code and your
Simulink model.

See Also
• “Create and Use Code Generation Reports” on page 25-2
• makehdl
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Generate traceability report
Enable or disable generation of an HTML code generation report with hyperlinks from code to model
and model to code. The report provides line-level traceability for each block in your Simulink model.
When you click the hyperlink beside a certain line of code in the report, HDL Coder highlights the
corresponding block in your Simulink model. When you select a certain block in your model, the
report highlights all lines of code corresponding to that block.

Settings
Default: Off

 On
Create and display a traceability report section in the HTML code generation report. To generate
the report, after you enable this setting, click the Generate button. The code generation report
contains a summary section and a code interface report along with the traceability report.

 Off
Do not create an HTML code generation report.

Dependency
When you select this check box, you can select the Traceability style. By default, the Traceability
style is Line Level.

Command-Line Information
Property: Traceability
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can generate a traceability report when generating HDL code for the
symmetric_fir subsystem inside the sfir_fixed model using either of these methods.

• Pass in the Traceability property as an argument to makehdl.

makehdl('sfir_fixed/symmetric_fir','Traceability','on')

• Enable the Traceability property using hdlset_param and then use makehdl.

hdlset_param('sfir_fixed','Traceability','on')
makehdl('sfir_fixed/symmetric_fir')

You can use the RequirementComments property to generate hyperlinked requirements comments
within the HTML code generation report. The requirements comments link to the corresponding
requirements documents for your model.

 Generate traceability report
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See Also
• “Create and Use Code Generation Reports” on page 25-2
• “Navigate Between Simulink Model and HDL Code by Using Traceability” on page 25-4
• makehdl
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Traceability style
You can use Traceability style to specify whether you want to generate line-level or comment-based
hyperlinks in the traceability report.

Settings
Default: Line Level

The options are:

Line Level
By default, HDL Coder generates a line-level traceability report that contains hyperlinks from
each line of HDL code to the corresponding block in your Simulink model. The traceability report
that is generated by using this style does not contain hyperlinked comments above the HDL code
corresponding to a certain block. When you select a certain block and navigate to the HDL code,
the code generator highlights all lines of code corresponding to that block.

Comment Based
If you specify generation of a comment-based traceability report, the report contains hyperlinked
comments above a block of HDL code. The comments contain a traceability tag that contains a
searchable pattern of the format <system>/blockname. <system> is the root model or a
Subsystem inside the model, and blockname is the name of the block inside that model or
Subsystem.

For example, if you have a model, foo, that has a Subsystem, outer, and a nested Subsystem,
Inner, then the <System> tag is:

• <Root>: foo
• <S1>: foo/outer
• <S2>: foo/outer/inner

Dependency
To specify this setting, select the Generate traceability report check box.

Command-Line Information
Property: TraceabilityStyle
Type: character vector
Value: 'LineLevel' | 'CommentBased'
Default: 'LineLevel'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, when you generate a traceability report for the symmetric_fir subsystem inside the
sfir_fixed model, specify the TraceabilityStyle by using either of these methods:

• Pass in the TraceabilityStyle property as an argument to makehdl.

makehdl('sfir_fixed/symmetric_fir','Traceability','on',...
                    'TraceabilityStyle','CommentBased')
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• Enable the TraceabilityStyle property using hdlset_param, and then use makehdl.

hdlset_param('sfir_fixed','Traceability','on')
hdlset_param(gcs,'TraceabilityStyle','CommentBased')
makehdl('sfir_fixed/symmetric_fir')

See Also
• “Create and Use Code Generation Reports” on page 25-2
• “Navigate Between Simulink Model and HDL Code by Using Traceability” on page 25-4
• makehdl
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Generate model Web view
Include the model Web view in the HDL Code Generation report to navigate between the code and
model within the same window. With a model Web view, you can click a link in the generated code to
highlight the corresponding block in the model. Using this capability, you can review, analyze, and
debug the generated HDL code. You can share your model and generated code outside of the
MATLAB environment.

Settings
Default: Off

 On
Include model Web view in the Code Generation report. To generate the report, after you enable
this setting, click the Generate button. The code generation report contains a summary section
and a code interface report along with the model web view.

 Off
Do not include model Web view in the Code Generation report.

Dependencies
To include a Web view (Simulink Report Generator) of the model in the Code Generation report, you
must have Simulink Report Generator™ installed.

Command-Line Information
Parameter: HDLGenerateWebview
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can generate a model web view when generating HDL code for the
symmetric_fir subsystem inside the sfir_fixed model using either of these methods.

• Pass in the HDLGenerateWebview property as an argument to makehdl.

makehdl('sfir_fixed/symmetric_fir','HDLGenerateWebview','on')

• Enable the HDLGenerateWebview property using hdlset_param and then use makehdl.

hdlset_param('sfir_fixed','HDLGenerateWebview','on')
makehdl('sfir_fixed/symmetric_fir')

See Also
• “Create and Use Code Generation Reports” on page 25-2
• “Web View of Model in Code Generation Report” on page 25-10
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• makehdl
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Generate resource utilization report
Enable or disable generation of an HTML resource utilization report. The report contains a summary
and detailed information about the number of hardware resources, such as multipliers, adders, and
registers that are used in the generated HDL code. If you have floating-point data types in your
model, you can generate HDL code with native floating point support or map your design to Intel or
Xilinx FPGA floating-point libraries. The resource utilization report displays a target-specific report
corresponding to FPGA floating-point library mapping and a resource report corresponding to HDL
code in native floating-point mode.

Settings
Default: Off

 On
Create and display an HTML resource utilization report. To generate the report, after you enable
this setting, click the Generate button. The code generation report contains a summary section
and a code interface report along with the resource utilization report.

 Off
Do not create an HTML resource utilization report.

Command-Line Information
Property: ResourceReport
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can generate a resource utilization report when generating HDL code for the
symmetric_fir subsystem inside the sfir_fixed model using either of these methods.

• Pass in the Traceability property as an argument to makehdl.

makehdl('sfir_fixed/symmetric_fir','ResourceReport','on')

• Enable the Traceability property using hdlset_param and then use makehdl.

hdlset_param('sfir_fixed','ResourceReport','on')
makehdl('sfir_fixed/symmetric_fir')

See Also
• “Create and Use Code Generation Reports” on page 25-2
• makehdl
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Generate high-level timing critical path report
Specify whether to generate a highlighting script that shows the estimated critical path. The report
displays the critical path delay and generates a highlighting script as a link that you can click to
highlight the estimated critical path in the generated model. If your design contains blocks without
timing information, the report displays the link to another highlighting script that is generated to
highlight those blocks.

Settings
Default: Off

 On
Generate a highlighting script that shows the estimated critical path. To generate the report,
after you enable this setting, click the Generate button. The code generation report contains a
summary section and a code interface report along with the critical path estimation report.

To estimate the critical path for single-precision floating-point models, use the Native
Floating Point mode. In the Configuration Parameters dialog box, on the HDL Code
Generation > Global Settings > Floating Point Target tab, set Library to Native Floating
Point

 Off
Do not calculate the estimated critical path.

Command-Line Information
Property: CriticalPathEstimation
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can generate a critical path estimation report when generating HDL code for the
symmetric_fir subsystem inside the sfir_fixed model using either of these methods.

• Pass in the CriticalPathEstimation property as an argument to makehdl.

makehdl('sfir_fixed/symmetric_fir','CriticalPathEstimation','on')

• Enable the CriticalPathEstimation property using hdlset_param and then use makehdl.

hdlset_param('sfir_fixed','CriticalPathEstimation','on')
makehdl('sfir_fixed/symmetric_fir')

See Also
• “Create and Use Code Generation Reports” on page 25-2
• “Critical Path Estimation Without Running Synthesis” on page 24-63
• “Getting Started with HDL Coder Native Floating-Point Support” on page 10-49
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Generate optimization report
Enable or disable generation of an HTML optimization report. The report contains information about
the results of distributed pipelining, streaming, sharing, delay balancing, and adaptive pipelining
optimizations that are implemented in the generated code. The report includes hyperlinks back to
referenced blocks, subsystems, or validation models. If you have floating-point data types in your
model, you can generate HDL code with native floating point support or map your design to Intel or
Xilinx FPGA floating-point libraries. When you map to FPGA floating-point libraries, the optimization
report displays a target code generation section that displays the target device summary and a link to
the generated model.

Settings
Default: Off

 On
Create and display an HTML optimization report. To generate the report, after you enable this
setting, click the Generate button. The code generation report contains a summary section and a
code interface report along with the optimization report.

 Off
Do not create an HTML optimization report.

Command-Line Information
Property: OptimizationReport
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

For example, you can generate an optimization report when generating HDL code for the
symmetric_fir subsystem inside the sfir_fixed model using either of these methods.

• Pass in the OptimizationReport property as an argument to makehdl.

makehdl('sfir_fixed/symmetric_fir','OptimizationReport','on')

• Enable the OptimizationReport property using hdlset_param and then use makehdl.

hdlset_param('sfir_fixed','OptimizationReport','on')
makehdl('sfir_fixed/symmetric_fir')

See Also
• “Create and Use Code Generation Reports” on page 25-2
• makehdl
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HDL Code Generation Pane: Test Bench

• “Test Bench Overview” on page 18-2
• “Test Bench Generation Output” on page 18-3
• “Test Bench name, data file, and reference Postfix” on page 18-7
• “Clock Input Signals” on page 18-9
• “Setup and Hold Time” on page 18-11
• “Clock Enable and Reset Input Signals” on page 18-13
• “Test Bench Stimulus and Output” on page 18-16
• “Multi-file test bench” on page 18-20
• “Floating Point Tolerance” on page 18-22
• “Simulation library path” on page 18-24
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Test Bench Overview
The Test Bench pane lets you set options that determine characteristics of generated test bench
code.

Generate Test Bench Button
The Generate Test Bench button initiates test bench generation for the system selected in the
Generate HDL for menu on the parent HDL Code Generation pane. Make sure that the system
selected is the DUT. Testbench generation is disabled if you select the entire model. See also
makehdltb.
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Test Bench Generation Output

HDL test bench
Enable or disable HDL test bench generation.

Settings

Default: selected

 On
Enable generation of HDL test bench code. The code generator creates a HDL test bench by
running a Simulink simulation to capture input vectors and expected output data for your DUT.

This test bench is the default test bench that HDL Coder generates for your model. If you have
not already generated code for your model, running HDL test bench generation also generates
code for your DUT.

Specify your HDL simulator in the Simulation tool menu. HDL Coder generates build-and-run
scripts for the simulator that you specify.

 Off
Suppress generation of HDL test bench code. You can use this option when you use an alternate
test bench.

Dependencies

Make sure that the system selected is the DUT. This option is disabled if you select the entire model.

This check box enables the options in the Configuration section of the Test Bench pane. Select a
Simulation tool to generate scripts to build and run the test bench.

Command-Line Information
Property: GenerateHDLTestBench
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdltb. To view the property value, use
hdlget_param.

For example, to generate a HDL test bench for the sfir_fixed/symmetric_fir Subsystem, pass
the DUT as an argument to the makehdltb function.

makehdltb('sfir_fixed/symmetric_fir')

Cosimulation model
Enable or disable generation of a model including a HDL Cosimulation block. This option requires an
HDL Verifier license. After you select this check box, specify your Simulation tool. You can select
Mentor Graphics ModelSim or Cadence Incisive® for cosimulation. Custom script settings are not
supported with this test bench.
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Settings

Default: not selected

Dependencies

Make sure that the system selected is the DUT. This option is disabled if you select the entire model.

Command-Line Information
Property: GenerateCoSimBlock
Type: character vector
Value: 'on' | 'off'
Default: 'off'
Property: GenerateCoSimModel
Type: character vector
Value: 'ModelSim' | 'Incisive'|'None'
Default: 'ModelSim'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“Generate a Cosimulation Model” on page 27-30

SystemVerilog DPI test bench
Enable or disable generation of the SystemVerilog DPI test bench. Select your HDL simulator at
Simulation tool. For SystemVerilog DPI test bench you can select Mentor Graphics ModelSim,
Cadence Incisive, SynopsysVCS®, or Xilinx Vivado. Custom script settings are not supported with this
test bench.

When you set this property, the coder generates a direct programming interface (DPI) component for
your entire Simulink model, including your DUT and data sources. Your entire model must support C
code generation with Simulink Coder. The coder generates a SystemVerilog test bench that compares
the output of the DPI component with the output of the HDL implementation of your DUT. The coder
also builds shared libraries and generates a simulation script for the simulator you select.

Consider using this option if the default HDL test bench takes a long time to generate or simulate.
Generation of a DPI test bench is sometimes faster than the default version because it does not run a
full Simulink simulation to create the test bench data. Simulation of a DPI test bench with a large
data set is faster than the default version because it does not store the input or expected data in a
separate file.

To use this feature, you must have HDL Verifier and Simulink Coder licenses. To run the
SystemVerilog testbench with generated VHDL code, you must have a mixed-language simulation
license for your HDL simulator.

Settings

Default: not selected

Dependencies

Make sure that the system selected is the DUT. This option is disabled if you select the entire model.
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Command-Line Information
Property: GenerateSVDPITestBench
Type: character vector
Value: 'ModelSim' | 'Incisive'|'Custom'|'VCS'|'Vivado'
Default: 'ModelSim'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

GenerateSVDPITestbenchSimulationTool

“Verify HDL Design With Large Data Set Using SystemVerilog DPI Test Bench”

Simulation tool
Simulator where you will run the generated test benches. The tool generates a script to build and run
your HDL code and test bench.

Settings

• Mentor Graphics ModelSim: This option is the default. HDL Coder generates the selected
types of test benches for use with Mentor Graphics ModelSim.

• Cadence Incisive: The coder generates the selected types of test benches for use with
Cadence Incisive.

• Custom: Selecting this option enables the custom script options on the EDA Tool Scripts pane.
• VCS: This simulator is supported only for SystemVerilog DPI test bench.
• Vivado: This simulator is supported only for SystemVerilog DPI test bench.

Dependencies

Make sure that the system selected is the DUT. This option is disabled if you select the entire model.

Command-Line Information

For HDL test bench, use the SimulationTool property. For cosimulation, use the
GenerateCosimModel property. For SystemVerilog DPI test bench, use the
GenerateSVDPITestbench property.
Property: SimulationTool
Type: character vector
Value: 'Mentor Graphics ModelSim' | 'Cadence Incisive'|'Custom'
Default: 'Mentor Graphics ModelSim'
Property: GenerateCosimModel
Type: character vector
Value: 'ModelSim' | 'Incisive'|None
Default: 'ModelSim'
Property: GenerateSVDPITestbench
Type: character vector
Value: 'ModelSim' | 'Incisive'|'Custom'|'VCS'|'Vivado'
Default: 'ModelSim'

 Test Bench Generation Output

18-5



To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

SimulationTool

HDL code coverage
Enable or disable HDL code coverage flags in the generated simulator scripts

With this option enabled, when you run the HDL simulation, code coverage is collected for your
generated test bench. Specify your HDL simulator in the SimulationTool property. The coder
generates build-and-run scripts for the simulator you specify.

Settings

Default: not selected

Dependencies

Make sure that the system selected is the DUT. This option is disabled if you select the entire model.

Command-Line Information
Property: HDLCodeCoverage
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

SimulationTool
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Test Bench name, data file, and reference Postfix

Test bench name postfix
Specify a suffix appended to the test bench name.

Settings

Default: _tb

For example, if the name of your DUT is my_test, HDL Coder adds the default postfix _tb to form
the name my_test_tb.

Dependencies

Make sure that the system selected is the DUT. This option is disabled if you select the entire model.

Command-Line Information
Property: TestBenchPostFix
Type: character vector
Default: '_tb'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

TestBenchPostFix

Test bench reference postfix
Specify a character vector to be appended to names of reference signals generated in test bench
code.

Settings

Default: '_ref'

Reference signal data is represented as arrays in the generated test bench code. The character vector
specified by Test bench reference postfix is appended to the generated signal names.

Dependencies

Make sure that the system selected is the DUT. This option is disabled if you select the entire model.

Command-Line Information
Parameter: TestBenchReferencePostFix
Type: character vector
Default: '_ref'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.
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See Also

TestBenchReferencePostFix

Test bench data file name postfix
Specify suffix added to test bench data file name when generating multi-file test bench.

Settings

Default:'_data'

HDL Coder applies the Test bench data file name postfix character vector only when generating a
multi-file test bench (i.e., when Multi-file test bench is selected).

For example, if the name of your DUT is my_test, and Test bench name postfix has the default
value _tb, the coder adds the postfix _data to form the test bench data file name
my_test_tb_data.

Dependency

This parameter is enabled by Multi-file test bench.

Command-Line Information
Property: TestBenchDataPostFix
Type: character vector
Default: '_data'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

TestBenchDataPostFix
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Clock Input Signals

Force clock
Specify whether the test bench forces clock input signals.

Settings

Default: On

 On
The test bench forces the clock input signals. When this option is selected, the clock high and low
time settings control the clock waveform.

 Off
A user-defined external source forces the clock input signals.

Dependencies

This property enables the Clock high time and Clock high time options. This option is disabled if
you select the entire model. Select the DUT instead for Generate HDL for setting.

Command-Line Information
Property: ForceClock
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ForceClock

Clock high time (ns)
Specify the period, in nanoseconds, during which the test bench drives clock input signals high (1).

Settings

Default: 5

The Clock high time and Clock low time properties define the period and duty cycle for the clock
signal. Using the defaults, the clock signal is a square wave (50% duty cycle) with a period of 10 ns.

Dependency

This parameter is enabled when Force clock is selected.

Command-Line Information
Property: ClockHighTime

 Clock Input Signals
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Type: integer
Value: positive integer
Default: 5

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ClockHighTime

Clock low time (ns)
Specify the period, in nanoseconds, during which the test bench drives clock input signals low (0).

Settings

Default: 5

The Clock high time and Clock low time properties define the period and duty cycle for the clock
signal. Using the defaults, the clock signal is a square wave (50% duty cycle) with a period of 10 ns.

Dependency

This parameter is enabled when Force clock is selected.

Command-Line Information
Property: ClockLowTime
Type: integer
Value: positive integer
Default: 5

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ClockLowTime

18 HDL Code Generation Pane: Test Bench

18-10



Setup and Hold Time
Hold time (ns)
Specify a hold time, in nanoseconds, for input signals and forced reset input signals.

Settings

Default: 2 (given the default clock period of 10 ns)

The hold time defines the number of nanoseconds that reset input signals and input data are held
past the clock rising edge. The hold time is expressed as a positive integer or double (with a
maximum of 6 significant digits after the decimal point).

Tips

• The specified hold time must be less than the clock period (specified by the Clock high time and
Clock low time properties).

• This option applies to reset input signals only if Force reset is selected.

Dependencies

This option is disabled if you select the entire model. Select the DUT instead for Generate HDL for
setting.

Command-Line Information
Property: HoldTime
Type: integer
Value: positive integer
Default: 2

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

HoldTime

Setup time (ns)
Display setup time for data input signals.

Settings

Default: None

This is a display-only field, showing a value computed as (clock period - HoldTime) in nanoseconds.

Dependency

The value displayed in this field depends on the clock rate and the values of the Hold time property.

This option is disabled if you select the entire model. Select the DUT instead for Generate HDL for
setting.

 Setup and Hold Time
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Command-Line Information

Because this is a display-only field, a corresponding command-line property does not exist.

See Also

HoldTime
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Clock Enable and Reset Input Signals

Force clock enable
Specify whether the test bench forces clock enable input signals.

Settings

Default: On

 On
The test bench forces the clock enable input signals to active-high (1) or active-low (0), depending
on the setting of the clock enable input value.

 Off
A user-defined external source forces the clock enable input signals.

Dependencies

This property enables the Clock enable delay (in clock cycles) option.

This option is disabled if you select the entire model. Select the DUT instead for Generate HDL for
setting.

Command-Line Information
Property: ForceClockEnable
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ForceClockEnable

Clock enable delay (in clock cycles)
Define elapsed time (in clock cycles) between deassertion of reset and assertion of clock enable.

Settings

Default: 1

The Clock enable delay (in clock cycles) property defines the number of clock cycles elapsed
between the time the reset signal is deasserted and the time the clock enable signal is first asserted.
In the figure below, the reset signal (active-high) deasserts after 2 clock cycles and the clock enable
asserts after a clock enable delay of 1 cycle (the default).

 Clock Enable and Reset Input Signals
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Dependency

This parameter is enabled when Force clock enable is selected.

Command-Line Information
Property: TestBenchClockEnableDelay
Type: integer
Default: 1

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

TestBenchClockEnableDelay

Force reset
Specify whether the test bench forces reset input signals.

Settings

Default: On

 On
The test bench forces the reset input signals.

 Off
A user-defined external source forces the reset input signals.

Tips

If you select this option, you can use the Hold time option to control the timing of a reset.

Dependency

This option is disabled if you select the entire model. Select the DUT instead for Generate HDL for
setting.

18 HDL Code Generation Pane: Test Bench

18-14



Command-Line Information
Property: ForceReset
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ForceReset

Reset length (in clock cycles)
Define length of time (in clock cycles) during which reset is asserted.

Settings

Default: 2

The Reset length (in clock cycles) property defines the number of clock cycles during which reset
is asserted. Reset length (in clock cycles) must be an integer greater than or equal to 0. The
following figure illustrates the default case, in which the reset signal (active-high) is asserted for 2
clock cycles.

Dependency

This parameter is enabled when Force reset is selected.

Command-Line Information
Property: Resetlength
Type: integer
Default: 2

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.
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Test Bench Stimulus and Output

Hold input data between samples
Specify how long subrate signal values are held in valid state.

Settings

Default: On

 On
Data values for subrate signals are held in a valid state across N base-rate clock cycles, where N
is the number of base-rate clock cycles that elapse per subrate sample period. (N >= 2.)

 Off
Data values for subrate signals are held in a valid state for only one base-rate clock cycle. For the
subsequent base-rate cycles, data is in an unknown state (expressed as 'X') until leading edge of
the next subrate sample period.

Tip

In most cases, the default (On) is the best setting for Hold input data between samples. This
setting matches the behavior of a Simulink simulation, in which subrate signals are held valid
through each base-rate clock period.

In some cases (for example modeling memory or memory interfaces), it is desirable to clear Hold
input data between samples. In this way you can obtain diagnostic information about when data is
in an invalid ('X') state.

Dependency

This option is disabled if you select the entire model. Select the DUT instead for Generate HDL for
setting.

Command-Line Information
Property: HoldInputDataBetweenSamples
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

HoldInputDataBetweenSamples

Initialize test bench inputs
Specify initial value driven on test bench inputs before data is asserted to DUT.

18 HDL Code Generation Pane: Test Bench

18-16



Settings

Default: Off

 On
Initial value driven on test bench inputs is'0'.

 Off
Initial value driven on test bench inputs is 'X' (unknown).

Dependency

This option is disabled if you select the entire model. Select the DUT instead for Generate HDL for
setting.

Command-Line Information
Property: InitializeTestBenchInputs
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

InitializeTestBenchInputs

Ignore output data checking (number of samples)
Specify number of samples during which output data checking is suppressed.

Settings

Default: 0

The value must be a positive integer.

When the value of Ignore output data checking (number of samples), N, is greater than zero, the
test bench suppresses output data checking for the first N output samples after the clock enable
output (ce_out) is asserted.

When using pipelined block implementations, output data may be in an invalid state for some number
of samples. To avoid spurious test bench errors, determine this number and set Ignore output data
checking (number of samples) accordingly.

Be careful to specify N as a number of samples, not as a number of clock cycles. For a single-rate
model, these are equivalent, but they are not equivalent for a multirate model.

You should use Ignore output data checking (number of samples) in cases where there is a state
(register) initial condition in the HDL code that does not match the Simulink state, including the
following specific cases:

 Test Bench Stimulus and Output
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• When you set the DistributedPipelining property to 'on' for the MATLAB Function block
(see “Distributed Pipeline Insertion for MATLAB Function Blocks” on page 29-31)

• When you set the ResetType property to 'None' for the following blocks:

• commcnvintrlv2/Convolutional Deinterleaver
• commcnvintrlv2/Convolutional Interleaver
• commcnvintrlv2/General Multiplexed Deinterleaver
• commcnvintrlv2/General Multiplexed Interleaver
• dspsigops/Delay
• simulink/Additional Math & Discrete/Additional Discrete/Unit Delay Enabled
• simulink/Commonly Used Blocks/Unit Delay
• simulink/Discrete/Delay
• simulink/Discrete/Memory
• simulink/Discrete/Tapped Delay
• simulink/User-Defined Functions/MATLAB Function
• sflib/Chart
• sflib/Truth Table

• When generating a black box interface to existing manually written HDL code

Dependency

This option is disabled if you select the entire model. Select the DUT instead for Generate HDL for
setting.

Command-Line Information
Property: IgnoreDataChecking
Type: integer
Default: 0

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

IgnoreDataChecking

Use file I/O to read/write test bench data
Create and use data files for reading and writing test bench input and output data.

Settings

Default: On

 On
Create and use data files for reading and writing test bench input and output data.

 Off
Use constants in the test bench for DUT stimulus and reference data.
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Dependency

This option is disabled if you select the entire model. Select the DUT instead for Generate HDL for
setting.

Command-Line Information
Property: UseFileIOInTestBench
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

UseFileIOInTestBench
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Multi-file test bench
Divide generated test bench into helper functions, data, and HDL test bench code files.

Description
You can use this setting to specify how you want to divide files that contain the test bench code, data,
and helper functions.

The file names are derived from the name of the DUT, the Test bench name postfix property, and
the Test bench data file name postfix property as:

DUTname_TestBenchPostfix_TestBenchDataPostfix

For example, if the DUT name is symmetric_fir, and the target language is VHDL, the default test
bench file names are:

• symmetric_fir_tb.vhd: test bench code
• symmetric_fir_tb_pkg.vhd: helper functions package
• symmetric_fir_tb_data.vhd: data package

If the DUT name is symmetric_fir and the target language is Verilog, the default test bench file
names are:

• symmetric_fir_tb.v: test bench code
• symmetric_fir_tb_pkg.v: helper functions package
• symmetric_fir_tb_data.v: test bench data

Settings
Default: Off

 On
Write three separate HDL files. There is a separate file for test bench code, helper functions, and
test bench data.

 Off
Write two separate HDL files. One file contains the HDL test bench code. The other file contains
the helper functions package and test bench data.

Dependency
When this property is selected, Test bench data file name postfix is enabled.

This option is disabled if you select the entire model. Select the DUT instead for Generate HDL for
setting.

Command-Line Information
Property: MultifileTestBench
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Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
MultifileTestBench
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Floating Point Tolerance
Floating point tolerance check based on
When you map your design to the native floating-point libraries or the floating-point target libraries,
specify the floating-point tolerance check option.

Settings

Default: relative error

Select one of these options from the dropdown menu:

• relative error: This is the default option. When you verify the generated code by using HDL
Testbench, HDL Coder checks for the floating-point tolerance of the native floating-point library or
the floating-point target library that your design mapped to based on the relative error.

• ulp error: When you verify the generated code by using HDL Testbench, HDL Coder checks for
the floating-point tolerance of the native floating-point library or the floating-point target library
that your design mapped to based on the ULP error.

Dependency

This option is disabled if you select the entire model. Select the DUT instead for Generate HDL for
setting.

Command-Line Information
Property: FPToleranceStrategy
Type: character vector
Value: 'relative' | 'ULP'
Default: 'relative'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

FPToleranceStrategy

Tolerance Value
Enter the tolerance value based on the floating-point tolerance check setting that you specify.

Settings

Default: 1e-07

The value must be a positive integer or a double data type.

The default tolerance value depends on the floating-point tolerance check setting that you specify.
When you set the Floating point tolerance check based on to:

• relative error, the default is a Tolerance Value of 1e-07. When you use this floating-point
tolerance check setting, specify the tolerance value as a double data type. You can specify a
Tolerance Value, N, that is less than or equal to 1e-07.
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• ulp error, the default is a Tolerance Value of 0. When you use this floating-point tolerance
check setting, specify the tolerance value as an integer. You can specify a Tolerance Value, N,
that is greater than or equal to 0.

Command-Line Information
Property: FPToleranceValue
Type: double | integer
Default: 1e-07

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

FPToleranceValue
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Simulation library path
Specify the path to your compiled Altera or Xilinx simulation libraries.

Settings
Default:''

Specify the path to the compiled Altera or Xilinx simulation libraries. Altera provides the simulation
model files in \quartus\eda\sim_lib folder.

Dependency
This option is disabled if you select the entire model. Select the DUT instead for Generate HDL for
setting.

Command-Line Information
Property: SimulationLibPath
Type: character vector
Default: ''

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
SimulationLibPath
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HDL Code Generation Pane: EDA Tool
Scripts

• “EDA Tool Scripts Overview” on page 19-2
• “Generate EDA scripts” on page 19-3
• “Compilation Script” on page 19-4
• “Simulation Script” on page 19-7
• “Synthesis Script” on page 19-10
• “Lint Script” on page 19-15
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EDA Tool Scripts Overview
The EDA Tool Scripts pane lets you set the options that control generation of script files for third-
party HDL simulation and synthesis tools.
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Generate EDA scripts
Enable generation of script files for third-party electronic design automation (EDA) tools. These
scripts let you compile and simulate generated HDL code and/or synthesize generated HDL code.

Settings
Default: On

 On
Generation of script files is enabled.

 Off
Generation of script files is disabled.

Command-Line Information
Parameter: EDAScriptGeneration
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
• “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-7
• EDAScriptGeneration
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Compilation Script

Compile file postfix
Specify a postfix to append to the DUT or test bench name to form the compilation script file name.

Settings

Default: _compile.do

For example, if the name of the device under test or test bench is my_design, HDL Coder adds the
postfix _compile.do to form the name my_design_compile.do.

Command-Line Information
Property: HDLCompileFilePostfix
Type: character vector
Default: '_compile.do'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-7
• HDLCompileFilePostfix

Compile initialization
Format name passed to fprintf to write the Init section of the compilation script.

Settings

Default: vlib %s\n

The Init phase of the script performs required setup actions, such as creating a design library or a
project file.

The implicit argument, %s, is the contents of the 'VHDLLibraryName' property, which defaults
to'work'. You can override the default Init string ('vlib work\n' by changing the value of
'VHDLLibraryName'.

Command-Line Information
Property: HDLCompileInit
Type: character vector
Default: 'vlib %s\n'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-7

19 HDL Code Generation Pane: EDA Tool Scripts

19-4



• HDLCompileInit

Compile command for VHDL
Format name passed to fprintf to write the Cmd section of the compilation script for VHDL files.

Settings

Default: vcom %s %s\n

The command-per-file phase (Cmd) of the script is called iteratively, once per generated HDL file. On
each call, a different file name is passed in.

The two implicit arguments in the compile command are the contents of the SimulatorFlags
property and the file name of the current entity or module. To omit the flags, set SimulatorFlags to
'' (the default).

Command-Line Information
Property: HDLCompileVHDLCmd
Type: character vector
Default: 'vcom %s %s\n'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-7
• HDLCompileVHDLCmd

Compile command for Verilog
Format name passed to fprintf to write the Cmd section of the compilation script for Verilog files.

Settings

Default: vlog %s %s\n

The command-per-file phase (Cmd) of the script is called iteratively, once per generated HDL file. On
each call, a different file name is passed in.

The two implicit arguments in the compile command are the contents of the SimulatorFlags
property and the file name of the current entity or module. To omit the flags, set SimulatorFlags
property to '' (the default).

Command-Line Information
Property: HDLCompileVerilogCmd
Type: character vector
Default: 'vlog %s %s\n'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.
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See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-7
• HDLCompileVerilogCmd

Compile termination
Format name passed to fprintf to write the termination portion of the compilation script.

Settings

Default: empty character vector

The termination phase (Term) is the final execution phase of the script. One application of this phase
is to execute a simulation of HDL code that was compiled in the Cmd phase. The Term phase does not
take arguments.

Command-Line Information
Property: HDLCompileTerm
Type: character vector
Default: ''

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-7
• HDLCompileTerm
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Simulation Script

Simulation file postfix
Specify a postfix to append to the DUT or test bench name to form the simulation script file name.

Settings

Default: _sim.do

For example, if the name of the device under test or test bench is my_design, HDL Coder adds the
postfix _sim.do to form the name my_design_sim.do.

Command-Line Information
Property: HDLSimFilePostfix
Type: character vector
Default: '_sim.do'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-7
• HDLSimFilePostfix

Simulation initialization
Format name passed to fprintf to write the initialization section of the simulation script.

Settings

Default: The default is

 ['onbreak resume\nonerror resume\n'] 

The Init phase of the script performs required setup actions, such as creating a design library or a
project file.

Command-Line Information
Property: HDLSimInit
Type: character vector
Default: ['onbreak resume\nonerror resume\n']

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-7
• HDLSimInit
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Simulation command
Format name passed to fprintf to write the simulation command.

Settings

Default: vsim -novopt %s.%s\n

If your target language is VHDL, the first implicit argument is the value of VHDL library name. If
your target language is Verilog, the first implicit argument is 'work'.

The second implicit argument is the top-level module or entity name.

Command-Line Information
Property: HDLSimCmd
Type: character vector
Default: 'vsim -novopt %s.%s\n'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-7
• HDLSimCmd

Simulation waveform viewing command
Specify the waveform viewing command written to simulation script.

Settings

Default: add wave sim:%s\n

The implicit argument, %s, adds the signal paths for the DUT top-level input, output, and output
reference signals.

Command-Line Information
Property: HDLSimViewWaveCmd
Type: character vector
Default: 'add wave sim:%s\n'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-7
• HDLSimViewWaveCmd

Simulation termination
Format name passed to fprintf to write the termination portion of the simulation script.
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Settings

Default: run -all\n

The termination phase (Term) is the final execution phase of the script. One application of this phase
is to execute a simulation of HDL code that was compiled in the Cmd phase. The Term phase does not
take arguments.

Command-Line Information
Property: HDLSimTerm
Type: character vector
Default: 'run -all\n'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-7
• HDLSimTerm

Simulator flags
Specify simulator flags to apply to generated compilation scripts.

Settings

Default: '' (no simulator flags)

Specify simulator flags to apply to generated compilation scripts as a character vector. The simulator
flags are specific to your application and the simulator you are using. For example, if you must use
the 1076–1993 VHDL compiler, specify the flag -93.

The flags you specify with this option are added to the compilation command in generated
compilation scripts. The simulation command is specified by the HDLCompileVHDLCmd or
HDLCompileVerilogCmd properties.

Command-Line Information
Property: SimulatorFlags
Type: character vector
Default: ''

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• SimulatorFlags
• HDLCompileVerilogCmd
• HDLCompileVHDLCmd
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Synthesis Script

Choose synthesis tool
Enable or disable generation of synthesis scripts, and select the synthesis tool for which HDL Coder
generates scripts.

Settings

Default: None

None
When you select None, HDL Coder does not generate a synthesis script. The coder clears and
disables the fields in the Synthesis script pane.

Xilinx ISE
Generate a synthesis script for Xilinx ISE. When you select this option, the coder:

• Enables the fields in the Synthesis script pane.
• Sets Synthesis file postfix to _ise.tcl
• Fills in the Synthesis initialization, Synthesis command and Synthesis termination
fields with TCL script code for the tool.

Microsemi Libero
Generate a synthesis script for Microsemi Libero. When you select this option, the coder:

• Enables the fields in the Synthesis script pane.
• Sets Synthesis file postfix to _libero.tcl
• Fills in the Synthesis initialization, Synthesis command and Synthesis termination
fields with TCL script code for the tool.

Mentor Graphics Precision
Generate a synthesis script for Mentor Graphics Precision. When you select this option, the
coder:

• Enables the fields in the Synthesis script pane.
• Sets Synthesis file postfix to _precision.tcl
• Fills in the Synthesis initialization, Synthesis command and Synthesis termination
fields with TCL script code for the tool.

Altera Quartus II
Generate a synthesis script for Altera Quartus II. When you select this option, the coder:

• Enables the fields in the Synthesis script pane.
• Sets Synthesis file postfix to _quartus.tcl
• Fills in the Synthesis initialization, Synthesis command and Synthesis termination
fields with TCL script code for the tool.

Synopsys Synplify Pro
Generate a synthesis script for Synopsys Synplify Pro. When you select this option, the coder:
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• Enables the fields in the Synthesis script pane.
• Sets Synthesis file postfix to _synplify.tcl
• Fills in the Synthesis initialization, Synthesis command and Synthesis termination
fields with TCL script code for the tool.

Xilinx Vivado
Generate a synthesis script for Xilinx Vivado. When you select this option, the coder:

• Enables the fields in the Synthesis script pane.
• Sets Synthesis file postfix to _vivado.tcl
• Fills in the Synthesis initialization, Synthesis command and Synthesis termination
fields with TCL script code for the tool.

Custom
Generate a custom synthesis script. When you select this option, the coder:

• Enables the fields in the Synthesis script pane.
• Sets Synthesis file postfix to _custom.tcl
• Fills in the Synthesis initialization, Synthesis command and Synthesis termination
fields with example TCL script code.

Command-Line Information
Property: HDLSynthTool
Type: character vector
Value: 'None' | 'ISE' | 'Libero' | 'Precision' | 'Quartus' | 'Synplify' | 'Vivado' |
'Custom'
Default: 'None'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

HDLSynthTool

Synthesis file postfix
Specify a postfix to append to file name for generated synthesis scripts.

Settings

Default: None.

Your choice of synthesis tool (from the Choose synthesis tool pulldown menu) sets the postfix for
generated synthesis file names to one of the following:
_ise.tcl
_libero.tcl
_precision.tcl
_quartus.tcl
_synplify.tcl
_vivado.tcl
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_custom.tcl

For example, if the DUT name is my_designand the choice of synthesis tool is Synopsys Synplify
Pro, HDL Coder adds the postfix _synplify.tcl to form the name my_design_synplify.tcl.

Dependency

To use this setting, the Choose synthesis tool or HDLSynthTool property must be set to a value
other than None.

Command-Line Information
Property: HDLSynthFilePostfix
Type: character vector
Default: none

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-7
• HDLSynthFilePostfix

Synthesis initialization
Format name passed to fprintf to write the initialization section of the synthesis script.

Settings

Default: none.

Your choice of synthesis tool (from the Choose synthesis tool pulldown menu) sets the Synthesis
initialization string. The content of the string is specific to the selected synthesis tool.

The default is a synthesis project creation command passed as a format string to fprintf to write
the Init section of the synthesis script. The implicit argument, %s, is the top-level module or entity
name.

Dependency

To use this setting, the Choose synthesis tool or HDLSynthTool property must be set to a value
other than None.

Command-Line Information
Property: HDLSynthInit
Type: character vector
Default: none

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-7
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• HDLSynthInit

Synthesis command
Format name passed to fprintf to write the synthesis command.

Settings

Default: none.

Your choice of synthesis tool (from the Choose synthesis tool pulldown menu) sets the Synthesis
command string. The content of the string is specific to the selected synthesis tool.

The default is a format string passed to fprintf to write the Cmd section of the synthesis script. The
implicit argument, %s, is the filename of the entity or module.

To avoid issues when generating synthesis scripts for various tools, retain both format specifiers (%s).

Dependency

To use this setting, the Choose synthesis tool or HDLSynthTool property must be set to a value
other than None.

Command-Line Information
Property: HDLSynthCmd
Type: character vector
Default: none

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-7
• HDLSynthCmd

Synthesis termination
Specify a format name that is passed to fprintf to write the termination portion of the synthesis
script.

Settings

Default: none

Your choice of synthesis tool (from the Choose synthesis tool pulldown menu) sets the Synthesis
termination string. The content of the string is specific to the selected synthesis tool.

The default is a format name passed to fprintf to write the Term section of the synthesis script. The
termination string does not take arguments.
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Dependency

To use this setting, the Choose synthesis tool or HDLSynthTool property must be set to a value
other than None.

Command-Line Information
Property: HDLSynthTerm
Type: character vector
Default: none

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-7
• HDLSynthTerm

Additional files to add to synthesis project
Include additional HDL or constraint files in synthesis project.

Settings

Default: '' (no files added)

Additional project files, such as HDL source files (.v, .vhd) or constraint files (.ucf), that you
want to include in your synthesis project, specified as a character vector. Separate file names with a
semicolon (;).

You cannot use this setting to include Tcl files. To specify synthesis project Tcl files, use the
AdditionalProjectCreationTclFiles property of the hdlcoder.WorkflowConfig object.

Command-Line Information
Property: SynthesisProjectAdditionalFiles
Type: character vector
Default: ''

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• SynthesisProjectAdditionalFiles
• hdlcoder.WorkflowConfig
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Lint Script

Choose HDL lint tool
Enable or disable generation of an HDL lint script, and select the HDL lint tool for which HDL Coder
generates a script.

After you select an HDL lint tool, the Lint initialization, Lint command and Lint termination
fields are enabled.

Settings

Default: None

None
When you select None, the coder does not generate a lint script. The coder clears and disables
the fields in the Lint script pane.

Ascent Lint
Generate a lint script for Real Intent Ascent Lint.

HDL Designer
Generate a lint script for Mentor Graphics HDL Designer.

Leda
Generate a lint script for Synopsys Leda.

SpyGlass
Generate a lint script for Atrenta SpyGlass.

Custom
Generate a custom synthesis script.

Command-Line Information
Property: HDLLintTool
Type: character vector
Value: 'None' | 'AscentLint' | 'Leda' | 'SpyGlass' | 'Custom'
Default: 'None'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Generate an HDL Lint Tool Script” on page 26-45
• HDLLintTool

Lint initialization
Enter an initialization text for your HDL lint script.

Command-Line Information
Property: HDLLintInit
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Type: character vector
Default: none

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Generate an HDL Lint Tool Script” on page 26-45
• HDLLintInit

Lint command
Enter the command for your HDL lint script.

Command-Line Information
Property: HDLLintCmd
Type: character vector
Default: none

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Generate an HDL Lint Tool Script” on page 26-45
• HDLLintCmd

Lint termination
Enter a termination character vector for your HDL lint script.

Command-Line Information
Property: HDLLintTerm
Type: character vector
Default: none

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Generate an HDL Lint Tool Script” on page 26-45
• HDLLintTerm
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Modeling Guidelines

• “HDL Modeling Guidelines Severity Levels” on page 20-2
• “Model Design and Compatibility Guidelines - By Numbered List” on page 20-3
• “Guidelines for Supported Blocks and Data Types - By Numbered List” on page 20-6
• “Guidelines for Speed and Area Optimizations - By Numbered List” on page 20-10
• “Basic Guidelines for Modeling HDL Algorithm in Simulink” on page 20-12
• “Guidelines for Model Setup and Checking Model Compatibility” on page 20-18
• “Modeling with Simulink, Stateflow, and MATLAB Function Blocks” on page 20-22
• “Terminate Unconnected Block Outputs and Usage of Commenting Blocks” on page 20-25
• “Identify and Programmatically Change and Display HDL Block Parameters” on page 20-30
• “DUT Subsystem Guidelines” on page 20-35
• “Hierarchical Modeling Guidelines” on page 20-39
• “Design Considerations for Matrices and Vectors” on page 20-43
• “Use Bus Signals to Improve Readability of Model and Generate HDL Code” on page 20-48
• “Guidelines for Clock and Reset Signals” on page 20-54
• “Modeling with Native Floating Point” on page 20-61
• “Design Considerations for RAM Blocks and Blocks in HDL Operations Library” on page 20-64
• “Usage of Blocks in Logic and Bit Operations Library” on page 20-68
• “Generate FPGA Block RAM from Lookup Tables” on page 20-73
• “Usage of Different Subsystem Types” on page 20-77
• “Usage of Rate Change and Constant Blocks” on page 20-82
• “Guidelines for Using Delays and Goto and From Blocks for HDL Code Generation”

on page 20-85
• “Modeling Efficient Multiplication and Division Operations for FPGA Targeting” on page 20-87
• “Using Persistent Variables and fi Objects Inside MATLAB Function Blocks for HDL Code

Generation” on page 20-92
• “Guidelines for HDL Code Generation Using Stateflow Charts” on page 20-98
• “Simulink Data Type Considerations” on page 20-104
• “Resource Sharing Settings for Various Blocks” on page 20-106
• “Resource Sharing of Subsystems and Floating-Point IPs” on page 20-110
• “Distributed Pipelining and Clock-Rate Pipelining Guidelines” on page 20-115
• “Insert Distributed Pipeline Registers for Blocks with Vector Data Type Inputs” on page 20-118
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HDL Modeling Guidelines Severity Levels
Each modeling guideline for HDL code generation has a different level of severity that indicates the
levels of compliance requirements. This table illustrates what each severity level indicates.

Severity Levels

Category Mandatory Strongly
Recommended

Recommended Informative

Definition Guidelines that are
absolutely
essential to follow.
Models created
must conform to
these guidelines to
100%.

Guidelines that are
agreed upon to be
a good practice.
Models created
should conform to
these guidelines to
the greatest extent
possible, but does
not have to be
100%.

Guidelines that are
recommended to
improve the
generated code
and optimize the
code on the target
device, but are not
critical

Guidelines that are
meant to
understand some
modeling
recommendations
and best practices.

Impact If you violate these
guidelines, you
cannot generate
code and
synthesize your
design on the
target hardware.

If you violate these
guidelines, you get
poor quality of
results.

Violating these
guidelines may
impact the
efficiency or ease
of using the
generated code
with downstream
synthesis tools

None

See Also

More About
• “Model Design and Compatibility Guidelines - By Numbered List” on page 20-3
• “Guidelines for Supported Blocks and Data Types - By Numbered List” on page 20-6
• “Guidelines for Speed and Area Optimizations - By Numbered List” on page 20-10
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Model Design and Compatibility Guidelines - By Numbered List
The HDL modeling guidelines are a set of recommended guidelines that you can follow when creating
Simulink model for code generation with HDL Coder. The model design and compatibility guidelines
consist of guidelines for basic block usage, clock and reset signals, buses and vectors, and subsystem
and hierarchical designing. Each modeling guideline for HDL code generation has a different level of
severity that indicates the levels of compliance requirements. To learn more about these severity
levels, see “HDL Modeling Guidelines Severity Levels” on page 20-2.

These tables list the model design and compatibility guidelines in HDL Coder. These guidelines start
from 1.1 and are divided into subsections. In the table, you see that certain guidelines have an
associated model check. You can follow the modeling pattern recommended for these guidelines by
running that check in the HDL Code Advisor. To learn more about the HDL Code Advisor, see “Getting
Started with the HDL Code Advisor” on page 39-2.

Guidelines 1.1: Basic Settings
Guideline ID Title Severity Associated Model Check/

Coding Standard Rule
1.1.1 “Use HDL-Supported Blocks” on

page 20-12
Recommended None

1.1.2 “Partition Model into DUT and
Test Bench” on page 20-13

Recommended None

1.1.3 “Avoid Using Double-Byte
Characters” on page 20-14

Mandatory None

1.1.4 “Document Model Features and
Attributes” on page 20-15

Recommended None

1.1.5 “Customize hdlsetup Function
Based on Target Application” on
page 20-18

Recommended Model Check: “Check for safe
model parameters” on page 38-
5

1.1.6 “Check Subsystem for HDL
Compatibility” on page 20-19

Recommended None

1.1.7 “Run Model Checks for HDL
Coder” on page 20-19

Recommended None

1.1.8 “Modeling with Simulink,
Stateflow, and MATLAB Function
Blocks” on page 20-22

Informative None

1.1.9 “Terminate Unconnected Block
Outputs” on page 20-25

Mandatory None

1.1.10 “Using Comment Out and
Comment Through of Blocks” on
page 20-26

Mandatory None

1.1.11 “Adjust Sizes of Constant and
Gain Blocks for Identifying
Parameters” on page 20-30

Recommended None
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Guideline ID Title Severity Associated Model Check/
Coding Standard Rule

1.1.12 “Display Parameters that Affect
HDL Code Generation” on page
20-30

Recommended None

1.1.13 “Change Block Parameters by
Using find_system and
set_param” on page 20-34

Informative None

Guidelines 1.2: DUT Subsystem and Hierarchical Modeling
Guideline ID Title Severity Associated Model Check/

Coding Standard Rule
1.2.1 “DUT Subsystem Considerations”

on page 20-35
Strongly
Recommended

Model Check: “Check for invalid
top level subsystem” on page 38-
13

1.2.2 “Convert DUT Subsystem to
Model Reference for Testbenches
with Continuous Blocks” on page
20-36

Strongly
Recommended

None

1.2.3 “Insert Handwritten Code into
Simulink Modeling Environment”
on page 20-37

Informative None

1.2.4 “Avoid Constant Block
Connections to Subsystem Port
Boundaries” on page 20-39

Mandatory None

1.2.5 “Generate Parameterized HDL
Code for Constant and Gain
Blocks” on page 20-40

Recommended None

Guidelines 1.3: Guidelines for Vectors and Buses
Guideline ID Title Severity Associated Model Check/

Coding Standard Rule
1.3.1 “Modeling Requirements for

Matrices” on page 20-43
Mandatory Model Check: “Check for large

matrix operations” on page 38-
18

1.3.2 “Avoid Generating Ascending Bit
Order in HDL Code From Vector
Signals” on page 20-45

Strongly
Recommended

None

1.3.3 “Use Bus Signals to Improve
Readability of Model and
Generate HDL Code” on page 20-
48

Informative None
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Guidelines 1.4: Guidelines for Clock Bundle Signals
Guideline ID Title Severity Associated Model Check/

Coding Standard Rule
1.4.1 “Use Global Oversampling to

Create Frequency-Divided Clock”
on page 20-54

Informative Model Check: “Check for invalid
top level subsystem” on page 38-
13

1.4.2 “Create Multirate Model with
Integer Clock Multiples by Clock
Division” on page 20-54

Mandatory None

1.4.3 “Use Dual Rate Dual Port RAM
for Noninteger Multiple Sample
Times” on page 20-56

Mandatory None

1.4.4 “Asynchronous Clock Modeling in
HDL Coder” on page 20-57

Recommended None

1.4.5 “Use Global Reset Type Setting
Based on Target Hardware” on
page 20-59

Strongly
Recommended

Model check: “Use Global Reset
Type Setting Based on Target
Hardware” on page 20-59

Guidelines 1.5: Modeling Guidelines for Native Floating Point
Guideline ID Title Severity Associated Model Check/

Coding Standard Rule
1.5.1 “Modeling with Native Floating

Point” on page 20-61
Recommended None

See Also

More About
• “Guidelines for Supported Blocks and Data Types - By Numbered List” on page 20-6
• “Guidelines for Speed and Area Optimizations - By Numbered List” on page 20-10
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Guidelines for Supported Blocks and Data Types - By
Numbered List

The HDL modeling guidelines are a set of recommended guidelines that you can follow when creating
Simulink model for code generation with HDL Coder. The guidelines for supported blocks and data
types consist of guidelines for using various blocks in the HDL Coder block library, and about the
supported data types. Each modeling guideline for HDL code generation has a different level of
severity that indicates the levels of compliance requirements. To learn more about these severity
levels, see “HDL Modeling Guidelines Severity Levels” on page 20-2.

These tables list the guidelines for supported data types in HDL Coder and for various blocks in the
HDL Coder block library. The guidelines start from 2.1 and are divided into subsections. In the table,
you see that certain guidelines have an associated model check. You can follow the modeling pattern
recommended for these guidelines by running that check in the HDL Code Advisor. To learn more
about the HDL Code Advisor, see “Getting Started with the HDL Code Advisor” on page 39-2.

Guidelines 2.1: Blocks in HDL RAMs and HDL Operations Library
Guideline ID Title Severity Associated Model Check/

Coding Standard Rule
2.1.1 “RAM Block Access

Considerations” on page 20-64
Recommended None

2.1.2 “Serial to Parallel Conversion” on
page 20-66

Recommended None

Guidelines 2.2: Blocks in Logic and Bit Operations Library
Guideline ID Title Severity Associated Model Check/

Coding Standard Rule
2.2.1 “Logical and Arithmetic Bit Shift

Operations” on page 20-68
Informative None

2.2.2 “Usage of Logical Operator,
Bitwise Operator, and Bit Reduce
Blocks” on page 20-70

Informative None

2.2.3 “Use Boolean Output for
Compare to Constant and
Relational Operator Blocks” on
page 20-72

Strongly
Recommended

Model Check: “Check for
Relational Operator block usage”
on page 38-28

Guidelines 2.3: Lookup Table Blocks
Guideline ID Title Severity Associated Model Check/

Coding Standard Rule
2.3.1 “Generate FPGA Block RAM from

Lookup Tables” on page 20-73
Strongly
Recommended

None
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Guidelines 2.4: Ports and Subsystems
Guideline ID Title Severity Associated Model Check/

Coding Standard Rule
2.4.1 “Virtual Subsystem: Use as Top-

Level DUT” on page 20-77
Mandatory Model Check: “Check for invalid

top level subsystem” on page 38-
13

2.4.2 “Atomic Subsystem: Generate
Reusable HDL Files” on page 20-
77

Recommended None

2.4.3 “Variant Subsystem: Using
Variant Subsystems for HDL
Code Generation” on page 20-
78

Mandatory None

2.4.4 “Model References: Build Model
Design Using Smaller Partitions”
on page 20-79

Recommended None

2.4.5 “Block Settings of Enabled and
Triggered Subsystems” on page
20-80

Mandatory Model check: “Check initial
conditions of enabled and
triggered subsystems” on page
38-14

Guideline 2.5: Rate Change and Constant Blocks
Guideline ID Title Severity Associated Model Check/

Coding Standard Rule
2.5.1 “Usage of Rate Conversion

Blocks” on page 20-82
Recommended None

2.5.2 “Use Discrete and Finite Sample
Time for Constant Block” on page
20-83

Mandatory Model Check: “Check for infinite
and continuous sample time
sources” on page 38-16

Guideline 2.6: Delay Blocks
Guideline ID Title Severity Associated Model Check/

Coding Standard Rule
2.6.1 “Appropriate Usage of Delay

Blocks as Registers” on page 20-
85

Recommended “Check for obsolete Unit Delay
Enabled/Resettable Blocks” on
page 38-21

2.6.2 “Required HDL Settings for Goto
and From Blocks” on page 20-
85

Mandatory None
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Guideline 2.7: Blocks for Multiplication and Accumulation Operations
Guideline ID Title Severity Associated Model Check/

Coding Standard Rule
2.7.1 “Designing Multipliers and

Adders for Efficient Mapping to
DSP Blocks on FPGA” on page
20-87

Strongly
Recommended

None

2.7.2 “Use ShiftAdd Architecture of
Divide Block for Fixed-Point
Types” on page 20-91

Recommended None

Guideline 2.8: MATLAB Function Blocks
Guideline ID Title Severity Associated Model Check/

Coding Standard Rule
2.8.1 “Update Persistent Variables at

End of MATLAB Function” on
page 20-92

Strongly
Recommended

None

2.8.2 “Avoid Algebraic Loop Errors
from Persistent Variables inside
MATLAB Function Blocks” on
page 20-93

Mandatory None

2.8.3 “Use hdlfimath Setting and
Specify fi Objects inside MATLAB
Function Block” on page 20-95

Strongly
Recommended

“Check for MATLAB Function
block settings” on page 38-19

Guideline 2.9: Stateflow Charts
Guideline ID Title Severity Associated Model Check/

Coding Standard Rule
2.9.1 “Choose State Machine Type

based on HDL Implementation
Requirements” on page 20-98

Strongly
Recommended

None

2.9.2 “Specify Block Configuration
Settings of Stateflow Chart” on
page 20-98

Strongly
Recommended

“Check for Stateflow chart
settings” on page 38-20

2.9.3 “Insert Unconditional Transition
State for Else Statement in HDL
Code” on page 20-99

Recommended None

2.9.4 “Avoid Absolute Time for
Temporal Logic” on page 20-102

Mandatory None
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Guidelines 2.10: Data Types
Guideline ID Title Severity Associated Model Check/

Coding Standard Rule
2.10.1 “Use Boolean for Logical Data

and Ufix1 for Numerical Data” on
page 20-104

Mandatory None

2.10.2 “Specify Data Type of Gain
Blocks” on page 20-104

Recommended None

2.10.3 “Enumerated Data Type
Restrictions” on page 20-105

Mandatory None

See Also

More About
• “Model Design and Compatibility Guidelines - By Numbered List” on page 20-3
• “Guidelines for Speed and Area Optimizations - By Numbered List” on page 20-10

 Guidelines for Supported Blocks and Data Types - By Numbered List

20-9



Guidelines for Speed and Area Optimizations - By Numbered
List

The HDL modeling guidelines are a set of recommended guidelines that you can follow when creating
Simulink model for code generation with HDL Coder. In addition to providing architectural guidance,
because the generated code targets hardware platforms such as FPGAs, ASICs, and SoCs, you can
use these guidelines to optimize your design for speed or area on the target hardware.. Each
modeling guideline for HDL code generation has a different level of severity that indicates the levels
of compliance requirements. To learn more about these severity levels, see “HDL Modeling
Guidelines Severity Levels” on page 20-2.

These tables list the guidelines for speed and area optimizations in HDL Coder. The guidelines start
from 3.1 and are divided into subsections. These guidelines do not have an associated model check.
You can follow the modeling pattern recommended for these guidelines by running that check in the
HDL Code Advisor. To learn more about the HDL Code Advisor, see “Getting Started with the HDL
Code Advisor” on page 39-2.

Guidelines 3.1: Resource Sharing
Guideline ID Title Severity Associated Model Check/

Coding Standard Rule
3.1.1 “Resource Sharing of Add

Blocks” on page 20-106
Recommended None

3.1.2 “Resource Sharing of Gain
Blocks” on page 20-107

Recommended None

3.1.3 “Resource Sharing of Product
Blocks” on page 20-108

Recommended None

3.1.4 “Resource Sharing of Multiply-
Add Blocks” on page 20-108

Recommended None

3.1.5 “General Considerations for
Sharing of Subsystems” on page
20-110

Recommended None

3.1.6 “Use MATLAB Datapath
Architecture for Sharing with
MATLAB Function Blocks” on
page 20-111

Recommended None

3.1.7 “Sharing of Atomic Subsystems”
on page 20-111

Recommended None

3.1.8 “Resource Sharing of Floating-
Point IPs” on page 20-113

Recommended None
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Guidelines 3.2: Clock Rate Pipelining and Distributed Pipelining
Guideline ID Title Severity Associated Model Check/

Coding Standard Rule
3.2.1 “Clock-Rate Pipelining

Guidelines” on page 20-115
Informative None

3.2.2 “Recommended Distributed
Pipelining Settings” on page 20-
115

Recommended None

3.2.3 “Insert Distributed Pipeline
Registers for Blocks with Vector
Data Type Inputs” on page 20-
118

Informative None

See Also

More About
• “Model Design and Compatibility Guidelines - By Numbered List” on page 20-3
• “Guidelines for Supported Blocks and Data Types - By Numbered List” on page 20-6
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Basic Guidelines for Modeling HDL Algorithm in Simulink

In this section...
“Use HDL-Supported Blocks” on page 20-12
“Partition Model into DUT and Test Bench” on page 20-13
“Avoid Using Double-Byte Characters” on page 20-14
“Document Model Features and Attributes” on page 20-15

Use these guidelines to develop your HDL algorithm in Simulink. The guidelines include using HDL-
supported blocks when modeling your design and how to partition your design when developing the
algorithm.

Each guideline has a severity level that indicates the level of compliance requirements. To learn
more, see “HDL Modeling Guidelines Severity Levels” on page 20-2.

Use HDL-Supported Blocks
Guideline ID

1.1.1

Severity

Strongly Recommended

Description

When you create your Simulink model, use blocks from the Simulink Library Browser > HDL
Coder library. Several blocks in this library are pre-configured for HDL code generation. Blocks in
this library are available with Simulink. If you do not have HDL Coder, you can simulate the blocks in
your model, but cannot generate HDL code.

You can find additional HDL-supported blocks in these Simulink block libraries:

• DSP System Toolbox HDL Support
• Communications Toolbox HDL Support
• Vision HDL Toolbox
• Wireless HDL Toolbox

To display only HDL-supported blocks in the Library Browser:

• in the Apps tab, select HDL Coder. The HDL Code tab appears. Select HDL Block Properties
> Open HDL Block Library.

• Alternatively, at the MATLAB Command Window, enter hdllib.

hdllib
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To restore the library browser to the default view, enter this command:

hdllib('off')

Note The set of supported blocks will change in future releases, so you should rebuild your
supported blocks library each time you install a new version of this product.

Partition Model into DUT and Test Bench
Guideline ID

1.1.2

Severity

Recommended

Description

When you create your Simulink model for HDL code generation, the Subsystem that you want to
generate HDL code for is the Design-Under-Test (DUT). This Subsystem contains Simulink blocks that
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can be implemented on your target FPGA or ASIC device. You can further partition the logic inside
the DUT into smaller subsystems based on functionality, sample rates in your design, and so on. When
you generate HDL code, the DUT becomes the top-level module or entity, and the Subsystems inside
the DUT become submodules or smaller entities.

Blocks outside the DUT Subsystem become part of the test bench. The test bench can consist of
blocks that are not supported for HDL code generation. Simulate the test bench to:

• Verify the functionality of the DUT in your Simulinkmodel.
• Verify functional equivalence of the generated model with your original model.

For example, if you open the Simulink model template Blank_DUT, this model opens in the Simulink
Editor.

In this model, HDL_DUT Subsystem is the DUT and blocks outside this Subsystem form the test
bench. You can develop your HDL algorithm inside the HDL_DUT Subsystem. This template model is
preconfigured for HDL code generation.

Note You can also generate HDL code for the entire model instead of the DUT Subsystem. Replace
the input signals and Constant blocks with Inport blocks. Replace the output signals and Scope blocks
with Outport blocks.

Avoid Using Double-Byte Characters
Guideline ID

1.1.3
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Severity

Strongly Recommended

Description

Downstream synthesis and simulation tools do not support double-byte characters such as Japanese
and Chinese characters. HDL Coder does not support using:

• Double-byte characters in model and block names.
• Reserved words of your Operating System in model and block names such as CR, con, prn, aux,

ptr, null, ipt1, ipt2, ipt3, and ipt4, com1, com2, com3, and com4.
• Double-byte characters in comments because the comments are propagated to the generated

code. Use English comments instead.

Document Model Features and Attributes
Guideline ID

1.1.4

Severity

Recommended

Description

To make the generated HDL code easier to manage, you can document reference information as part
of your model settings in these ways:

• Custom File Headers and Footer Comments in HDL Code for Design and Testbench

In the HDL Code Generation > Global Settings > Coding Style tab of the Configuration
Parameters dialog box, by using the Custom File Header Comment and Custom File Footer
Comment parameters, you can enter your own custom comments to appear as headers or footers
in all generated HDL files. To learn more, see “File Comment Customization” on page 16-65.

• Model and Block Annotations, Text Comments, and Requirement Comments

You can add annotations in the form of model annotations, text comments, or requirement
comments to the generated code. For example, you can enter text directly on the block diagram as
Simulink annotations, or insert text comments by placing a DocBlock in your model. To relate
annotations in the block diagram to blocks in your model, use lines to connect the annotations to
those blocks. These annotations appear as comments beside the blocks in the generated code. To
learn more, see “Generate Code with Annotations or Comments” on page 25-13.

• Block Features and Attributes as Custom Header Comments for Each File

In the Description section of the Block Properties for subsystems that you use in your design.
This information appears as comment headers in the HDL code. For example, this figure
illustrates block comments added for a Vector FFT Subsystem in your design.
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The block comments appear as headers in the generated HDL code.
-- Simulink subsystem description for vector_fft_implementation_example/Vector_FFT: 
-- 
-- Created by: John  
-- Function: Vector FFT 
-- This model shows... 
-- Revision 1.0 
-- Revision 1.1 added functionality to... 
--  
-- 
------------------------------------------------------------- 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.ALL; 
USE IEEE.numeric_std.ALL; 
 
ENTITY Vector_FFT IS 
 

See Also
Functions
checkhdl | hdllib | hdlmodelchecker

Modeling Guidelines
“Guidelines for Model Setup and Checking Model Compatibility” on page 20-18 | “Modeling with
Simulink, Stateflow, and MATLAB Function Blocks” on page 20-22
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More About
• “Use Simulink Templates for HDL Code Generation” on page 10-7
• “Create Simulink Model for HDL Code Generation”
• “Show Supported Blocks in Library Browser” on page 25-18
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Guidelines for Model Setup and Checking Model Compatibility
In this section...
“Customize hdlsetup Function Based on Target Application” on page 20-18
“Check Subsystem for HDL Compatibility” on page 20-19
“Run Model Checks for HDL Coder” on page 20-19

Use these guidelines to setup your Simulink model for HDL code generation compatibility and verify
that your design is ready to generate code.

Each guideline has a severity level that indicates the level of compliance requirements. To learn
more, see “HDL Modeling Guidelines Severity Levels” on page 20-2.

Customize hdlsetup Function Based on Target Application
Guideline ID

1.1.5

Severity

Strongly Recommended

Description

Before generating code, you must configure the model. To configure the model, you can use the
hdlsetup function. The hdlsetup function uses the set_param function to set up models for HDL
code generation. The settings include using a fixed-step discrete solver, specifying ASIC/FPGA as the
hardware type, and so on. To see the settings that hdlsetup function saves on the model, run this
command:

edit hdlsetup.m

Some of the settings that the hdlsetup function saves on the model may not be suitable for your
target application. In such cases, you can customize the hdlsetup.m file such that it runs only those
commands required for your target application. For example, you can disable some of the solver
settings in the Configuration Parameters and instead enable certain model parameters such as
displaying port data types, and so on.

% following config parameters are disabled.
%     'Solver',                'fixedstepdiscrete', ...
%     'SaveTime',              'off', ...
%     'SaveOutput',            'off', ...
%     'DataTypeOverride',      'ForceOff',...

% Following model parameters are enabled.
set_param(model, 'ShowLineDimensions', 'on')
set_param(model, 'ShowPortDataTypes', 'on')
set_param(model, 'SampleTimeColors', 'on')
set_param(model, 'WideLines', 'on')
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To see a custom hdlsetup function that consists of these commands and specifies some of the HDL-
specific settings required for HDL code generation, open the file myhdlsetup.m.

edit myhdlsetup.m

You see that this custom myhdlsetup file also saves some HDL-specific parameters by using
hdlset_param on the model.

Check Subsystem for HDL Compatibility
Guideline ID

1.1.6

Severity

Strongly Recommended

Description

The compatibility checker generates a report specified system for compatibility problems, such as use
of unsupported blocks, illegal data type usage, and so on.

To run the check for HDL compatibility:

• From the UI, right-click the DUT Subsystem and select HDL Code > Check Subsystem for HDL
compatibility.

• At the command line, use the checkhdl function. Select the DUT Subsystem and then enter this
command:

checkhdl(gcb)

See also “Check Your Model for HDL Compatibility” on page 25-16.

When you run this command, the HDL compatibility checker generates an HDL Code Generation
Check Report. The report is stored in the target hdlsrc folder. If the report does not display any
errors, it indicates that your model is compatible for HDL code generation.

### Starting HDL Check.
### HDL Check Complete with 0 errors, warnings and messages.

Note checkhdl does not detect all compatibility issues. Even if HDL check completes without any
errors or warnings, HDL Coder can generate errors during code generation.

Run Model Checks for HDL Coder
Guideline ID

1.1.7

Severity

Strongly Recommended
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Description

To see whether your DUT Subsystem is compatible for HDL code generation, run the checks in the
HDL Code Advisor or the Simulink Model Advisor checks for HDL Coder.

To open the HDL Code Advisor:

• From the UI, in the Apps tab, select HDL Coder. The HDL Code tab appears. Select the DUT
Subsystem and then click HDL Code Advisor.

• To run the model checks for the Subsystem you want to analyze, right-click that Subsystem, and in
the context menu, select HDL Code > Check Model Compatibility.

• At the command line, use the hdlmodelchecker function:

hdlmodelchecker(gcb)

When you run this command, the HDL Code Advisor appears.

You may not have to run all checks in the HDL Code Advisor. For example, if your model does not
have single or double data types, you do not have to run the checks in the Native Floating Point
checks folder. To learn more about each check and whether to run the check for your model, right-
click that check and select What's This?.
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See Also
Functions
checkhdl | hdllib | hdlmodelchecker

Modeling Guidelines
“Basic Guidelines for Modeling HDL Algorithm in Simulink” on page 20-12

More About
• “Use Simulink Templates for HDL Code Generation” on page 10-7
• “Create Simulink Model for HDL Code Generation”
• “Show Supported Blocks in Library Browser” on page 25-18
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Modeling with Simulink, Stateflow, and MATLAB Function
Blocks

In this section...
“Guideline ID” on page 20-22
“Severity” on page 20-22
“Description” on page 20-22

You can follow this guideline as a general practice for modeling your design with various blocks in the
Simulink Library Browser.

Each guideline has a severity level that indicates the level of compliance requirements. To learn
more, see “HDL Modeling Guidelines Severity Levels” on page 20-2.

Guideline ID
1.1.8

Severity
Informative

Description
When you create a Simulink model for HDL code generation, use Simulink blocks, MATLAB Function
blocks, and Stateflow blocks based on the application. This figure shows an example of how you can
use the various blocks inside your DUT.

Simulink Blocks

Use Simulink blocks to model arithmetic algorithms that perform numerical processing or contains
feedback loops.
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MATLAB Function Blocks

Use MATLAB Function blocks to model the control logic, conditional branches such as if-else
statements, and simple state machines. You can also use MATLAB Function blocks to model an IP that
is written using MATLAB code.

Stateflow Blocks

Use these Stateflow blocks to model your algorithm:

• State Transition Table: Use these blocks to model state machines that control the output using
knowledge of the past and the present.

• Chart: Use these blocks to model flow charts using conditional if-else branches and state machines
that control the output using knowledge of the past and the present.

• Truth Table: Use these blocks to model conditional if-else branches.

You can model combinational logic using Stateflow blocks. For more complex operations and
operations that change timing such as pipeline insertion and processing, use Simulink blocks. You can
then use the Stateflow logic to process the result calculated from the Simulink blocks

Model References

For significantly large algorithms that have complex computations, you can partition the design into a
hierarchy of smaller designs. Use this partitioning for reuse, modular development, and accelerated
simulation. You can reuse models by including them as Model blocks inside a top model. The model
that reuses this block is called the top model and the block that is reused or included in the top model
is called the referenced model.

Note When you generate HDL code for a Subsystem that is not at the top level of the model, HDL
Coder converts the Subsystem to a model reference.

A referenced model is treated similar to an Atomic Subsystem. In some cases, an algebraic loop can
potentially occur, and can prevent HDL code generation. To generate code, either remove the
algebraic loop in your design, or, in the Configuration Parameters dialog box, specify the Minimize
algebraic loop occurrences setting.

BlackBox Subsystems

For subsystems that you want to simulate in your design and to include the HDL code that you
authored, use BlackBox subsystems. To create a BlackBox Subsystem, set the HDL Architecture of a
Subsystem or Model reference to BlackBox. You can use this architecture to incorporate
handwritten HDL code into a Simulink model. For more information, see “Verify the Combination of
Hand-Written and Generated HDL Code” (HDL Verifier).

If you generate a Simulink model using the HDL code that you authored, use HDL import. To learn
more, see “Import Verilog Code and Generate Simulink Model” on page 10-85.

HDL Cosimulation Blocks

If you have a HDL simulator such as Mentor Graphics ModelSim or Cadence Incisive, you can use
HDL Cosimulation blocks to simulate the HDL code for the DUT and instantiate this HDL code in the
generated code.
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See Also
Modeling Guidelines
“Basic Guidelines for Modeling HDL Algorithm in Simulink” on page 20-12

More About
• “Verify with HDL Cosimulation” on page 37-13
• “Show Supported Blocks in Library Browser” on page 25-18
• “Design Guidelines for the MATLAB Function Block” on page 29-28
• “Introduction to Stateflow HDL Code Generation” on page 28-2
• “Generate Black Box Interface for Subsystem” on page 27-4
• “Generate Black Box Interface for Referenced Model” on page 27-8
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Terminate Unconnected Block Outputs and Usage of
Commenting Blocks

You can follow these guidelines as recommended modeling practices such as making sure that block
outputs are terminated and how you can comment out blocks for HDL code generation.

Each guideline has a severity level that indicates the level of compliance requirements. To learn
more, see “HDL Modeling Guidelines Severity Levels” on page 20-2.

Terminate Unconnected Block Outputs
Guideline ID

1.1.9

Severity

Mandatory

Description

If you generate HDL code for a Subsystem that has unconnected output ports, HDL Coder™
generates an error. For output ports that are not connected to downstream logic, connect them to a
Terminator block.

This model illustrates a DUT0 Subsystem that has an unconnected output port Out2.

open_system('hdlcoder_terminateout')

If you generate HDL code for this Subsystem, HDL Coder™ generates this error:

error in validation model generation: Failed to find source for outport 2 on
'DUT0' Please create a fully connected subsystem when generating the
cosimulation model.

close_system('hdlcoder_terminateout')

You can use the addterms function to add Terminator blocks to unconnected ports in your model.
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load_system('hdlcoder_terminateout')
addterms('hdlcoder_terminateout')
open_system('hdlcoder_terminateout')

Using Comment Out and Comment Through of Blocks
Guideline ID

1.1.10

Severity

Mandatory

Description

HDL Coder™ does not support code generation for a block or blocks that you comment through.

This model illustrates two Subsystems DUT_CommentOut and Dut_CommentThrough.

open_system('hdlcoder_comment_through_out')
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The Dut_CommentThrough Subsystem contains a Subsystem that is commented through. HDL
Coder™ generates an error for this Subsystem when generating code. In addition, the code generator
does not support comment through for DUT input in testbench.

open_system('hdlcoder_comment_through_out/DUT_CommentThrough/Generated')

The code generator supports blocks that are commented out when the output signals are unused. The
generated code assigns a constant value of 0 to the signal at the output. The Dut_CommentOut
Subsystem contains two subsystems that are commented out.

open_system('hdlcoder_comment_through_out/DUT_CommentOut')
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When you generate code for Dut_CommentOut, HDL Coder ignores these subsystems. The
Generated Subsystem has blocks that are commented out and outputs a zero value.

You see this VHDL code generated for this Subsystem which indicates a constant zero value assigned
to Out1.

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.numeric_std.ALL;

ENTITY Generated IS
  PORT( Out1                              :   OUT   std_logic_vector(15 DOWNTO 0)  -- sfix16_En6
        );
END Generated;

ARCHITECTURE rtl OF Generated IS

  -- Signals
  SIGNAL TmpGroundAtData_Type_DuplicateInport1_out1 : signed(15 DOWNTO 0);  -- sfix16_En6

BEGIN
  -- Unsupported Block

  TmpGroundAtData_Type_DuplicateInport1_out1 <= to_signed(16#0000#, 16);

  Out1 <= std_logic_vector(TmpGroundAtData_Type_DuplicateInport1_out1);
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END rtl;

See Also
Modeling Guidelines
“Basic Guidelines for Modeling HDL Algorithm in Simulink” on page 20-12

More About
• “Comment Out and Comment Through” (Simulink)
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Identify and Programmatically Change and Display HDL Block
Parameters

You can follow these guidelines to learn how you can identify block parameters in your design and
programmatically update some of the parameters so that the model is compatible for HDL code
generation. Each guideline has a severity level that indicates the level of compliance requirements.
To learn more, see “HDL Modeling Guidelines Severity Levels” on page 20-2.

Adjust Sizes of Constant and Gain Blocks for Identifying Parameters
Guideline ID

1.1.11

Severity

Recommended

Description

For Constant blocks and Gain blocks that have significantly large values or use parameter values, the
Constant or Gain values may not be visible in the block mask. To increase readability, adjust the size
of the block so that the parameter value can be displayed as shown in figure.

Display Parameters that Affect HDL Code Generation
Guideline ID

1.1.12

Severity

Recommended

Description

Certain HDL block properties such as DistributedPipelining and SharingFactor can
significantly affect HDL code generation. If the block properties are enabled for a certain block or
Subsystem, it is recommended that you annotate the block properties beside that block in the
Simulink™ diagram. When you annotate the model, use delimiters such as --HDL-- to separate the
annotation from the block name.
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For example, open the model hdlcoder_block_annotation_HDL_params.slx.

open_system('hdlcoder_block_annotation_HDL_params')
set_param('hdlcoder_block_annotation_HDL_params','SimulationCommand','Update')

The DUT Subsystem performs a simple multiply-add operation.

open_system('hdlcoder_block_annotation_HDL_params/DUT')

There are HDL block parameters saved on the model. To see the parameters, use the
hdlsaveparams function.

hdlsaveparams('hdlcoder_block_annotation_HDL_params/DUT')

%% Set Model 'hdlcoder_block_annotation_HDL_params' HDL parameters
hdlset_param('hdlcoder_block_annotation_HDL_params', 'GenerateCoSimModel', 'ModelSim');
hdlset_param('hdlcoder_block_annotation_HDL_params', 'GenerateValidationModel', 'on');
hdlset_param('hdlcoder_block_annotation_HDL_params', 'HierarchicalDistPipelining', 'on');
hdlset_param('hdlcoder_block_annotation_HDL_params', 'MaskParameterAsGeneric', 'on');
hdlset_param('hdlcoder_block_annotation_HDL_params', 'MinimizeClockEnables', 'on');
hdlset_param('hdlcoder_block_annotation_HDL_params', 'MinimizeIntermediateSignals', 'on');
hdlset_param('hdlcoder_block_annotation_HDL_params', 'OptimizationReport', 'on');
hdlset_param('hdlcoder_block_annotation_HDL_params', 'ResetType', 'Synchronous');
hdlset_param('hdlcoder_block_annotation_HDL_params', 'ResourceReport', 'on');
hdlset_param('hdlcoder_block_annotation_HDL_params', 'TargetLanguage', 'Verilog');
hdlset_param('hdlcoder_block_annotation_HDL_params', 'Traceability', 'on');
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% Set SubSystem HDL parameters
hdlset_param('hdlcoder_block_annotation_HDL_params/DUT', 'DistributedPipelining', 'on');
hdlset_param('hdlcoder_block_annotation_HDL_params/DUT', 'InputPipeline', 1);
hdlset_param('hdlcoder_block_annotation_HDL_params/DUT', 'OutputPipeline', 3);

% Set Sum HDL parameters
hdlset_param('hdlcoder_block_annotation_HDL_params/DUT/Add', 'InputPipeline', 1);
hdlset_param('hdlcoder_block_annotation_HDL_params/DUT/Add', 'OutputPipeline', 1);

% Set Product HDL parameters
hdlset_param('hdlcoder_block_annotation_HDL_params/DUT/Product', 'InputPipeline', 2);
hdlset_param('hdlcoder_block_annotation_HDL_params/DUT/Product', 'OutputPipeline', 1);

To annotate the model with the HDL block parameters saved on the model, use the
showHdlBlockParams script attached with the example.

showHdlBlockParams('hdlcoder_block_annotation_HDL_params/DUT','on')

Add block annotation for hdlcoder_block_annotation_HDL_params/DUT. 
 ----HDL----\nDistributedPipelining = on\nInputPipeline = 1\nOutputPipeline = 3 

Add block annotation for hdlcoder_block_annotation_HDL_params/DUT/Add. 
 ----HDL----\nInputPipeline = 1\nOutputPipeline = 1 

Add block annotation for hdlcoder_block_annotation_HDL_params/DUT/Product. 
 ----HDL----\nInputPipeline = 2\nOutputPipeline = 1 

open_system('hdlcoder_block_annotation_HDL_params')

open_system('hdlcoder_block_annotation_HDL_params/DUT')
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To remove the HDL block parameters annotation from the model, run the showHdlBlockParams set
to off.

showHdlBlockParams('hdlcoder_block_annotation_HDL_params/DUT','off')

HDL block annotations for hdlcoder_block_annotation_HDL_params/DUT are removed
HDL block annotations for hdlcoder_block_annotation_HDL_params/DUT/In1 are removed
HDL block annotations for hdlcoder_block_annotation_HDL_params/DUT/In2 are removed
HDL block annotations for hdlcoder_block_annotation_HDL_params/DUT/In3 are removed
HDL block annotations for hdlcoder_block_annotation_HDL_params/DUT/Add are removed
HDL block annotations for hdlcoder_block_annotation_HDL_params/DUT/Product are removed
HDL block annotations for hdlcoder_block_annotation_HDL_params/DUT/Out1 are removed

open_system('hdlcoder_block_annotation_HDL_params')

open_system('hdlcoder_block_annotation_HDL_params/DUT')
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Change Block Parameters by Using find_system and set_param
Guideline ID

1.1.13

Severity

Informative

Description

To modify the parameters of certain blocks, you can use the function find_system with the function
set_param. For example, this script that detects all Constant blocks with a Sample time of inf and
modifies it to -1:
modelname = ‘sfir_fixed’;
open_system (modelname)

% Detect all Constant blocks in the model
blockConstant = find_system(bdroot, 'blocktype', 'Constant')
 
% Detect the Constant blocks with sample time [inf], and change to [-1]
for  n  =  1:numel(blockConstant)
        sTime = get_param(blockConstant{n},'SampleTime') 
        if strcmp(lower(sTime), 'inf')
            set_param(blockConstant{n}, 'SampleTime', '-1')
    end
end

See Also
Functions
find_system | hdlsaveparams | set_param

More About
• “Specify Block Properties” (Simulink)
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DUT Subsystem Guidelines
You can follow these guidelines to learn some best practices on how you can model the DUT for HDL
code and testbench generation. Each guideline has a severity level that indicates the level of
compliance requirements. To learn more, see “HDL Modeling Guidelines Severity Levels” on page 20-
2.

DUT Subsystem Considerations
Guideline ID

1.2.1

Severity

Strongly Recommended

Description

The DUT is the Subsystem that contains the algorithm for which you want to generate code.
Generally, you specify the top-level Subsystem as the DUT. See also “Partition Model into DUT and
Test Bench” on page 20-13.

Consider using these recommended settings when you design the DUT Subsystem for HDL code
generation.

For a top-level DUT:

• Make sure that the DUT is not a conditionally-executed subsystem, such as an Enabled Subsystem
or a Triggered Subsystem. To verify that you are using a valid top-level Subsystem as the DUT, you
can run this HDL model check “Check for invalid top level subsystem” on page 38-13.

• Make sure that the HDL Architecture of the DUT is not specified as a BlackBox. See “BlackBox
Subsystems” on page 20-23.

• Connect output signals that are unconnected to a Terminator block. To learn more, see “Terminate
Unconnected Block Outputs” on page 20-25.

• Make sure that the DUT does not contain blocks that you comment through. HDL Coder does not
support code generation for these blocks. You can comment out blocks for code generation when
the output signals are unused. See also “Using Comment Out and Comment Through of Blocks” on
page 20-26.

If you use a Subsystem that is hierarchically below the top-level Subsystem as the DUT and generate
HDL code, HDL Coder converts it to a model reference. After you generate HDL code, in the hdlsrc
directory, you see a Simulink model with references to the validation and cosimulation model. In some
cases, it can result in conflicts in reference file names and longer code generation time.

For a non-top-level DUT:

• Specify the DUT as a nonvirtual Subsystem before generating HDL code to avoid numerical
mismatches in the simulation results. To learn more, see “Usage of Different Subsystem Types” on
page 20-77.

• Leave the HDL Architecture of the DUT to default.
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Convert DUT Subsystem to Model Reference for Testbenches with
Continuous Blocks
Guideline ID

1.2.2

Severity

Strongly Recommended

Description

In some cases, parts of the Simulink™ testbench can contain Simscape™ blocks or other blocks from
the Simulink library that operate at a continuous sample time. To simulate these blocks, you must
specify a continuous solver setting for your model. The solver settings that you specify applies to all
blocks in your model. This means that the DUT Subsystem uses a continuous solver, which is not
supported for HDL code generation. To generate HDL code, convert the DUT Subsystem to a model
reference, and then use a fixed-step discrete solver for the referenced model. As the parent model
and the referenced model use different solver settings, you must convert the sample time by inserting
Zero-Order Hold and Rate Transition blocks at the DUT boundary.

Note: To avoid issues such as reference model file confliction and longer code generation
time, it is recommended that you avoid using a Subsystem that is hierarchically below the
top-level Subsystem as the DUT.

For example, open the model hdlcoder_testbench_continuous.slx. The model uses ode45,
which is a continuous solver setting. You see that the DUT is a model reference block. Zero-Order
Hold and Rate Transition blocks at the boundary convert the sample time.

open_system('hdlcoder_testbench_continuous')
set_param('hdlcoder_testbench_continuous','SimulationCommand','Update')
get_param('hdlcoder_testbench_continuous', 'Solver')

ans =

    'ode45'

To see the referenced model hdlcoder_DUT_discrete, double-click the DUT block. You see that the
DUT uses a discrete solver setting.
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open_system('hdlcoder_testbench_continuous/DUT')
get_param('hdlcoder_DUT_discrete', 'Solver')

ans =

    'FixedStepDiscrete'

Insert Handwritten Code into Simulink Modeling Environment
Guideline ID

1.2.3

Severity

Informative

Description

You can reuse a pre-verified RTL IP or insert your handwritten HDL code into the Simulink modeling
environment by using these methods:

• Verilog HDL Import

If you have handwritten Verilog code, you can import the code into the Simulink environment. The
import process generates a Simulink model that is functionally equivalent to your handwritten
HDL code.

HDL import supports a subset of Verilog constructs that you can use for importing your design to
create the Simulink model. To learn more, see:

• “Supported Verilog Constructs for HDL Import” on page 10-88
• “Limitations of Verilog HDL Import” on page 10-86

• BlackBox Subsystems

You can use BlackBox subsystems to insert your handwritten HDL code for a block in your
Simulink model. You can then integrate BlackBox subsystems with other blocks in your Simulink
model and then generate HDL code.

To make the BlackBox Subsystem compatible with other blocks for HDL code generation and to
include this block in your model, create the block in Simulink:

• Name the block by using the same name as the VHDL entity or Verilog module.
• Define the same inputs and outputs, including the same types, sizes, and names.
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• Define the same clock, reset, and clock enable signals. A single block can have not more than
one clock, reset, and clock enable signal.

• Use a single sample rate for the block.
• Specify the Architecture of the block as BlackBox in the HDL Block Properties.

To learn more, see “Generate Black Box Interface for Subsystem” on page 27-4 .
• DocBlock in BlackBox Subsystems

To keep the HDL code with your model, instead of as a separate file, use a DocBlock to integrate
custom HDL code. You can use your own handwritten VHDL or Verilog code as the text in the
DocBlock.

You include each DocBlock that contains custom HDL code by placing it in a black box subsystem,
and including the black box subsystem in your DUT. One HDL file is generated per black box
subsystem. For more information, see “Integrate Custom HDL Code Using DocBlock” on page 27-
10.

• HDL Cosimulation Blocks

If you have a HDL simulator such as Mentor Graphics ModelSim or Cadence Incisive, you can use
HDL Cosimulation blocks to simulate the HDL code for the DUT by using that HDL simulator.

You can simulate the HDL code for the DUT in Simulink and instantiate the HDL code in the
generated code for the DUT.

See Also
Functions
importhdl | makehdl | makehdltb

More About
• “Model Referencing for HDL Code Generation” on page 27-2
• “Customize Black Box or HDL Cosimulation Interface” on page 27-12
• “Generate a Cosimulation Model” on page 27-30
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Hierarchical Modeling Guidelines
Consider using these recommended settings when you build your model hierarchically and generate
HDL code for your design. Each guideline has a severity level that indicates the level of compliance
requirements. To learn more, see “HDL Modeling Guidelines Severity Levels” on page 20-2.

Avoid Constant Block Connections to Subsystem Port Boundaries
Guideline ID

1.2.4

Severity

Mandatory

Description

It is recommended that you avoid directly connecting Constant blocks to the output ports of a
Subsystem. Synthesis tools may optimize and remove the constants and create unconnected ports.

If you use floating-point data types with the Native Floating Point mode enabled, and input
constant values to an arithmetic operator such as an Add block, HDL Coder™ replaces the Add block
with a Constant block when generating code. This optimization can result in a Constant block directly
connected to the output port. Therefore, it is recommended that you avoid such modeling constructs.
See also Simplify Constant Operations and Reduce Design Complexity in HDL Coder.

For example, open the model hdlcoder_constant_subsystem_boundary.slx. The DUT contains
two subsystems Constant_subsys1 and Constant_subsys2, the outputs of which are inputs to a
third Subsystem. Constant_subsys1 contains Constant blocks directly connected to the output
ports, and Constant_subsys2 contains Constant blocks that have single data types as inputs to an
Add block.

load_system('hdlcoder_constant_subsystem_boundary.slx')
set_param('hdlcoder_constant_subsystem_boundary','SimulationCommand','Update')
open_system('hdlcoder_constant_subsystem_boundary/DUT/Constant_subsys1')

open_system('hdlcoder_constant_subsystem_boundary/DUT/Constant_subsys2')
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As Constant_subsys2 uses single data types and the model has Native Floating Point mode
enabled, when you generate HDL code for the DUT, the Constant_subsys2 becomes a candidate for
the optimization that simplifies constant operations. When you open the generated model, you see a
Constant block directly connected to the output port.

open_system('gm_hdlcoder_constant_subsystem_boundary.slx')
set_param('gm_hdlcoder_constant_subsystem_boundary','SimulationCommand','Update')
open_system('gm_hdlcoder_constant_subsystem_boundary/DUT/Constant_subsys2')

Generate Parameterized HDL Code for Constant and Gain Blocks
Guideline ID

1.2.5

Severity

Recommended

Description

To generate parameterized HDL code for Gain and Constant blocks:

• The Subsystem that contains the Gain and Constant blocks must be a masked subsystem. The Gain
and Constant blocks use these mask parameter values. You define mask parameters of the
Subsystem in the Mask Editor dialog box.

• The Subsystem that contains the Gain and Constant blocks must be an Atomic Subsystem. To
make a Subsystem an Atomic Subsystem, right-click that Subsystem and select Treat as atomic
unit.

• Enable the Generate parameterized HDL code from masked subsystem setting in the
Configuration Parameters dialog box or set MaskParameterAsGeneric to on at the command
line using makehdl or hdlset_param.

For an example, open the model hdlcoder_masked_subsystems. The Top Subsystem contains two
atomic masked subsystems MASKSUB and MASKSUB1 that are similar but for the masked parameter
values.

load_system('hdlcoder_masked_subsystems')
set_param('hdlcoder_masked_subsystems', 'SimulationCommand', 'Update')
open_system('hdlcoder_masked_subsystems/TOP')
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The model has the MaskParameterAsGeneric setting enabled. This setting corresponds to the
Generate parameterized HDL code from masked subsystem setting that is enabled at the
command line.

hdlsaveparams('hdlcoder_masked_subsystems')

%% Set Model 'hdlcoder_masked_subsystems' HDL parameters
hdlset_param('hdlcoder_masked_subsystems', 'HDLSubsystem', 'hdlcoder_masked_subsystems/TOP');
hdlset_param('hdlcoder_masked_subsystems', 'MaskParameterAsGeneric', 'on');

To generate VHDL code for the Top Subsystem, run this command:

makehdl('hdlcoder_masked_subsystems/TOP')

In the generated code, you see that HDL Coder™ generates one HDL file MaskedSub with the
different masked parameters mapped to generic ports.

-- -------------------------------------------------------------
-- 
-- File Name: hdlsrc\hdlcoder_masked_subsystems\TOP.vhd
-- Created: 2018-10-08 13:30:02
-- 
-- Generated by MATLAB 9.6 and HDL Coder 3.13
-- 
--
-- -------------------------------------------------------------
--
--

ARCHITECTURE rtl OF TOP IS

  -- Component Declarations
  COMPONENT MASKSUB
    GENERIC( m                            : integer;
             b                            : integer
             );
    PORT( x                               :   IN    std_logic_vector(7 DOWNTO 0);  -- uint8
          y                               :   OUT   std_logic_vector(16 DOWNTO 0)  -- ufix17
          );
  END COMPONENT;

  -- Component Configuration Statements
  FOR ALL : MASKSUB
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    USE ENTITY work.MASKSUB(rtl);

  -- Signals
  SIGNAL MASKSUB_out1                     : std_logic_vector(16 DOWNTO 0);  -- ufix17
  SIGNAL MASKSUB1_out1                    : std_logic_vector(16 DOWNTO 0);  -- ufix17

BEGIN
  u_MASKSUB : MASKSUB
    GENERIC MAP( m => 5,
                 b => 2
                 )
    PORT MAP( x => In1,  -- uint8
              y => MASKSUB_out1  -- ufix17
              );

  u_MASKSUB1 : MASKSUB
    GENERIC MAP( m => 6,
                 b => 4
                 )
    PORT MAP( x => In1,  -- uint8
              y => MASKSUB1_out1  -- ufix17
              );

  Out1 <= MASKSUB_out1;

  Out2 <= MASKSUB1_out1;

END rtl;

See Also
Functions
makehdl | makehdltb

More About
• “Generate Parameterized Code for Referenced Models” on page 10-20
• “Simplify Constant Operations and Reduce Design Complexity in HDL Coder™” on page 24-8
• “Remove Redundant Logic and Optimize Unconnected Ports in Design” on page 24-91
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Design Considerations for Matrices and Vectors
These guidelines recommended how you can use matrix and vector signals when modeling your
design for HDL code generation. Each guideline has a severity level that indicates the level of
compliance requirements. To learn more, see “HDL Modeling Guidelines Severity Levels” on page 20-
2.

Modeling Requirements for Matrices
Guideline ID

1.3.1

Severity

Mandatory

Description

HDL Coder™ does not support matrix data types at the DUT interfaces. Before the 2-D matrix signals
enter the DUT Subsystem, convert the signals to 1-D vectors by using a Reshape block. Inside the
DUT Subsystem, you can convert the vectors back to matrices by using Reshape blocks, and then
perform matrix computations. After performing computations, you must convert the matrices back to
vector signals at the DUT output interface. Outside the DUT interface, you can convert the vector
signals back to matrices.

Modeling Considerations

• When you use the Reshape block to convert vectors to 2D matrices, make sure that you specify the
right Output dimensions.

• When you use the Product block, use the right Multiplication mode. By using this mode, you can
perform either matrix multiplication or element-wise multiplication. The multiplied output can
have different dimensions depending on the Multiplication mode.

• When you use the Product block to perform matrix multiplication, place the Matrix Multiply block
inside a Subsystem block. When you generate code and open the generated model, you see that
HDL Coder expands the matrix multiplication to multiple Product and Add blocks. Placing the
Matrix Multiply block inside a subsystem makes the generated model easier to understand. In
addition, make sure that you do not provide more than two inputs to the Matrix Multiply block.

• When you extract matrix data, use Selector and Assignment blocks. Make sure that you do not use
fixed-point data types for the index inpt ports for the blocks.

Example

This example shows how to use matrix types in HDL Coder™. Open this model
hdlcoder_matrix_multiply. The model contains a Reshape block that converts the matrix input
to a 1-D vector at the DUT Subsystem interface.

open_system('hdlcoder_matrix_multiply')
set_param('hdlcoder_matrix_multiply', 'SimulationCommand', 'update')
sim('hdlcoder_matrix_multiply')
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If you open the DUT Subsystem, you see two subsystems. The Reshape blocks convert the 1-D array
back to the 2-by-2 matrices for input to the subsystems. One subsystem uses a Matrix Multiply block
and the other subsystem performs element-wise multiplication. The output result is converted back to
vectors.

open_system('hdlcoder_matrix_multiply/DUT')
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If you generate HDL code for the DUT Subsystem and open the generated model, you see how the
multiplication operation is performed.

Avoid Generating Ascending Bit Order in HDL Code From Vector
Signals
Guideline ID

1.3.2

Severity

Strongly Recommended

Description

In MATLAB, the default bit ordering for arrays is ascending. The generated VHDL code in such cases
uses a declaration of std_logic_vector (0 to n). This signal declaration generates warnings by
violating certain HDL coding standard rules. These are some scenarios:
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Ascending Bit Order Scenarios

Scenario Problem Example Workaround
Delay block with a
Delay length
greater than 1.

This example illustrates the generated
code for a Delay block with a Delay
length of 5.

ENTITY Subsystem1 IS
  PORT( clk    :   IN   std_logic;
        reset  :   IN   std_logic;
        enb    :   IN   std_logic;
        In1    :   IN   std_logic;  -- ufix1
        Out1   :   OUT  std_logic   -- ufix1
        );
END Subsystem1;

ARCHITECTURE rtl OF Subsystem1 IS

  -- Signals
  SIGNAL Delay_reg   : std_logic_vector(0 TO 4);  -- ufix1 [5]
  SIGNAL Delay_out1  : std_logic;  -- ufix1

Instead of using a Delay block with a
Delay length of 5, you can connect
five Delay blocks that have a Delay
length of 1 in series.

ENTITY Subsystem1 IS
  PORT( clk    :   IN    std_logic;
        reset  :   IN    std_logic;
        enb    :   IN    std_logic;
        In1    :   IN    std_logic;  -- ufix1
        Out1   :   OUT   std_logic  -- ufix1
        );
END Subsystem1;

ARCHITECTURE rtl OF Subsystem1 IS

  -- Signals
  SIGNAL Delay_out1    : std_logic;  -- ufix1
  SIGNAL Delay1_out1   : std_logic;  -- ufix1
  SIGNAL Delay2_out1   : std_logic;  -- ufix1
  SIGNAL Delay3_out1   : std_logic;  -- ufix1
  SIGNAL Delay4_out1   : std_logic;  -- ufix1

Combining
multiple input
signals to a vector
signal using the
Mux block.

This example illustrates the generated
code when you use a Mux block to
combine 4 input signals.

ENTITY Subsystem IS
  PORT( In1   :  IN   std_logic;  -- ufix1
        Out1  :  OUT  std_logic_vector(0 TO 3)  -- ufix1 [4]
        );
END Subsystem;

ARCHITECTURE rtl OF Subsystem IS

  -- Signals
  SIGNAL Mux_out1  : std_logic_vector(0 TO 3);  -- ufix1 [4]

Use a Bit Concat block to combine the
input signals. This example illustrates
the generated code for this block by
concatenating 4 input signals.

ENTITY Subsystem IS
  PORT( In1   :   IN    std_logic;  -- ufix1
        Out1  :   OUT   std_logic_vector(3 DOWNTO 0)  -- ufix4
        );
END Subsystem;

ARCHITECTURE rtl OF Subsystem IS

  -- Signals
  SIGNAL Bit_Concat_out1  : unsigned(3 DOWNTO 0);  -- ufix4 
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Scenario Problem Example Workaround
Using a Constant
block to generate
vector signals.

This example illustrates the generated
code when you use a Constant block to
generate a vector of 4 scalar boolean
signals.

ENTITY Subsystem2 IS
  PORT( Out1  :  OUT  std_logic_vector(0 TO 3)  -- boolean [4]
        );
END Subsystem;

ARCHITECTURE rtl OF Subsystem2 IS

  -- Signals
  SIGNAL Constant_out1  : std_logic_vector(0 TO 3);  -- boolean [4]

Use a Demux block followed by a Bit
Concat block after the Constant block.
This example illustrates the generated
code when you apply this modeling
technique to the vector of 4 Constant
block.

ENTITY Subsystem2 IS
  PORT( Out1   :   OUT   std_logic_vector(3 DOWNTO 0)  -- ufix4
        );
END Subsystem2;

ARCHITECTURE rtl OF Subsystem2 IS

  -- Signals
  SIGNAL Constant_out1     : std_logic_vector(0 TO 3);  -- boolean [4]
  SIGNAL Constant_out1_0   : std_logic;
  SIGNAL Constant_out1_1   : std_logic;
  SIGNAL Constant_out1_2   : std_logic;
  SIGNAL Constant_out1_3   : std_logic;
  SIGNAL Bit_Concat_out1   : unsigned(3 DOWNTO 0);  -- ufix4
]

See Also
Functions
makehdl | makehdltb

More About
• “Signal and Data Type Support” on page 10-2
• “RTL Description Techniques” on page 26-18

 Design Considerations for Matrices and Vectors

20-47



Use Bus Signals to Improve Readability of Model and Generate
HDL Code

You can follow these guidelines to learn about bus signals, how to model your design by using these
signals, and generate HDL code. Each guideline has a severity level that indicates the level of
compliance requirements. To learn more, see “HDL Modeling Guidelines Severity Levels” on page 20-
2.

Guideline ID

1.3.3

Severity

Informative

Description

When to Use Buses?

If your DUT or other blocks in your model have many input or output signals, you can create bus
signals to improve the readability of your model. A bus signal or bus is a composite signal that
consists of other signals that are called elements. The bus signal can have a structure of different
data types or a vector signal with the same data types. If all signals have the same data type, you
generally use a Mux block. The constituent signals or elements of a bus can be:

• Mixed data type signals such as double, integer, and fixed-point
• Mixed scalar and vector elements
• Mixed real and complex signals
• Other buses nested to any level
• Multidimensional signals

HDL Coder™ Support for Buses

You can generate HDL code for designs that have:

• DUT subsystem ports connected to buses.
• Simulink® and Stateflow® blocks supported for HDL code generation.

HDL Coder supports code generation for bus-capable blocks in the HDL Coder block library. Bus-
capable blocks are blocks that can accept bus signals as input and produce bus signals as outputs.
For a list of bus-capable blocks that Simulink supports, see “Bus-Capable Blocks” (Simulink).

See “Signal and Data Type Support” on page 10-2 for blocks that support HDL code generation with
buses.

Create Bus Signals

You can create bus signals by using Bus Creator blocks. A Bus Creator block assigns a name to each
signal that it creates. You can then refer to signals by name when you search for their sources.

For an example that illustrates how to model with buses, open hdlcoder_bus_nested.slx. Double-
click the HDL_DUT Subsystem.
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open_system('hdlcoder_bus_nested')
set_param('hdlcoder_bus_nested','SimulationCommand','Update')
open_system('hdlcoder_bus_nested/HDL_DUT')

In this model, the Bus Creator blocks create two bus signals. One bus signal contains data1_En and
CounterForParam signals. The other bus signal contains Param and sin signals. By default, each
signal on the bus inherits the name of the signal connected to the bus. This figure shows the Signals
in the bus block parameter for the Bus Creator block that takes inputs data1_En and
CounterForParam.

Nest Buses

You see another Bus Creator block that combines these two bus signals. When one or more inputs to
a Bus Creator block is a bus, the output is a nested bus.

The Bus Creator block generates names for bus signals whose corresponding inputs do not have
names. The names are in the form signaln, where n is the number of the port the input signal
connects to. For example, if you open the Block Parameters dialog box for the second Bus Creator
block, you see Signals in the bus as signal1 and Param_sin.

Assign Signal Values to Bus
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To change bus element values, use a Bus Assignment block. Use a Bus Assignment block to change
bus element values without adding Bus Selector and Bus Creator blocks that select bus elements and
reassemble them into a bus.

For example, open the model hdlcoder_bus_nested_assignment.

open_system('hdlcoder_bus_nested_assignment')
set_param('hdlcoder_bus_nested_assignment','SimulationCommand','Update')
open_system('hdlcoder_bus_nested_assignment/HDL_DUT')

In the model, you see a Bus Assignment block that assigns the value 5 to the data1_En signal in the
bus.

Select Bus Outputs

To extract the signals from a bus that includes nested buses, use Bus Selector blocks. By default, the
block outputs the specified bus elements as separate signals. You can also output the signals as
another bus. You can use the OutputSignals block property to see the Signals in the bus that the
block outputs. By using this property, you can track which signals are entering a Bus Selector block
deep within your model hierarchy.

get_param('hdlcoder_bus_nested/HDL_DUT/Bus Selector5', 'OutputSignals')

ans =

    'signal1.data1_En,signal1.CounterForParam,Param_sin.Param,Param_sin.sin'

Generate HDL Code

To generate HDL code for this model, run this command:

makehdl('hdlcoder_bus_nested/HDL_DUT')

You see that the code generator expands the bus signals to scalar signals in the generated code. For
example, if you open the generated Verilog file for the HDL_DUT Subsystem, for the Delay block that
takes the two nested bus signals signal1 and Param_sin, you see four always blocks created for
each signal in the bus. For example, you see an always block for the data1_En signal that is part of
signal1. This figure displays the scalar signals created for each bus signal in the module definition.
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Simplify Subsystem Bus Interfaces

You can simplify the Subsystem bus interfaces by using Bus Element blocks. The In Bus Element and
Out Bus Element blocks provide a simplified and flexible way to use bus signals as inputs and outputs
to subsystems. The In Bus Element block is equivalent to an Inport block combined with a Bus
Selector block. The Out Bus Element block is equivalent to an Outport block combined with a Bus
Creator block. To refactor an existing model that uses Inport, Bus Selector, Bus Creator, and Outport
blocks to use In Bus Element and Out Bus Element blocks, you can use Simulink® Editor action bars.

For example, open the model hdlcoder_bus_nested_simplified. This model is functionally
equivalent to the hdlcoder_bus_nested model but is a more simplified version.

open_system('hdlcoder_bus_nested_simplified')
set_param('hdlcoder_bus_nested_simplified','SimulationCommand','Update')
open_system('hdlcoder_bus_nested_simplified/HDL_DUT')

The model has two Subsystems that perform bus creation and bus selection by using Bus Element
blocks. The Bus_Creator_Subsystem combines the Outport blocks with the Bus Creator blocks to
create Out Bus Element blocks.

open_system('hdlcoder_bus_nested_simplified/HDL_DUT/Bus_Creator_Subsystem')
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The Bus_Selection_Subsystem combines the Inport blocks with the Bus Selector blocks to create
In Bus Element blocks.

open_system('hdlcoder_bus_nested_simplified/HDL_DUT/Bus_Selection_Subsystem')

To learn more, see “Simplify Subsystem and Model Interfaces with Buses” (Simulink).

Virtual and Nonvirtual Buses

The bus signals in the model hdlcoder_bus_nested created earlier by using Bus Creator and Bus
Selector blocks are virtual buses. Each bus element signal is stored in memory, but the bus signal is
not stored. The bus simplifies the graph but has no functional effect. In the generated HDL code, you
see the constituent signals but not the bus signal.

To more easily track the correspondence between a bus signal in the model and the generated HDL
code, use nonvirtual buses. Nonvirtual buses generate clean HDL code because it uses a structure to
hold the bus signals. To convert a virtual bus to a nonvirtual bus, in the Block Parameters of the Bus
Creator blocks, you specify the Output data type as Bus: object_name by replacing
object_name with the name of the bus object and then select Output as nonvirtual bus.

See “Convert Virtual Bus to a Nonvirtual Bus” (Simulink).

Array of Buses

An array of buses is an array whose elements are buses. Each element in an array of buses must be
nonvirtual and must have the same data type.
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To learn more about modeling with array of buses, see “Generating HDL Code for Subsystems with
Array of Buses” on page 10-21.

See Also
Functions
makehdl | makehdltb

More About
• “Signal and Data Type Support” on page 10-2
• “Use Arrays of Buses in Models” (Simulink)
• “Convert Models to Use Arrays of Buses” (Simulink)
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Guidelines for Clock and Reset Signals
In the Simulink modeling environment, You do not create global signals such as clock, reset, and
clock enable. These signals are created when you generate HDL code for your model. You can specify
the clock cycle by using the sample time in Simulink.

If your model is single rate, it means all blocks operate at the same sample time. The synthesis tools
infer that the registers or Delay blocks you add to your model run at the clock rate. For the synthesis
tools, data propagates from the source register to the destination register in one clock cycle.

You can follow these guidelines to learn about generating clock signals in the HDL code. Each
guideline has a severity level that indicates the level of compliance requirements. To learn more, see
“HDL Modeling Guidelines Severity Levels” on page 20-2.

Use Global Oversampling to Create Frequency-Divided Clock
Guideline ID

1.4.1

Severity

Informative

Description

You can assign a frequency-divided clock rate for HDL code generation to be a multiple of the
Simulink base sample rate. For example, if the Simulink base rate is 1 MHz and you want the clock
frequency of your target hardware to run at 50 MHz, you can assign an Oversampling factor of 50.
You specify the “Oversampling factor” on page 16-15 in the HDL Code Generation > Global
Settings pane of the Configuration Parameters dialog box. To learn more, see “Generate a Global
Oversampling Clock” on page 22-8.

Create Multirate Model with Integer Clock Multiples by Clock Division
Guideline ID

1.4.2

Severity

Mandatory

Description

You can generate a multirate model by using clock-rate division or by using clock multiples. For a
multirate model, the fastest sample time in your Simulink™ model corresponds to the master clock
rate. A timing controller entity is created to control the clocking for blocks operating at slower
sample rates. Clock enable signals that have the necessary rate and phase information control the
clocking for these blocks in your design.

Multirate models are created when you use certain blocks in your Simulink™ model, specify certain
block architectures, or use operations such as resource sharing. For example, these block-
architecture combinations generate a multirate model:
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• Divide block with Newton-Raphson implementation.
• Reciprocal block with ReciprocalSqrtBasedNewton implementation.
• Sum of Elements and Product of Elements blocks with Cascade architecture.
• Sqrt with SqrtBasedNewton and Reciprocal Sqrt with ReciprocalRsqrtBasedNewton

implementation.

In addition, to model multirate designs in Simulink™, use these blocks:

• In the Simulink > Signal Attributes Library, use the Rate Transition block.
• In the DSP System Toolbox > Signal Operations Library, you can use Upsample, Downsample,

and Repeat blocks.
• In the HDL Coder > HDL RAMs Library, use the HDL FIFO block.

This model illustrates how to create a multirate design by using a Rate Transition block.

load_system('hdlcoder_multiclock')
set_param('hdlcoder_multiclock','SimulationCommand','Update')
open_system('hdlcoder_multiclock')

The different colors in the model indicate that the model is multirate and has a faster rate D1 and a
slower rate D2. To see the Rate Transition block that produces the different sample rates, double-
click the DUT Subsystem.

open_system('hdlcoder_multiclock/DUT')

To see the sample times in your model, run this command:

 Guidelines for Clock and Reset Signals

20-55



ts = Simulink.BlockDiagram.getSampleTimes('hdlcoder_multiclock');
sampletime_D1 = ts(1)
sampletime_D2 = ts(2)

sampletime_D1 = 

  SampleTime with properties:

                   Value: [1.0000e-03 0]
             Description: 'Discrete 1'
           ColorRGBValue: [0.9000 0 0]
              Annotation: 'D1'
              OwnerBlock: []
    ComponentSampleTimes: [0x0 Simulink.SampleTime]

sampletime_D2 = 

  SampleTime with properties:

                   Value: [0.0030 0]
             Description: 'Discrete 2'
           ColorRGBValue: [0 0.8200 0]
              Annotation: 'D2'
              OwnerBlock: []
    ComponentSampleTimes: [0x0 Simulink.SampleTime]

When you use a Rate Transition block in your model for multirate design, select the block parameters
Ensure data integrity during data transfer and Ensure deterministic data transfer
(maximum delay). Make sure the output sample rate is an integer multiple of the input sample rate.

For a multirate design, you can generate a single clock signal or multiple clock signals to control the
clocking to blocks that operate at various sample rates. To specify this setting, in the Configuration
Parameters dialog box, on the HDL Code Generation > Global Settings pane, specify the Clock
inputs setting.

By default, Clock inputs is specified as single. A single clock is generated to control the clocking
for all registers or Delay blocks in your model. The timing controller enable signals control the
clocking to various blocks in your design. This mode can increase the power dissipation as a single,
fastest clock is connected to all registers in your design.

If you specify Clock inputs as multiple, a clock signal is generated for each sample rate in your
design. However, this mode requires you to connect each of the clock, clock enable, and reset ports
externally. This mode reduces power as the HDL design contains registers connected to slower clock
signals. For more information, see Using Multiple Clocks in HDL Coder.

Use Dual Rate Dual Port RAM for Noninteger Multiple Sample Times
Guideline ID

1.4.3

Severity

Mandatory
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Description

When you use Rate Transition, Upsample, or Downsample blocks to create multirate models, the
clock rates must be integer multiples of the base rate. To create a multirate model with clocks that
are noninteger multiples, use a Dual Rate Dual Port RAM block. For integer clock multiplies, you can
use the HDL FIFO or the Dual Rate Dual Port RAM block.

This model illustrates how you can create noninteger multiples of sample rates.

load_system('hdlcoder_dual_rate_dual_port_RAM')
set_param('hdlcoder_dual_rate_dual_port_RAM','SimulationCommand','Update')
open_system('hdlcoder_dual_rate_dual_port_RAM/DUT')

You cannot generate HDL code for this model because the Rate Transition blocks have the block
parameter Ensure data integrity during data transfer cleared. To learn how you can manage
address control when you use the RAM block, see Design considerations for RAM block access.

Asynchronous Clock Modeling in HDL Coder
Guideline ID

1.4.4

Severity

Recommended
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Description

Most FPGA designs must have more than one clock domain with multiple parts of the design
operating at various frequencies. You can model the various clock domains in Simulink™ by using a
pass-through implementation for transitioning between different sample rates. These sample rates
correspond to the clock rates on the FPGA device.

For an example, open the model hdlcoder_multi_clock_domain and then open the DUT
Subsystem.

load_system('hdlcoder_multi_clock_domain')
set_param('hdlcoder_multi_clock_domain', 'SimulationCommand', 'Update')
open_system('hdlcoder_multi_clock_domain/DUT')

You see a BlackBox Subsystem that contains a DocBlock, which is a text file that corresponds to the
Verilog code for a passthrough implementation. You can open the DocBlock to see the Verilog code.
You see that the output of this Subsystem operates at a different sample rate or is in a clock domain
that is different from the sample rate at the input of the Subsystem. The Subsystem also contains a
commented out path that contains the VHDL equivalent of the passthrough implementation. To
generate VHDL code, uncomment this path and comment out the path that contains the Verilog
BlackBox implementation.

To generate Verilog code for this model, run this command:

makehdl('hdlcoder_multi_clock_domain/DUT')

In the generated Verilog header file, you see the different clock domains in the model.

// -------------------------------------------------------------
// 
// File Name: hdlsrc\hdlcoder_multi_clock_domain\DUT.v
// Created: 2018-10-05 11:30:21
// 
// Generated by MATLAB 9.6 and HDL Coder 3.13
// 
// 
// -- -------------------------------------------------------------
// -- Rate and Clocking Details
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// -- -------------------------------------------------------------
// Model base rate: 1.30208e-12
// Target subsystem base rate: 2.65428e-12
// 
// 
// Clock      Domain  Description
// -- -------------------------------------------------------------
// clk_1_3072 1       3072x slower than base rate clock
// clk_1_3125 2       3125x slower than base rate clock
// -- -------------------------------------------------------------
// 
// Output Signal                 Clock      Domain  Sample Time
// -- -------------------------------------------------------------
// Output1                       (no clock) 0       4.06901e-09
// -- -------------------------------------------------------------
// 
// -------------------------------------------------------------

Use Global Reset Type Setting Based on Target Hardware
Guideline ID

1.4.5

Severity

Recommended

Description

Matching the reset type to the FPGA architecture can improve resource utilization and the speed at
which your design runs on the target hardware. To control this setting, in the Configuration
Parameters dialog box, on the HDL Code Generation > Global Settings settings, specify the Reset
type.

When you target Xilinx devices, set Reset type to Synchronous. For Intel or Altera devices, set
Reset type to Asynchronous.

To make sure that you use the correct reset type for the hardware that you are targeting, in the HDL
Code Advisor, run the model check “Check for global reset setting for Xilinx and Altera devices” on
page 38-7.

Note Some Intel devices recommend using synchronous reset. For recommended reset settings, see
the Intel or Xilinx documentation for that device.

See Also
Functions
makehdl | makehdltb

Simulink Configuration Parameters
“Timing Controller Settings” on page 16-63 | “Clock Settings and Timing Controller Postfix” on page
16-4
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More About
• “Multirate Model Requirements for HDL Code Generation” on page 22-6
• “Code Generation from Multirate Models” on page 22-2
• “Getting Started with the HDL Code Advisor” on page 39-2
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Modeling with Native Floating Point
HDL Coder native floating-point technology can generate HDL code from your floating-point design.
These are some of the key features:

• Generation of target-independent HDL code that you can deploy on any FPGA or ASIC.
• Support for the full range of IEEE-754 features including denormal numbers, exceptions, and

rounding modes.
• Extensive support for math and trigonometric blocks.

You can follow these guidelines as best practices when modeling your design for native floating-point
code generation.

Each guideline has a severity level that indicates the level of compliance requirements. To learn
more, see “HDL Modeling Guidelines Severity Levels” on page 20-2.

Guideline ID
1.5.1

Severity
Recommended

Description
Native floating-point support in HDL Coder generates code from your floating-point design. If your
design has complex math and trigonometric operations or has data with a large dynamic range, use
native floating-point. The generated HDL code is target-independent and complies with the IEEE-754
standard of floating-point arithmetic. To learn more, see “Getting Started with HDL Coder Native
Floating-Point Support” on page 10-49.

You can use these modeling guidelines when using the native floating-point support in HDL Coder.

Use Blocks from HDL Floating Point Operations Library

The HDL Floating Point Operations block library consists of math and trigonometric functions and
certain Simulink blocks that are configured for HDL code generation in native floating-point mode.
For example, Discrete FIR Filter with Architecture set to Fully Parallel.

Use Floating-Point Types Based on Accuracy and Hardware Resource Usage Requirements

You can generate HDL code for models that contain floating-point and fixed-point data types in native
floating-point mode. Floating point types have higher dynamic range but can potentially occupy more
area on the target hardware. To design for these trade-offs, in your Simulink model, it is
recommended to use floating-point data types to model the algorithm data path and fixed-point types
to model the control logic. To switch between floating-point and fixed-point data types, use Data Type
Conversion blocks.

See also “Data Type Considerations” on page 10-50.
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Enable Optimizations such as Resource Sharing on Model

By enabling optimizations on the model, you can improve area and timing of your design on the target
FPGA device. For example, to save area on the target FPGA device, use the resource sharing
optimization. To share:

• Floating-point adders, set “Share Adders” on page 14-18 to on.
• Floating-point multipliers, make sure “Share Multipliers” on page 14-20 is set to on.
• Other floating-point resources, set “Share Floating-Point IPs” on page 14-28 to on.

See also “Resource Sharing” on page 24-23.

Simulate Latency of Blocks in Model

Floating-point designs have an inherent latency by default. This latency is added when generating
HDL code for your model. It is recommended that you simulate latency in your model by adding this
latency information to your original Simulink model. The code generator absorbs this latency during
HDL code generation. To learn more, see “Latency Values of Floating Point Operators” on page 10-59.

Customize Latency of Model or Blocks

You can customize the latency of an entire model, or selectively for certain blocks in your design.
Using custom settings, you can specify a custom latency and design for trade-offs between latency
and throughput.

To learn more, see “Latency Considerations with Native Floating Point” on page 10-63.

Use sincos Block Instead of Separate sin and cos Blocks

Certain modeling patterns that you use can optimize your model when you generate code with native
floating-point technology. For example, if you are computing the trigonometric sine and cosine of the
same input, in the HDL Floating Point Operations block library, use the Sincos block instead of
separate Sin and Cos blocks. The Sincos block shares some of the logic that is used for computing the
sine and cosine of the input. This implementation reduces the area footprint on the target FPGA
device.

See also Trigonometric Function.

Use Tree as the HDL Architecture

To obtain a lower latency implementation, use Tree as the HDL Architecture for blocks such as the
Sum of Elements and Product of Elements.

See also Sum of Elements and Product of Elements.

See Also
Functions
makehdl | makehdltb

Simulink Configuration Parameters
“Floating Point IP Library” on page 15-3 | “Native Floating Point” on page 15-4
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More About
• “Numeric Considerations with Native Floating-Point” on page 10-52
• “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-70
• “Verify the Generated Code from Native Floating-Point” on page 10-76
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Design Considerations for RAM Blocks and Blocks in HDL
Operations Library

Follow these guidelines to learn how you can use RAM blocks and blocks in the HDL Operations
library when modeling your design.

Each guideline has a severity level that indicates the level of compliance requirements. To learn
more, see “HDL Modeling Guidelines Severity Levels” on page 20-2.

RAM Block Access Considerations
Guideline ID

2.1.1

Severity

Recommended

Description

In the HDL RAMs block library, there are seven different RAM blocks and a HDL FIFO block. If you
see a RAM block that has the term System as part of the block name, such as Single Port RAM
System, it is recommended that you use this block instead of the equivalent block that does not have
System as part of the name, such as Single Port RAM. These blocks have System as part of the name
because the block implementation is based on the hdl.RAM System object. The system blocks support
vector inputs and yield much faster simulation results when used in your Simulink model.

When you use these blocks, make sure that the input sample time and output sample time are the
same. This table illustrates the various RAM blocks that you can use and their purpose. Each row in
the table describes a RAM block that is larger in circuit size than the RAM block in the previous row.
The generated HDL code for these blocks maps to RAM in most FPGAs.

Block Name Recommended Usage
Single Port RAM System Use this block to replace the Single Port RAM block in your model.

You obtain faster simulation results when using this block in your
model.

The block implementation uses a MATLAB System block that uses
the hdl.RAM System object. Use this block to perform sequential
read and write operations. In the Block Parameters dialog box of
the block, you can specify an initial value for the RAM. To perform
simultaneous read and write operations to different addresses, use
the Simple Dual Port RAM System or the Dual Port RAM System
block instead.

The block does not support boolean inputs. Cast boolean types to
ufix1 for input to the block.
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Block Name Recommended Usage
Simple Dual Port RAM System Use this block to replace the Simple Dual Port RAM block in your

model. You obtain faster simulation results when using this block
in your model.

The block implementation uses a MATLAB System block that uses
the hdl.RAM System object. Use this block to perform
simultaneous read and write operations. It has a single output port
to read data. In the Block Parameters dialog box of the block, you
can specify an initial value for the RAM.

The block does not support boolean inputs. Cast boolean types to
ufix1 for input to the block.

Dual Port RAM System Use this block to replace the Dual Port RAM block in your model.
You obtain faster simulation results when using this block in your
model.

The block implementation uses a MATLAB System block that uses
the hdl.RAM System object. Use this block to perform
simultaneous read and write operations. It has a read data output
port and a write data output port. In the Block Parameters dialog
box of the block, you can specify an initial value for the RAM. If
you do not want to use the write data output port, to achieve better
RAM inference, use the Simple Dual Port RAM System block
instead.

The block does not support boolean inputs. Cast boolean types to
ufix1 for input to the block.

Dual Rate Dual Port RAM This block does not have an equivalent System object-based
implementation.

Use this block to perform simultaneous read and write operations
to two different addresses that operate at different clock rates. You
cannot perform concurrent access to the same address of the
RAM.

To run the RAM ports at multiple clock rates, set Clock Inputs to
Multiple. You can access this RAM twice in one clock cycle.
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Block Name Recommended Usage
HDL FIFO The HDL FIFO block stores a sequence of samples in a first in, first

out (FIFO) register.

The inputs, In and Push, and the outputs, Out and Pop can run at
different sample times. Specify the ratio of output to input sample
time as a positive integer or 1/N such that N is a positive integer.
For example:

• If you specify the ratio as 2, the output sample time is twice the
input sample time. The outputs run slower than the input.

• If you specify the ratio as 1/2, the output sample time is half
the input sample time. The outputs run faster than the input.

The signals Full, Empty, and Num run at the fastest rate in your
model. When you use the control output of the FIFO in an input,
you may have to perform to a rate transition.

The input and output rates of the FIFO block are synchronous to
each other. For an example of asynchronous FIFO modeling by
using the HDL FIFO block, open the model
hdlcoder_asynchronous_fifo.

open_system('hdlcoder_asynchronous_fifo')

Serial to Parallel Conversion
Guideline ID

2.1.2

Severity

Informative

Description

You can use the Serializer1D and Deserializer1D blocks to perform serial to parallel and parallel to
serial conversion.

See Also
Functions
makehdl

Related Examples
• “Getting Started with RAM and ROM in Simulink®”

More About
• “HDL Code Generation from hdl.RAM System Object”
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• “Map Matrices to Block RAMs to Reduce Area”
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Usage of Blocks in Logic and Bit Operations Library
These guidelines illustrate how to model your design for generating HDL-ready code from blocks in
the Logic and Bit Operations Library. The Library contains blocks that perform logical and bitwise
operations, bit reduction, and concatenation. Each guideline has a severity level that indicates the
level of compliance requirements. To learn more, see “HDL Modeling Guidelines Severity Levels” on
page 20-2.

Logical and Arithmetic Bit Shift Operations
Guideline ID

2.2.1

Severity

Informative

Description

You can use Simulink blocks to perform bit shifting operations. The blocks can perform logical and
arithmetic bit shift. Left logical and arithmetic bit shift produce the same results but right logical
shift and arithmetic shift operate differently as illustrated in this table.

Block/Function
Name

Parameter/
Operation

Verilog Code
Equivalent

VHDL code
equivalent

Comments

Bit Shift Shift Left
Logical

<<< sll (sll and
SHIFT_LEFT
are the same
in VHDL.

This mode is the default
mode for the block. The left
shift operation does not
preserve the sign bit. If the
input uses a signed data type
and has a positive value, the
left shift operation shifts a 0
into the empty bit on the LSB
(Least Significant Bit) side.

Shift Right
Logical

>> srl This mode does not preserve
the sign bit. If the input uses
a signed data type and has a
positive value, the right shift
operation shifts a 0 into the
empty bit on the MSB (Most
Significant Bit) side.

Shift Right
Arithmetic

>>> SHIFT_RIGH
T

When the input is a signed
data type, the sign bit is
preserved, and other bits
shift to the right.

Shift Arithmetic
block bitshift
function

Positive value/shift
right arithmetic

>>> SHIFT_RIGH
T

When the input is a signed
data type, the sign bit is
preserved, and other bits
shift to the right.
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Block/Function
Name

Parameter/
Operation

Verilog Code
Equivalent

VHDL code
equivalent

Comments

Negative value/
shift left arithmetic

<<< sll This mode does not preserve
the sign bit. If the input uses
a signed data type and has a
positive value, the left shift
operation shifts a 0 into the
empty bit on the LSB side.
This mode does not check
underflows and overflows.

bitsll function None/logical left
shift

<<< sll This mode does not preserve
the sign bit. The generated
HDL code is the same as that
of the Shift Left
Logical mode of the Bit
Shift block.

bitsrl function None/logical right
sift

>> srl This mode does not preserve
the sign bit. The generated
HDL code is the same as that
of the Shift Right
Logical mode of the Bit
Shift block.

bitsra function None/arithmetic
right shift

>>> SHIFT_RIGH
T

When the input is a signed
data type, the sign bit is
preserved, and other bits
shift to the right. The
generated HDL code is the
same as that of the Shift
Right Arithmetic mode of
the Bit Shift block.

The difference between a logical shift and an arithmetic shift is whether the sign bit is preserved. For
signed data types, this bit is the MSB. In a logical right shift, the sign bit is shifted to the right and
zero goes into the MSB side. In an arithmetic right shift, the MSB (sign bit) is preserved during the
shift operation. For example, this code illustrates the difference between the functions.

A = fi([], 1, 4, 0, 'bin','1011');
B = bitsrl(A, 2)

B = 

     2

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 4
        FractionLength: 0

B.bin

ans =

    '0010'
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C = bitsra(A, 2)

C = 

    -2

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 4
        FractionLength: 0

C.bin

ans =

    '1110'

Usage of Logical Operator, Bitwise Operator, and Bit Reduce Blocks
Guideline ID

2.2.2

Severity

Informative

Description

To learn how you can use logical and bitwise operations, open the model
hdlcoder_logical_bitwise_operations.slx.

load_system('hdlcoder_logical_bitwise_operations')
sim('hdlcoder_logical_bitwise_operations')
open_system('hdlcoder_logical_bitwise_operations')
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For single-bit operations that use Boolean or ufix1 data types, use a Logical Operator block. To
view the operation as a logical circuit symbol, in the Block Parameters dialog box of the block, specify
the Icon shape as Distinctive. You can also input vectors that have Boolean or ufix1 data types
to the block.

Note: Boolean and ufix1 are different data types. Mixing these data types within the same
model or using them interchangeably is not recommended. For more information, see
Simulink Data Type Considerations.

For an example of using the block, open the Logical Operations Subsystem.

open_system('hdlcoder_logical_bitwise_operations/Logical Operations')

For bitwise operations on two or more bits that use integer or fixed-point data types, use the Bitwise
Operator block. For an example, double-click the Bitwise Operations Subsystem.

open_system('hdlcoder_logical_bitwise_operations/Bitwise Operations')

To perform a bit-by-bit reduction operation on a vector that uses Boolean or ufix1 and return a 1-
bit value, use the Bit Reduce block. For an example, double-click the Reduction Operations
Subsystem.

open_system('hdlcoder_logical_bitwise_operations/Reduction Operations')
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The MATLAB Function block inside the Subsystem converts the 8-bit vector to a vector of 8 1-bit
ufix1 elements.

open_system('hdlcoder_logical_bitwise_operations/Reduction Operations/convert bin2vec')

Use Boolean Output for Compare to Constant and Relational Operator
Blocks
Guideline ID

2.2.3

Severity

Strongly Recommended

Description

For Compare To Constant, Compare To Zero, and Relational Operator blocks, you can specify uint8
or boolean as the Output data type. To generate efficient HDL code for models that contain these
blocks, specify boolean as the Output data type, because the HDL code has to connect only the
LSB.

For a Relational Operator block, make sure that both inputs are of the same data type. Using different
data types for the inputs can result in unintended truncation of bits such as the sign bit, which can
lead to simulation mismatches after HDL code generation.

To verify whether Relational Operator blocks in your model use the same input data type, and use
boolean as the output data type, run the HDL model check “Check for Relational Operator block
usage” on page 38-28.

See Also
Functions
makehdl

Blocks
Bitwise Operator | Extract Bits

More About
• “Bitwise Operations in MATLAB for HDL Code Generation” on page 2-32
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Generate FPGA Block RAM from Lookup Tables
You can follow these guidelines to learn about how you can map the lookup table blocks to RAM to
save area on the target FPGA device.

Each guideline has a severity level that indicates the level of compliance requirements. To learn
more, see HDL Modeling Guidelines Severity Levels.

Guideline ID

2.3.1

Severity

Strongly Recommended

Description

Follow this guideline to learn how to map a Lookup Table block in your design to a Block RAM on the
FPGA. The severity level of the guideline indicates the level of compliance requirements. To learn
more, see HDL Modeling Guidelines Severity Levels.

To map lookup tables to a block RAM, you can use the adaptive pipelining optimization. This
optimization is enabled by default. The optimization inserts a Delay block that has a Delay length of
1 and ResetType set to none immediately following the Lookup Table block. This modeling pattern
efficiently maps your design to a Block RAM on the FPGA. To use the adaptive pipelining
optimization, you must:

• Make sure that AdaptivePipelining is enabled on the model.
• Specify the synthesis tool.

To learn more about adaptive pipelining, see Adaptive Pipelining.

If you do not want to use the adaptive pipelining optimization for the entire design, you can
selectively enable this optimization for certain Subsystems in your design, or create the same
modeling pattern in your design that is otherwise generated by the optimization.

For an example, open the model hdlcoder_LUT_BRAM_mapping.slx.

open_system('hdlcoder_LUT_BRAM_mapping')
set_param('hdlcoder_LUT_BRAM_mapping','SimulationCommand','Update')
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The adaptive pipelining optimization is disabled on this model.

hdlget_param('hdlcoder_LUT_BRAM_mapping','AdaptivePipelining')

ans =

    'off'

The LUT_BRAM Subsystem contains a 1-D Lookup Table block followed by a Delay block that has a
Delay length of 1 and ResetType set to none.

open_system('hdlcoder_LUT_BRAM_mapping/LUT_BRAM')

When you generate HDL code and synthesize the design on an FPGA, it efficiently maps to Block
RAM. This figure displays the synthesis results for the LUT_BRAM Subsystem.
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The LUT Subsystem in this model does not use this modeling pattern.

open_system('hdlcoder_LUT_BRAM_mapping/LUT')

As adaptive pipelining is disabled on the model, synthesizing this Subsystem maps the logic to LUTs
instead of utilizing the Block RAMs. This figure displays the synthesis results for the LUT Subsystem.

See Also
Functions
makehdl

Simulink Configuration Parameters
“RAM Mapping” on page 14-5 | “MapPersistentVarsToRAM” on page 21-15 | “Adaptive pipelining” on
page 14-15

More About
• “Adaptive Pipelining” on page 24-56
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• “RAM Mapping for Simulink Models” on page 24-36
• “RAM Mapping With the MATLAB Function Block” on page 24-37
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Usage of Different Subsystem Types
You can follow these guidelines to learn how to use different types of subsystems in your design and
model your algorithm hierarchically. Each guideline has a severity level that indicates the level of
compliance requirements. To learn more, see “HDL Modeling Guidelines Severity Levels” on page 20-
2.

Virtual Subsystem: Use as Top-Level DUT
Guideline ID

2.4.1

Severity

Strongly Recommended

Description

A virtual subsystem is a Subsystem that is not a conditionally-executed Subsystem or an Atomic
Subsystem. By default, a regular Subsystem block that you add to your Simulink model is a virtual
subsystem.

If you use a non-top-level DUT as a virtual subsystem, the conversion to model reference may change
the subsystem semantics because the execution sequence of a referenced model is equivalent to an
Atomic Subsystem. To preserve subsystem semantics, specify the DUT as a nonvirtual subsystem
before HDL code generation and verification. Nonvirtual subsystem types include Atomic Subsystem,
model reference, Variant Subsystem, and a variant model. You can learn about these subsystem types
in the preceding sections.

To determine whether a subsystem is virtual, you can use the get_param function with the
parameter IsSubsystemVirtual. For example:

get_param('sfir_fixed/symmetric_fir', 'IsSubsystemVirtual')

Atomic Subsystem: Generate Reusable HDL Files
Guideline ID

2.4.2

Severity

Recommended

Description

You can specify the DUT as an Atomic Subsystem. To specify a Subsystem as an Atomic Subsystem, in
the Block Parameters dialog box of that Subsystem, select Treat as atomic unit. Use atomic
subsystems to generate a single HDL file for identical instances of the subsystems that you use at
lower levels of a hierarchy. To learn more, see “Generate Reusable Code for Atomic Subsystems” on
page 27-17.
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To enable resource sharing on a subsystem unit, specify all subsystems that you want to share as
atomic subsystems. To learn more, see “General Considerations for Sharing of Subsystems” on page
20-110.

Variant Subsystem: Using Variant Subsystems for HDL Code
Generation
Guideline ID

2.4.3

Severity

Mandatory

Description

The Variant Subsystem, Variant Model block is a template preconfigured to contain two Subsystem
blocks to use as Variant Subsystem choices. At simulation time, a variant control decides which
among the two Subsystem blocks is active. Therefore, you can use the Variant Subsystem to create
two different configurations or subsystem behaviors and then specify the active configuration at
simulation time.

• You cannot use a Variant Subsystem as the DUT. To generate code, place the Variant Subsystem
inside the Subsystem that you want to use as the DUT. The file name and instance name of the
generated code is unique to the active configuration that is chosen at code generation time.

• You cannot share multiple Variant Subsystem blocks by using the Variant Subsystem optimization.
• You must make sure that when verifying the functionality of the generated code, the active variant

that you used when simulating the model is the same as the active variant that you used for
generating HDL code.

For an example, open the model hdlcoder_variant_subsystem_design.slx. If you open the
DUT Subsystem, you see a Variant Subsystem block, Divide. The Variant Subsystem has two
different subsystems, Recip and Op. If you open the Block Parameters dialog box for the Divide
Subsystem, you see the Variant control expression and the Condition that determines which
Subsystem to enable during simulation. In this case, Recip is 1, and the Recip Subsystem becomes
active during simulation.

load_system('hdlcoder_variant_subsystem_design')
set_param('hdlcoder_variant_subsystem_design','SimulationCommand','Update')
open_system('hdlcoder_variant_subsystem_design/DUT/Divide')

variantRecip =

Simulink.Variant
    Condition: 'Recip == 1'

variantOp =

Simulink.Variant
    Condition: 'Recip == 0'
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Recip =

     1

To generate HDL code, run this command:

makehdl('hdlcoder_variant_subsystem_design/DUT')

A HDL file with the name Recip.vhd is generated because the code is generated for the Recip
Subsystem which is active at code generation time.

Model References: Build Model Design Using Smaller Partitions
Guideline ID

2.4.4

Severity

Recommended

Description

Modeling a large design hierarchically can increase code generation time. If you specify generation of
reports such as the traceability report, the code generation time can further increase significantly. To
avoid such performance issues, it is recommended that you partition your design into smaller
partitions. Use the Model block to unify a model that consists of smaller partitions. It also enables
incremental code generation. You can generate HDL code for the parent model or the referenced
model. To see the generated HDL code, in the hdlsrc folder, a folder is created for the parent model
with a separate subfolder for the referenced model.

 Usage of Different Subsystem Types

20-79



When generating the HDL test bench, if the test bench consists of blocks that operate with a
continuous sample time, you can convert the DUT to a referenced model. This conversion enables the
DUT to run at a fixed-step, discrete sample time. To learn more, see “Convert DUT Subsystem to
Model Reference for Testbenches with Continuous Blocks” on page 20-36.

For an example, open the model hdlcoder_divide_parentmodel.slx. When you double-click the
DUT Subsystem, you see a Model block that references the model
hdlcoder_divide_referencedmodel.

load_system('hdlcoder_divide_parentmodel')
set_param('hdlcoder_divide_parentmodel', 'SimulationCommand', 'Update')
open_system('hdlcoder_divide_parentmodel/DUT')

To see the referenced model, double-click the Model block:

open_system('hdlcoder_divide_parentmodel/DUT/Model')

To generate HDL code, enter this command:

makehdl('hdlcoder_divide_parentmodel/DUT')

For more information, see “Model Referencing for HDL Code Generation” on page 27-2.

Block Settings of Enabled and Triggered Subsystems
Guideline ID

2.4.5

Severity

Mandatory

20 Modeling Guidelines

20-80



Description

A Triggered Subsystem is a subsystem that receives a control signal via a Trigger block. The
Triggered Subsystem executes for one cycle each time a trigger event occurs. When you generate
HDL code for a triggered subsystem:

• Do not use the Triggered Subsystem block as the DUT. Place the Triggered Subsystem inside
another Subsystem block, and use that Subsystem as the DUT.

• Make sure that the initial condition of the Triggered Subsystem must be zero.
• You can add unit delays to the output signals of the Triggered Subsystem. The unit delays prevent

the code generator from inserting additional bypass registers in the HDL code.
• Make sure that the Use trigger signal as clock setting does not result in timing mismatches

when you simulate the testbench to verify the generated code. To learn more, see “Using
Triggered Subsystems for HDL Code Generation” on page 22-13.

For other preferences when configuring the Triggered Subsystem block for HDL code generation, see
“HDL Code Generation” (Simulink) on the Triggered Subsystem page.

An Enabled Subsystem is a subsystem that receives a control signal via an Enable block. The Enabled
Subsystem executes at each simulation step where the control signal has a positive value. When you
generate HDL code for an Enabled Subsystem:

• Do not use the Enabled Subsystem block as the DUT. Place the Enabled Subsystem inside another
Subsystem block, and use that Subsystem as the DUT.

• Make sure that the initial condition of the Enabled Subsystem is zero.
• You can add unit delays to the output signals of the Enabled Subsystem. The unit delays prevent

the code generator from inserting additional bypass registers in the HDL code.
• You can add a State Control block in Synchronous mode inside the Enabled Subsystem. The

State Control block converts the Enabled Subsystem block to an Enabled Synchronous Subsystem
block. This block generates more efficient and hardware-friendly HDL code. To learn more, see
“Synchronous Subsystem Behavior with the State Control Block” on page 27-47.

For other preferences when configuring the Enabled Subsystem block for HDL code generation, see
“HDL Code Generation” (Simulink) on the Enabled Subsystem page.

See Also
Functions
makehdl

Simulink Configuration Parameters
“Use trigger signal as clock” on page 16-43

Related Examples
• “Resettable Subsystem Support in HDL Coder™”

More About
• “Using Enabled and Triggered Subsystems” (Simulink)
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Usage of Rate Change and Constant Blocks
You can follow these guidelines to learn how to use blocks that can perform rate conversions in your
model and blocks from the Sources library such as Constant blocks in your design. Each guideline has
a severity level that indicates the level of compliance requirements. To learn more, see “HDL
Modeling Guidelines Severity Levels” on page 20-2.

Usage of Rate Conversion Blocks
Guideline ID

2.5.1

Severity

Recommended

Description

There are various ways in which you can model rate transitions. How you model rate transitions
determine the timing and resource requirements of your design. This guideline shows various
approaches for modeling rate transitions.
Increasing the Sample Rate

This table illustrates the blocks that you can use to increase the sample rate of your design. When
you use these blocks, leave the block parameters to the default settings.

Rate Conversion Approach
Block Generates Bypass

Register?
Generates Zero
Padding?

Notes

Repeat No No To use this block, you must
have DSP System Toolbox
installed.

Rate Transition No No None
Upsample Yes Yes To use this block, you must

have DSP System Toolbox
installed. When you use this
block, consider the impact of
the bypass register and the
logic that inserts zero padding
on hardware resource usage.

For the Rate Transition block, to upsample the input signal without incurring a unit delay, in the
Block Parameters dialog box of the Rate Transition block:

• Clear the Ensure data integrity during data transfer check box.

Clearing this check box makes the Ensure deterministic data transfer (maximum delay)
check box to disappear.

• Configure the output port sample time of the block to be an integer multiple of the input port
sample time. Specify a fractional value of 1/n for Sample time multiple where n is an integer.
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You can choose any value for the block parameter Output port sample time options as long as
Sample time multiple uses a value 1/n.

When the input and output clocks are not synchronous to each other, to avoid insertion of a bypass
register in the HDL code generated for the Repeat and Rate Transition blocks, insert one unit delay
following the Repeat and Rate Transition blocks in your model.

Decreasing the Sample Rate

To reduce the sample rate, you can use a DownSample or a Rate Transition block. To use the
Downsample block, you must have DSP System Toolbox installed. When you use these blocks, leave
the block parameters to the default settings.

When downsampling the input signal, use the Rate Transition block because you can leave the block
parameters to the default settings for HDL code generation. The Ensure data integrity during data
transfer and Ensure deterministic data transfer (maximum delay) check boxes must be left
selected. This mode generates an additional bypass register in the HDL code.

You use the Initial Condition parameter of the block when reducing the sample rate. This parameter
setting is not used when the code generator increases the sample rate.

Use Discrete and Finite Sample Time for Constant Block
Guideline ID

2.5.2

Severity

Mandatory

Description

By default, the sample time of a Constant block is inf. When you connect a Constant block with
sample time of inf to other blocks in your design, it hinders speed and area optimizations.
Optimizations such as retiming, sharing, and streaming use the clock rate information to improve the
speed and area of your design.

When you use the Constant block, set the sample time of the blocks to -1. To identify Constant blocks
that have infinite sample time in your design, in the Simulink model window, In the Debug tab, on the
Information Overlays > Sample Time section, select Colors. The Sample Time Legend then
displays the Constant blocks that have Inf sample time.

You can identify and change the sample time of all Constant blocks to -1 by using either of these
approaches:

• Run a script that can programmatically change the sample time of the blocks to -1. For an
example script, see “Identify and Programmatically Change and Display HDL Block Parameters”
on page 20-30.

• Run the check “Check for infinite and continuous sample time sources” on page 38-16 in the HDL
Code Advisor. If running the check fails, it displays sources such as Constant blocks that have
infinite sample time. Select Modify Settings to update the sample time to -1 or to inherit via
backpropagation.
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See Also
Functions
makehdl

More About
• “Multirate Model Requirements for HDL Code Generation” on page 22-6
• “Code Generation from Multirate Models” on page 22-2
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Guidelines for Using Delays and Goto and From Blocks for HDL
Code Generation

These guidelines illustrate the recommended settings for modeling delays in your model. You model
delays by using blocks available in the Discrete Library. Each guideline has a severity level that
indicates the level of compliance requirements. To learn more, see “HDL Modeling Guidelines
Severity Levels” on page 20-2.

Appropriate Usage of Delay Blocks as Registers
Guideline ID

2.6.1

Severity

Recommended

Description

For blocks in your model to be inferred as a flipflop on the target FPGA, use Delay blocks. You can
specify a local reset and enable signal for each Delay block.

By default, the Delay length of the block is set to 2. In this case, the input to the block passes to the
output after two time steps. If the Delay length is set to 0, the input passes to the output without
any delay. The generated HDL code treats the block as a wire. To infer a flipflop or register on the
target device, set the Source to dialog and specify a Delay length greater than zero.

Do not use the Unit Delay Enabled, Unit Delay Resettable, and Unit Delay Enabled Resettable blocks
for HDL code generation. These blocks have been obsoleted. Instead, replace these blocks with the
Unit Delay Enabled Synchronous, Unit Delay Resettable Synchronous, and Unit Delay Enabled
Resettable Synchronous blocks. These blocks use the State Control block for synchronous hardware
behavior. To perform this replacement in your model, run the model check “Check for obsolete Unit
Delay Enabled/Resettable Blocks” on page 38-21.

Required HDL Settings for Goto and From Blocks
Guideline ID

2.6.2

Severity

Mandatory

Description

When you generate HDL code for the DUT Subsystem that uses From and Goto blocks:

• Do not use From and Goto blocks across the boundary of the DUT subsystem. To connect the input
and output ports of the DUT, use Inport and Outport blocks instead.

• Do not use From and Goto blocks across the boundary of an Atomic Subsystem. To connect the
input and output ports of the DUT, use Inport and Outport blocks instead.
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• Scope of From and Goto blocks must be local to a subsystem hierarchy. Set Tag Visibility of the
blocks to local. HDL code generation does not support Tag Visibility of the blocks set to
Scoped or global.

Using From and Goto blocks across a subsystem hierarchy can impact the readability of the model.
Before generating HDL code, it is recommended that you use From and Goto blocks in the same
subsystem and use local visibility. When you generate HDL code, in the generated model, each Goto
and From block becomes a pair of From and Goto subsystems connected back to back.

See Also
Functions
makehdl

More About
• “Goto and From Blocks as a Signal Routing Alternative” (Simulink)
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Modeling Efficient Multiplication and Division Operations for
FPGA Targeting

These guidelines illustrate the recommended settings when using Divide and Product blocks in your
model for improved area and timing on the target FPGA. Each guideline has a severity level that
indicates the level of compliance requirements. To learn more, see “HDL Modeling Guidelines
Severity Levels” on page 20-2.

Designing Multipliers and Adders for Efficient Mapping to DSP Blocks
on FPGA
Guideline ID

2.7.1

Severity

Strongly Recommended

Description

Digital signal processing (DSP) algorithms use several multipliers and accumulators. FPGA devices
provided by vendors such as Xilinx® and Intel® contain dedicated DSP slices. These small size, high
speed, DSP slices contain several multipliers and accumulators that make FPGA devices best suited
for DSP applications.

The architecture of DSP slices varies widely across the different FPGA vendors and across different
families of devices provided by the same vendor. To map your Simulink® model containing adders,
multipliers, and delays to DSP slices, adapt your model to the DSP slice architecture by taking into
consideration:

• Arrangement of flipflops, adders, and multipliers in the DSP slice.
• Rounding and saturation settings.
• Bit widths of the adders and multipliers. For efficient mapping, use bit widths in your model that

are less than or equal to the bit widths of the DSP unit.

When the bit widths in your model become larger than the bit widths of the DSP, your design does not
fit onto one DSP. In this case, multiple DSPs or additional logic is required.

You can map these blocks in your model to DSP blocks on an FPGA:

• Add and Sum
• Delay
• Product
• Multiply-Add
• Multiply-Accumulate

This figure illustrates the Xilinx DSP architecture. Xilinx 7 series FPGAs have dedicated DSP slices
that use this architecture. The DSP architecture consists of input registers, pre-adder, 25x18
multiplier, intermediate registers, post-adder, and an output register.
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For more information, see DSP48E1 Slice Overview in the Xilinx documentation.

This figure illustrates the Intel DSP architecture. This DSP architecture for Stratix® V devices is a
variable precision DSP architecture. The DSP blocks can have bit widths of 9, 18, 27, and 36 bits, and
18x25 complex multiplication for FFTs.
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For more information, see DSP Block Architecture in the Intel documentation.

To learn how you can design your algorithm to map to this DSP unit, open the model
hdlcoder_multiplier_adder_dsp.slx

open_system('hdlcoder_multiplier_adder_dsp')
set_param('hdlcoder_multiplier_adder_dsp', 'SimulationCommand', 'Update')
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The model consists of two subsystems dsp_subsys1 and dsp_subsys2 that implement the operation C+
((A+D)*B. You can also implement this operation by using Multiply-Add or Multiply-Accumulate
blocks as illustrated by subsystems DSP_MultAdd and DSP_MultAcc.

dsp_subsys1 implements the operation C+((A+D)*B by using bit widths that equal the DSP on a
Xilinx 7 series FPGA. If you open the HDL Workflow Advisor and deploy this Subsystem onto a Xilinx
Virtex® 7 FPGA, the entire design fits exactly onto one DSP slice.

dsp_subsys2 implements the same operation by using bit widths that are larger than the DSP on a
Xilinx FPGA. If you deploy this Subsystem onto a Xilinx Virtex 7 FPGA, you see that the entire design
fits onto one DSP slice and uses additional slice logic.
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Use ShiftAdd Architecture of Divide Block for Fixed-Point Types
Guideline ID

2.7.2

Severity

Recommended

Description

When you use fixed-point data types as inputs to the Divide block, specify the HDL Architecture of the
block as ShiftAdd and then set the HDL block property “UsePipelines” on page 21-24 to on. In this
architecture, the block computes the result by using multiple shift and add operations. The
operations are pipelined to achieve higher clock frequencies on the target FPGA device.

When you use floating-point data types as inputs to the Divide block, leave the HDL Architecture to
default value of Linear and set the Floating Point IP Library to Native Floating Point.

See Also
Functions
makehdl

Blocks
Multiply-Accumulate | Multiply-Add

More About
• “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-70
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Using Persistent Variables and fi Objects Inside MATLAB
Function Blocks for HDL Code Generation

These guidelines illustrate the recommended settings when using persistent variables inside MATLAB
Function blocks in your model. The MATLAB Function block is available in the User-Defined
Functions block library. A persistent variable in a MATLAB Function block acts similar to a delay
element in your Simulink model.

Each guideline has a severity level that indicates the level of compliance requirements. To learn
more, see “HDL Modeling Guidelines Severity Levels” on page 20-2.

Update Persistent Variables at End of MATLAB Function
Guideline ID

2.8.1

Severity

Strongly Recommended

Description

To make sure that the persistent variables inside the MATLAB Function block map to a register on the
target FPGA device, update the persistent variable at the end of the MATLAB code inside the
MATLAB Function block. Do not update the persistent variable before its value is read or used by the
function.

For example, this MATLAB code is not recommended because the function updates the persistent
variable FF0 is updated before the value is read at the output.

function FF_out0 = fcn(FF_in) 
%#codegen 

persistent FF0 

if isempty(FF0) 
    FF0 = zeros(1, 'like', FF_in); 
end 

% Incorrect order of FF update 
FF0 = FF_in 

% Output FF0. FF_out0 is NOT delayed 
FF_out0 = FF0; 

This MATLAB code is recommended because the value is written to FF0 at the end of the code.

function FF_out0 = fcn(FF_in) 
%#codegen 

persistent FF0 

if isempty(FF0) 
    FF0 = zeros(1, 'like', FF_in); 
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end 

% Output FF0 
FF_out0 = FF0; 

% Write FF update at the end of the code 
FF0 = FF_in 

Avoid Algebraic Loop Errors from Persistent Variables inside MATLAB
Function Blocks
Guideline ID

2.8.2

Severity

Mandatory

Description

When your Simulink® model contains MATLAB Function blocks inside a feedback loop and uses
persistent variables, compiling or simulating the model might generate algebraic loop errors. To
simulate the model and generate HDL code, use nondirect feedthrough.

In certain cases, the persistent delay in the MATLAB Function block inside a feedback loop causes an
algebraic loop error. When you use direct feedthrough, the output of the block directly depends on
the input. When Allow direct feedthrough is cleared, the output of the block depends on the
internal state and properties and does not depend on the input. The nondirect feedthrough semantics
prevents algebraic loops errors by making the outputs depend only on the state.

For an example, open the model hdlcoder_MLFB_avoid_algebraic_loops.

modelname = 'hdlcoder_MLFB_avoid_algebraic_loops';
blkname = 'hdlcoder_MLFB_avoid_algebraic_loops/Subsystem_AlgLoop_Issue/MATLAB Function1';
open_system(modelname)
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When you simulate the model, the algebraic loop error message is displayed. The MATLAB Function
block hdlcoder_MLFB_avoid_algebraic_loops/Subsystem_AlgLoop_Issue/MATLAB
Function uses a persistent variable inside a MATLAB Function block.

open_system(blkname)

To avoid this error, use nondirect feedthrough. To specify nondirect feedthrough at the command line,
create a MATLABFunctionConfiguration object by using get_param function, and then change
the property value AllowDirectFeedthrough:

MLFBConfig = get_param(blkname, 'MATLABFunctionConfiguration');
MLFBConfig.AllowDirectFeedthrough = 0;

See also MATLABFunctionConfiguration.

To specify nondirect feedthrough from the UI:

1 Open the MATLAB Function block MATLAB Function1.
2 Opens the Ports and Data Manager dialog box. On the MATLAB® Editor, click Edit Data.
3 On the Ports and Data Manager dialog box, clear Allow direct feedthrough check box.

See also “Prevent Algebraic Loop Errors in MATLAB Function and Stateflow Blocks” (Simulink).

The model now simulates without algebraic errors. You can now generate HDL code for the
Subsystem block Subsystem_AlgLoop_Issue.

open_system(modelname)
set_param('hdlcoder_MLFB_avoid_algebraic_loops', 'SimulationCommand', 'Update')
makehdl('hdlcoder_MLFB_avoid_algebraic_loops/Subsystem_AlgLoop_Issue')

### Generating HDL for 'hdlcoder_MLFB_avoid_algebraic_loops/Subsystem_AlgLoop_Issue'.
### Using the config set for model <a href="matlab:configset.showParameterGroup('hdlcoder_MLFB_avoid_algebraic_loops', { 'HDL Code Generation' } )">hdlcoder_MLFB_avoid_algebraic_loops</a> for HDL code generation parameters.
### Starting HDL check.
### Begin VHDL Code Generation for 'hdlcoder_MLFB_avoid_algebraic_loops'.
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### Working on hdlcoder_MLFB_avoid_algebraic_loops/Subsystem_AlgLoop_Issue/MATLAB Function1 as hdlsrc\hdlcoder_MLFB_avoid_algebraic_loops\MATLAB_Function1.vhd.
### Working on hdlcoder_MLFB_avoid_algebraic_loops/Subsystem_AlgLoop_Issue as hdlsrc\hdlcoder_MLFB_avoid_algebraic_loops\Subsystem_AlgLoop_Issue.vhd.
### Creating HDL Code Generation Check Report file://C:\TEMP\Bdoc20a_1326390_10420\ibC22023\1\tpf68b0d2f\ex34676816\hdlsrc\hdlcoder_MLFB_avoid_algebraic_loops\Subsystem_AlgLoop_Issue_report.html
### HDL check for 'hdlcoder_MLFB_avoid_algebraic_loops' complete with 0 errors, 0 warnings, and 0 messages.
### HDL code generation complete.

Use hdlfimath Setting and Specify fi Objects inside MATLAB Function
Block
Guideline ID

2.8.3

Severity

Strongly Recommended

Description

fimath properties define the rules for performing arithmetic operations on fi objects. To specify
fimath properties that govern arithmetic operations, use a fimath object. To see the default
fimath property settings, run this command:

F = fimath

F = 

        RoundingMethod: Nearest
        OverflowAction: Saturate
           ProductMode: FullPrecision
               SumMode: FullPrecision

The default fimath settings reduce rounding errors and overflows. However, HDL code generation
for a MATLAB Function block that uses these settings can incur additional resource usage on the
target FPGA device. To avoid the additional logic, use hdlfimath. The hdlfimath function is a
utility that defines fimath properties optimized for HDL code generation. To see the default
hdlfimath settings, run this command:

H = hdlfimath

H = 

        RoundingMethod: Floor
        OverflowAction: Wrap
           ProductMode: FullPrecision
               SumMode: FullPrecision

HDL code generation for a MATLAB Function block that uses these settings avoids the additional
resource usage and saves area on the target FPGA device.

To specify these settings for a MATLAB Function block:

• Double click the MATLAB Function block and select Edit Data on the MATLAB Editor.
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• In the Ports and Data Manager dialog box, for:

• Treat these inherited Simulink signal types as fi objects, select Fixed-point &
Integer.

If you use the default Fixed-point setting, fixed-point data types specified by using fi objects
and built-in integer types such as int8 and int16 are treated differently. When you use built-
in integer types, the output data type for integer type calculations becomes the same as the
input data type. The bit width is not expanded to perform numeric calculation.

• MATLAB Function fimath, select Specify Other and then enter hdlfimath.

To perform rounding operations that are different from the default hdlfimath settings, specify these
settings explicitly by using the fi object as illustrated below.

A = fi(4.9, 1, 8)

A = 

    4.8750

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
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            WordLength: 8
        FractionLength: 4

B = fi(2.3, 1, 10)

B = 

    2.2969

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 10
        FractionLength: 7

C = fi(A+B, 'RoundingMethod', 'Nearest', 'OverflowAction', 'Saturate') 

C = 

    7.1719

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 12
        FractionLength: 7

        RoundingMethod: Nearest
        OverflowAction: Saturate
           ProductMode: FullPrecision
               SumMode: FullPrecision

To make sure that the fimath settings are specified according to hdfimath for the MATLAB Function
block, you can run the check “Check for MATLAB Function block settings” on page 38-19.

See Also
Blocks
MATLAB Function

Functions
fimath | makehdl

More About
• “Design Guidelines for the MATLAB Function Block” on page 29-28
• “Initialize Persistent Variables in MATLAB Functions” on page 28-22
• “Bitwise Operations in MATLAB for HDL Code Generation” on page 2-32
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Guidelines for HDL Code Generation Using Stateflow Charts
These guidelines illustrate the recommended settings when using Stateflow charts in your model. The
Stateflow Chart block is available in the Stateflow block library. By using Stateflow charts, you can
model delays in your Simulink model.

Each guideline has a severity level that indicates the level of compliance requirements. To learn
more, see “HDL Modeling Guidelines Severity Levels” on page 20-2.

Choose State Machine Type based on HDL Implementation
Requirements
Guideline ID

2.9.1

Severity

Strongly Recommended

Description

HDL Coder supports code generation for Mealy and Moore Stateflow charts. Do not use MATLAB
Function blocks to model either Mealy or Moore state machines.

To specify whether you want a Mealy or Moore state machine, in the Chart properties, specify the
State Machine Type. Do not use Classic because it affects readability of the generated HDL code.
Choose the State Machine Type depending on how you want the Stateflow semantics to map to a
hardware implementation. See “Hardware Realization of Stateflow Semantics” on page 28-6.

When you use Mealy charts, the outputs depend on the current state and inputs. By using Mealy
charts, you can more easily define state transitions which makes these charts more flexible to use.
The generated HDL code from Mealy charts may be less readable.

For Moore charts, the outputs depend only on the current state. The generated HDL code from
Moore charts is more readable. Moore charts restrict flexibility in defining state transitions.

Specify Block Configuration Settings of Stateflow Chart
Guideline ID

2.9.2

Severity

Strongly Recommended

Description

When you use Stateflow Chart blocks in your model for HDL code generation, use these
recommended settings:

• For Action Language, use MATLAB
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• For Update method, use Discrete or Inherited. Do not use Continuous.

Moore Chart

• Enable Initialize Outputs Every Time Chart Wakes Up
• Disable Support Variable-Size Arrays
• Disable Support Variable-Size Arrays

Mealy Chart

• Enable Execute (Enter) Chart at Initialization
• Enable Initialize Outputs Every Time Chart Wakes Up
• Disable Enable Super Step Semantics
• Disable Support Variable-Size Arrays

To make sure that these settings are specified for the Stateflow Chart, you can run the check “Check
for Stateflow chart settings” on page 38-20.

Insert Unconditional Transition State for Else Statement in HDL Code
Guideline ID

2.9.3

Severity

Recommended

Description

When you use Stateflow® charts for HDL code generation, insert unconditional states in the chart.
The HDL code generated for such a chart contains an else branch with the if statement. The presence
of an else branch prevents the third-party tool from inferring a latch when you deploy the HDL code.
For example, open the model hdlcoder_chart_ifnelsecond.

open_system('hdlcoder_chart_ifnelsecond')
set_param('hdlcoder_chart_ifnelsecond', 'SimulationCommand', 'Update')
open_system('hdlcoder_chart_ifnelsecond/dut_chart')
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The model contains two Stateflow Moore Charts. The chart onlyif_chart implements a simple
condition that outputs out1 based on in1.

open_system('hdlcoder_chart_ifnelsecond/dut_chart/onlyif_chart')

The Chart block ifnelse_chart is the same as onlyif_chart and has an unconditional transition
state.

open_system('hdlcoder_chart_ifnelsecond/dut_chart/ifnelse_chart')
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To generate HDL code for the DUT, run this command:

makehdl('hdlcoder_chart_ifnelsecond/dut_chart')

The HDL code generated for the onlyif_chart does not contain an else condition. Do not deploy
this code to a target device because synthesis tools might infer a latch.

The HDL code generated for the ifnelse_chart contains an else statement for the unconditional
transition state. This code is recommended for deployment to the target FPGA device.
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Avoid Absolute Time for Temporal Logic
Guideline ID

2.9.4

Severity

Mandatory

Description

In Stateflow, temporal logic controls execution of a chart in terms of time. You can use two types of
temporal logic: event-based and absolute-time. Event-based temporal logic tracks recurring events.
Absolute-time temporal logic defines time periods based on the simulation time of your chart. To
operate on these recurring events or simulation time, you use built-in functions called temporal logic
operators.

You can use temporal logic operators such as after, before, and every to implement counters such
as a time-out counter. For HDL code generation, use event-based temporal logic operators. Specify
the time by using the implicit tick event. HDL code generation does not support absolute-time
temporal logic.

See also “Design Patterns Using Advanced Chart Features” on page 28-14 and “Control Chart
Execution by Using Temporal Logic” (Stateflow).
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See Also
Functions
makehdl

More About
• “Bitwise Operations in MATLAB for HDL Code Generation” on page 2-32
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Simulink Data Type Considerations
You can follow these guidelines to learn the recommended data type settings that you want to use in
your Simulink model for HDL code generation. Each guideline has a severity level that indicates the
level of compliance requirements. To learn more, see “HDL Modeling Guidelines Severity Levels” on
page 20-2.

Use Boolean for Logical Data and Ufix1 for Numerical Data
Guideline ID

2.10.1

Severity

Mandatory

Description

Boolean and the fixed-point type, ufix1, are both 1-bit data types in MATLAB and Simulink. These
types are treated differently.

• Use Boolean for control logic signals such as enable and local reset signals. If you want to
calculate a Boolean signal with a fixed-point data type, use a Data Type Conversion to convert
the signal to a fixdt (0,1,0) type.

• To perform numeric calculations, use fixdt (0,1,0). Sometimes, the output bit width can
become larger than the bitwidth. To perform such operations, use the Inherit: Inherit via
internal rule setting, because of the numerictype property of fixdt (0,1,0).

Specify Data Type of Gain Blocks
Guideline ID

2.10.2

Severity

Recommended

Description

Gain blocks have a Gain parameter and an Output data type setting. It is recommended that you
use fixed-point data types for these settings. In the Block Parameters dialog box of the Gain block:

• Specify a Simulink.NumericType object, such as fixdt (1, 16, 8).
• Make sure that the Gain parameter of the block does not use a round parameter value. To avoid

rounding of the gain value, you can specify a fi object, such as fi(3.44,0,8,4).
• Avoid using Inherit:Inherit via internal rule. This setting can result in an erroneous

data type being assigned to the block, thereby resulting in an HDL code generation error.
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Enumerated Data Type Restrictions
Guideline ID

2.10.3

Severity

Mandatory

Description

Certain optimizations such as pipelining and resource sharing do not work seamlessly in the presence
of enumerated data types. It is recommended that you use enumerated types on an as needed basis.
HDL code generation has certain restrictions when modeling with enumerated types.

• You cannot use an enumerated data type for the input or output port of the top-level DUT.
• You must use monotonically increasing enumeration values. For example, see this code:

classdef  BasicColors < Simulink.IntEnumType 
enumeration
    Red(0) 
    Yellow(1)
    Blue(2)
end
methods (Static)
    function  retVal = getDefaultValue() 
        retVal = BasicColors.Blue;
      end
   end
end

• You cannot perform arithmetic operations such as *, / , -, and + with enumeration values.
• You cannot perform comparison operations such as >, <, >=, <=, ==, and ~= with enumeration

values. You can perform a <> operation or a conditional branch such as if or switch.

See Also
Functions
makehdl

More About
• “Signal and Data Type Support” on page 10-2
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Resource Sharing Settings for Various Blocks
Resource sharing is an area optimization in which HDL Coder identifies multiple functionally
equivalent resources and replaces them with a single resource. The data is time-multiplexed over the
shared resource to perform the same operations. To learn more about how resource sharing works,
see “Resource Sharing” on page 24-23.

You can follow these guidelines to learn how to use the resource sharing optimization effectively with
blocks such as Add and Product. Each guideline has a severity level that indicates the level of
compliance requirements. To learn more, see “HDL Modeling Guidelines Severity Levels” on page 20-
2.

Resource Sharing of Add Blocks
Guideline ID

3.1.1

Severity

Recommended

Description

To share multiple Add blocks:

• Select the Share Adders setting.
• Leave the Adder sharing minimum bitwidth to 0.
• Determine whether to perform resource sharing at the existing clock rate or at a higher clock

rate. To use a higher clock rate, specify an Oversampling factor greater than 1.
• Specify the “StreamingFactor” on page 21-23 for Add blocks with vector inputs or outputs.
• Specify the “SharingFactor” on page 21-22 for Add blocks with scalar inputs or outputs.
• Make sure that the input word-lengths of the Add blocks match.

For example, this figure illustrates a model containing three Add blocks placed inside a Subsystem
with SharingFactor of 3. To share the Add blocks, you must insert Data Type Conversion blocks
with Output data type set to int16 so that the input word lengths match.
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Resource Sharing of Gain Blocks
Guideline ID

3.1.2

Severity

Recommended

Description

When you share multiple Gain blocks in your design, the optimization inserts serialization and
deserialization logic to share resources. This additional logic can become an area overhead if you are
not sharing a large number of resources. Therefore, if your design does not contain a large number of
Gain blocks to share, it is recommended that you disable the resource sharing optimization. To share
multiple Gain blocks:

To share multiple Gain blocks:

• Determine how to implement the Gain block. HDL Coder does not share Gain blocks in either of
these cases:

• ConstMultiplierOptimization parameter set to csd or fcsd.
• Gain parameter is a power of two.

In both these cases, the code generator uses a cast operation to replace the multiplier operations
with shift and add or subtract operations, which causes sharing to be unsuccessful. In addition, if
the Gain parameter is 0 or 1, then resource sharing requires no additional logic.

• Specify the “StreamingFactor” on page 21-23 for Gain blocks with vector inputs or outputs.
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• Specify the “SharingFactor” on page 21-22 for Gain blocks with scalar inputs or outputs.
• Determine whether to perform resource sharing at the existing clock rate or at a higher clock

rate. To use a higher clock rate, specify an Oversampling factor greater than 1.
• Use the same synthesis attribute settings if you specify the DSPStyle block property for the Gain

blocks. HDL Coder does not share multipliers that have different synthesis attribute settings.

Resource Sharing of Product Blocks
Guideline ID

3.1.3

Severity

Recommended

Description

To share multiple Product blocks:

• Specify 18 as the Multiplier partitioning threshold when targeting Xilinx devices and 25 as the
threshold when targeting Intel devices. This setting creates more resource sharing opportunities
for multipliers with a wide bit width, which reduces the use of DSPs on the FPGA.

• Specify the Multiplier promotion threshold if you want to share Product blocks that have
different word-lengths. The multiplier promotion threshold is the maximum word-length by which
HDL Coder promotes a multiplier for sharing with other multipliers.

• Leave the Share Multipliers setting enabled and the Multiplier sharing minimum bitwidth to
0.

• Specify the “StreamingFactor” on page 21-23 for the subsystems that contain Product blocks
with vector inputs or outputs.

• Specify the “SharingFactor” on page 21-22 for the subsystems that contain Product blocks with
scalar inputs or outputs.

• Use a Gain block instead of a Product block when one of the inputs to the Product block is a
constant. Use the constant value as the Gain parameter of the Gain block. If you use floating-point
data types in the Native Floating Point mode, HDL Coder converts the Product block to a
Gain block automatically during code generation. To learn more, see “Simplify Constant
Operations and Reduce Design Complexity in HDL Coder™” on page 24-8.

• Determine whether to perform resource sharing at the existing clock rate or at a higher clock
rate. To use a higher clock rate, specify an Oversampling factor greater than 1.

• Use the same synthesis attribute settings if you specify the DSPStyle block property for the
Product blocks. HDL Coder does not share multipliers that have different synthesis attribute
settings.

Resource Sharing of Multiply-Add Blocks
Guideline ID

3.1.4
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Severity

Recommended

Description

To share multiple Multiply-Add blocks:

• Leave the Share Multiply-Add blocks setting enabled and the Multiply-Add block sharing
minimum bitwidth set to 0.

• Determine whether to perform resource sharing at the existing clock rate or at a higher clock
rate. To use a higher clock rate, specify an Oversampling factor greater than 1.

• Specify the “SharingFactor” on page 21-22.

See Also
Simulink Configuration Parameters
Resource Sharing of Adders and Multipliers | Resource Sharing of Multiply-Add and Other
Blocks

Related Examples
• “Resource Sharing of Multipliers to Reduce Area”
• “Resource Sharing For Area Optimization”
• “Single-rate Resource Sharing Architecture”

More About
• “Streaming” on page 24-20
• “Resource Sharing of Subsystems and Floating-Point IPs” on page 20-110
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Resource Sharing of Subsystems and Floating-Point IPs
Resource sharing is an area optimization in which HDL Coder identifies multiple functionally
equivalent resources and replaces them with a single resource. The data is time-multiplexed over the
shared resource to perform the same operations. To learn more about how resource sharing works,
see “Resource Sharing” on page 24-23.

You can follow these guidelines to learn how to use the resource sharing optimization effectively for
subsystems such as atomic subsystems and MATLAB Function blocks, and with floating-point IPs.
Each guideline has a severity level that indicates the level of compliance requirements. To learn
more, see “HDL Modeling Guidelines Severity Levels” on page 20-2.

General Considerations for Sharing of Subsystems
Guideline ID

3.1.5

Severity

Recommended

Description

To share resources for identical subsystems, such as when grouping Product, Add, and Delay blocks
to map to one DSP slice, the subsystems to be shared must be Atomic Subsystem blocks or MATLAB
Function blocks.

• Determine whether you want to share resources at the existing clock rate or at a higher clock
rate.

• Sharing of enabled subsystems is not supported. For sharing resources, use atomic subsystems
without enable semantics.

• Specify a “SharingFactor” on page 21-22 that is greater than or equal to the number of
subsystems that you want to share.

For example, if you have 10 atomic subsystems, and you set the SharingFactor to 5, HDL Coder
cannot implement the resource sharing to 2 instances of the subsystem. To share the subsystems,
divide the subsystems, and then share the instances of the smaller subsystems.

• Check the SharingFactor that you specify for various subsystems. The resource sharing
optimization overclocks the shared resources by the LCM (Least Common Multiple) of the
SharingFactor of various subsystems.

For example, if you specify a SharingFactor of 5 for one Subsystem, and a SharingFactor of 7
for another Subsystem, the resource sharing optimization overclocks the shared resources by 35.
In such cases, it is recommended that you use the same SharingFactor for both subsystems, such
as 5 or 7. To learn more about this calculation, see “How Resource Sharing Works” on page 24-
23.
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Use MATLAB Datapath Architecture for Sharing with MATLAB Function
Blocks
Guideline ID

3.1.6

Severity

Recommended

Description

HDL Coder shares MATLAB Function blocks that have:

• The same Simulink checksum. Use Simulink.Subsystem.getChecksum to determine the
checksum.

• The same HDL block properties.

Make sure that the blocks do not use:

• Persistent variables
• Loop streaming
• Output pipelining

By using the MATLAB Datapath architecture, you can share resources inside the MATLAB Function
block and across the MATLAB Function block with other blocks in your Simulink model. When you
use this architecture, the code generator treats the MATLAB Function block like a regular Subsystem
block. This capability enables you to more widely apply various speed and area optimizations with
MATLAB Function blocks. See “HDL Optimizations Across MATLAB Function Block Boundary Using
MATLAB Datapath Architecture” on page 24-72.

Sharing of Atomic Subsystems
Guideline ID

3.1.7

Severity

Recommended

Description

HDL Coder can share Atomic Subsystem blocks that have the same Simulink checksum and the same
HDL block properties.

To share Atomic Subsystem blocks, the state elements that the blocks can contain are:

• Delay
• Unit Delay
• Unit Delay Enabled Synchronous
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• Unit Delay Resettable Synchronous
• Unit Delay Enabled Resettable Synchronous

The state elements must have the Initial condition parameter set to 0.

Sharing of atomic subsystems inside enabled subsystems with synchronous semantics is not
supported. To share resources, use enabled subsystems with classic semantics.

You cannot share atomic subsystems that contain the following blocks or block implementations:

• Detect Change
• Discrete Transfer Fcn
• HDL FFT
• HDL FIFO
• Math Function (conj, hermitian, transpose)
• MATLAB Function blocks that contain persistent variables
• Sqrt
• Cascade architecture (MinMax, Product, Sum)
• CORDIC architecture
• Reciprocal Newton architecture
• Filter blocks including Discrete FIR Filter
• Communications Toolbox blocks
• DSP System Toolbox blocks, except Discrete FIR Filter
• Stateflow blocks
• Blocks that are not supported for delay balancing. For details, see “Delay Balancing Limitations”

on page 24-28.

HDL Coder can share Atomic Subsystem blocks that have the same Simulink checksum and the same
HDL block properties.

If you want to share Atomic Subsystem blocks, the state elements that the blocks can contain are:

• Delay
• Unit Delay
• Unit Delay Enabled Synchronous
• Unit Delay Resettable Synchronous
• Unit Delay Enabled Resettable Synchronous

The state elements must have the Initial condition parameter set to 0.

You cannot share atomic subsystems that contain the following blocks or block implementations:

• Detect Change
• Discrete Transfer Fcn
• HDL FFT
• HDL FIFO
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• Math Function (conj, hermitian, transpose)
• MATLAB Function blocks that contain persistent variables
• Sqrt
• Cascade architecture (MinMax, Product, Sum)
• CORDIC architecture
• Reciprocal Newton architecture
• Filter blocks including Discrete FIR Filter
• Communications Toolbox blocks
• DSP System Toolbox blocks, except Discrete FIR Filter
• Stateflow blocks
• Blocks that are not supported for delay balancing. For details, see “Delay Balancing Limitations”

on page 24-28.

Resource Sharing of Floating-Point IPs
Guideline ID

3.1.8

Severity

Recommended

Description

To share multiple:

• Floating-point adders, set ShareAdders to on.
• Floating-point multipliers, make sure ShareMultipliers is set to on.
• Other floating-point resources, set ShareFloatingPointIP to on.

See also Modeling with Native Floating Point.

See Also
Simulink Configuration Parameters
Resource Sharing of Adders and Multipliers | Resource Sharing of Multiply-Add and Other
Blocks

Related Examples
• “Resource Sharing of Multipliers to Reduce Area”
• “Resource Sharing For Area Optimization”
• “Single-rate Resource Sharing Architecture”

More About
• “Resource Sharing” on page 24-23
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• “Streaming” on page 24-20
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Distributed Pipelining and Clock-Rate Pipelining Guidelines
The code generator introduces registers when you specify certain block implementations or use
certain settings. You can follow these guidelines to learn more about these registers and how you can
use them to optimize the timing of your design.

Each guideline has a severity level that indicates the level of compliance requirements. To learn
more, see “HDL Modeling Guidelines Severity Levels” on page 20-2.

Clock-Rate Pipelining Guidelines
Guideline ID

3.2.1

Severity

Informative

Description

In most cases, the code generator introduces the registers in regions that run slower than the clock
rate. To avoid or minimize additional latency, you can run these registers at the fast clock rate by
using clock-rate pipelining. You can use clock-rate pipelining with these optimizations:

• Input and output pipelining
• Multi-cycle block implementations, such as complex math operations like Sqrt and Reciprocal.
• Floating-point library mapping
• Delay balancing
• Resource sharing and streaming

In addition, for designs with multiple hierarchies, to improve opportunities for clock-rate pipelining, it
is recommended that you have the HDL block property FlattenHierarchy enabled on the top-level
Subsystem.

To learn more about clock-rate pipelining and blocks that act as barriers to this optimization, see
“Clock-Rate Pipelining” on page 24-52.

Recommended Distributed Pipelining Settings
Guideline ID

3.2.2

Severity

Recommended

Description

Distributed pipelining is a speed optimization that reduces the critical path by moving existing delays
in your design while preserving the functional behavior.
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To use this optimization for a Subsystem, set the DistributedPipelining HDL block property set to
on.

To more effectively use this optimization, in the Configuration Parameters dialog box, on the HDL
Code Generation > Optimization pane, you can specify these additional settings.

• “ConstrainedOutputPipeline” on page 21-7: Make sure that the total number of delays that are
inserted including anyinput and output pipelining that you specify is greater than or equal to the
value that you specify for ConstrainedOutputPipeline on the Subsystem.

• “Hierarchical distributed pipelining” on page 14-9: Select this option if you want to apply the
distributed pipelining optimization across multiple subsystem hierarchy. Make sure that the top-
level Subsystem and each subsystem in the hierarchy has the DistributedPipelining HDL block
property set to on.

Note If you cannot enable DistributedPipelining on the top-level Subsystem, you can enable
FlattenHierarchy, which enables pipelining with other blocks at a lower model hierarchy.

• “Clock Rate Pipelining” on page 14-12: Select this option if you want the code generator to insert
registers at the clock rate instead of the data rate.

• “Allow clock-rate pipelining of DUT output ports” on page 14-13: Select this option if you want the
code generator to insert registers at the clock rate instead of the data rate at the DUT output
ports.

• “Preserve design delays” on page 14-17: Select this option if you do not want the code generator
to move the delays you added to your design. The optimization only moves pipeline registers.

• “Distributed pipelining priority” on page 14-10: Specify whether you want the priority to be
Numerical Integrity or Performance. If you use Performance, make sure that the
simulation results match. In some cases, this setting moves registers into blocks that have initial
values such as constants, which can affect simulation results.

The Subsystem for which you want to apply the optimization must meet these requirements:

• Make sure that the Subsystem that you apply this optimization on does not contain any feedback
loops.

• Use blocks that are supported for distributed pipelining. For a list of unsupported blocks, see
“Limitations of Distributed Pipelining” on page 24-44. As a workaround:

• Place some of the unsupported blocks such as Dot Product inside another Subsystem that does
not have distributed pipelining enabled.

• Change the Distributed pipelining priority to Performance for certain blocks such as
Enabled Subsystem.

• The Sample Time of the blocks must be discrete. If you have blocks with Sample Time set to
Inf, change them to -1. To identify and change the sample time programmatically, see “Change
Block Parameters by Using find_system and set_param” on page 20-34.

• Remove any input ports on Scope blocks to avoid generation of infinite sample time.

See Also
Simulink Configuration Parameters
Distributed Pipelining

20 Modeling Guidelines

20-116



Related Examples
• “Distributed Pipelining: Speed Optimization”
• “Distributed Pipelining for Clock Speed Optimization”

More About
• “Distributed Pipelining” on page 24-42
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Insert Distributed Pipeline Registers for Blocks with Vector
Data Type Inputs

Distributed pipelining is a speed optimization that reduces the critical path by moving existing delays
in your design while preserving the functional behavior. This guidelines illustrates how you can use
the optimization effectiely for vector inputs.

Each guideline has a severity level that indicates the level of compliance requirements. To learn
more, see “HDL Modeling Guidelines Severity Levels” on page 20-2.

Guideline ID
3.2.3

Severity
Informative

Description
Blocks that Participate in Distributed Pipelining with Vector Types

By specifying certain settings, you can apply the distributed pipelining optimization to insert pipeline
registers for these blocks when you input vectors that are larger than 3 in size. For details, see the
"HDL Code Generation" section of each block page.

• Adders: Add, Subtract, and Sum of Elements
• Multipliers: Gain, Product, and Product of Elements
• MinMax
• Dot Product

Block Settings and Requirements

1 In the HDL Block Properties for the blocks, set Architecture to:

• Tree for adders, multipliers, and MinMax blocks. Distributed pipeline register insertion does
not support Linear and Cascade architectures.

• Linear for Dot Product. Distributed pipeline register insertion does not support Tree
architecture for this block.

2 Specify the number of pipeline stages by using the InputPipeline and OutputPipeline
properties in the HDL Block Properties dialog box, or by manually inserting Delay blocks.

3 Enable DistributedPipelining on the Subsystem for which you want to apply this optimization.
4 Open the Distributed Pipelining report.
5 Open and examine the generated model.

Distributed Pipelining Example for Vector Sum of Elements

This example shows how you can distribute pipeline registers at the output of a Sum of Elements
block that accepts vector inputs.
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open_system('hdlcoder_distributed_pipelining_soe')
set_param('hdlcoder_distributed_pipelining_soe','SimulationCommand','Update')

If you navigate the model, you see three pipeline stages for the Sum of Elements block.

open_system('hdlcoder_distributed_pipelining_soe/DUT/Add')

You see a Delay block of three added at the output of the Sum of Elements block. You can use
distributed pipelining to distribute the delays.

1. Set Architecture to Tree for the Sum of Elements block.

hdlset_param('hdlcoder_distributed_pipelining_soe/DUT/Add/Add', ...
                    'Architecture','Tree')

2. Enable DistributedPipelining on the Add Subsystem

hdlset_param('hdlcoder_distributed_pipelining_soe/DUT/Add', ...
                    'DistributedPipelining','On')

3. Generate HDL code for the DUT Subsystem.

makehdl('hdlcoder_distributed_pipelining_soe/DUT')

4. Open the Code Generation Report to see the effect of the distributed pipelining optimization.
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5. To see the effect of the transformation and how the pipeline registers are distributed, open the
generated model and navigate to the Add Subsystem.

load_system('gm_hdlcoder_distributed_pipelining_soe')
set_param('gm_hdlcoder_distributed_pipelining_soe','SimulationCommand','Update')
open_system('gm_hdlcoder_distributed_pipelining_soe/DUT/Add')
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See Also
Simulink Configuration Parameters
Distributed Pipelining

Related Examples
• “Distributed Pipelining: Speed Optimization”
• “Distributed Pipelining for Clock Speed Optimization”

More About
• “Distributed Pipelining” on page 24-42
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Supported Blocks Library and Block
Properties

• “View HDL-Specific Block Documentation” on page 21-2
• “HDL Block Properties: General” on page 21-3
• “HDL Block Properties: Native Floating Point” on page 21-29
• “HDL Filter Block Properties” on page 21-38
• “HDL Filter Architectures” on page 21-44
• “Distributed Arithmetic for HDL Filters” on page 21-49
• “Set and View HDL Model and Block Parameters” on page 21-51
• “Pass through, No HDL, and Cascade Implementations” on page 21-55
• “Build a ROM Block with Simulink Blocks” on page 21-56
• “Wireless Communications Design for FPGAs and ASICs” on page 21-57
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View HDL-Specific Block Documentation
To view HDL-specific documentation for a block in your model, either:

• In the Apps tab, select HDL Coder. The HDL Code tab appears. Select the block for which you
want to see the help documentation and then select HDL Block Properties. To view the block
documentation, click Help.

• Right-click the block and select HDL Code > HDL Block Properties. To view the block
documentation, click Help.

You see the documentation in the Extended Capabilities > HDL Code Generation section of the block
page in the product that owns the block. You can also find HDL-specific block documentation in
“Model Design”.

See Also
hdllib

Related Examples
• “Set and View HDL Model and Block Parameters” on page 21-51
• “Show Blocks Supported for HDL Code Generation” on page 25-18

More About
• “HDL Block Properties: General” on page 21-3
• “HDL Filter Block Properties” on page 21-38
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HDL Block Properties: General
In this section...
“Overview” on page 21-3
“AdaptivePipelining” on page 21-4
“BalanceDelays” on page 21-4
“ClockRatePipelining” on page 21-5
“CodingStyle” on page 21-6
“ConstMultiplierOptimization” on page 21-6
“ConstrainedOutputPipeline” on page 21-7
“DistributedPipelining” on page 21-8
“DotProductStrategy” on page 21-9
“DSPStyle” on page 21-9
“FlattenHierarchy” on page 21-11
“InputPipeline” on page 21-13
“InstantiateFunctions” on page 21-13
“InstantiateStages” on page 21-14
“LoopOptimization” on page 21-14
“LUTRegisterResetType” on page 21-15
“MapPersistentVarsToRAM” on page 21-15
“OutputPipeline” on page 21-17
“RAMDirective” on page 21-17
“ResetType” on page 21-20
“SerialPartition” on page 21-21
“SharingFactor” on page 21-22
“SoftReset” on page 21-22
“StreamingFactor” on page 21-23
“UseMatrixTypesInHDL” on page 21-23
“UsePipelines” on page 21-24
“UseRAM” on page 21-25
“VariablesToPipeline” on page 21-28

Overview
Block implementation parameters enable you to control details of the code generated for specific
block implementations. See “Set and View HDL Model and Block Parameters” on page 21-51 to
learn how to select block implementations and parameters in the GUI or the command line.

Property names are specified as character vectors. The data type of a property value is specific to the
property. This section describes the syntax of each block implementation parameter and how the
parameter affects generated code.
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AdaptivePipelining
The AdaptivePipelining subsystem parameter enables you to set adaptive pipelining on a
subsystem within a model.

Adaptive Pipelining Setting Description
'inherit' (default) Use the adaptive pipelining setting of the parent

subsystem. If this subsystem is the highest-level
subsystem, use the adaptive pipelining setting for
the model.

'on' Insert adaptive pipelines for this subsystem.
'off' Do not insert adaptive pipelines for this

subsystem, even if the parent subsystem has
adaptive pipelining enabled.

To disable adaptive pipelining for a subsystem within a model, set the adaptive pipelining parameter,
AdaptivePipelining, to 'off' for that subsystem.

To learn how to set model-level adaptive pipelining, see “Adaptive pipelining” on page 14-15.

Set Adaptive Pipelining For a Subsystem

To set adaptive pipelining for a subsystem from the HDL Block Properties dialog box:

1 Right-click the subsystem.
2 Select HDL Code > HDL Block Properties .
3 For AdaptivePipelining, select inherit, on, or off.

To set adaptive pipelining for a subsystem from the command line, use hdlset_param. For example,
to turn off adaptive pipelining for a subsystem, my_dut:

hdlset_param('my_dut', 'AdaptivePipelining', 'off')

See also hdlset_param.

BalanceDelays
The BalanceDelays subsystem parameter enables you to set delay balancing on a subsystem within
a model.

BalanceDelays Setting Description
'inherit' (default) Use the delay balancing setting of the parent

subsystem. If this subsystem is the highest-level
subsystem, use the delay balancing setting for
the model.

'on' Balance delays for this subsystem.
'off' Do not balance delays for this subsystem, even if

the parent subsystem has delay balancing
enabled.
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To disable delay balancing for any subsystem within a model, you must set the model-level delay
balancing parameter, BalanceDelays, to 'off'.

To learn how to set model-level delay balancing, see “Balance delays” on page 14-3.

Set Delay Balancing For a Subsystem

To set delay balancing for a subsystem using the HDL Block Properties dialog box:

1 Right-click the subsystem.
2 Select HDL Code > HDL Block Properties .
3 For BalanceDelays, select inherit, on, or off.

To set delay balancing for a subsystem from the command line, use hdlset_param. For example, to
turn off delay balancing for a subsystem, my_dut:

hdlset_param('my_dut', 'BalanceDelays', 'off')

See also hdlset_param.

ClockRatePipelining
The ClockRatePipelining subsystem parameter enables you to set clock-rate pipelining on a
subsystem within a model.

Clock-Rate Pipelining Setting Description
'inherit' (default) Use the clock-rate pipelining setting of the parent

subsystem. If this subsystem is the highest-level
subsystem, use the clock-rate pipelining setting
for the model.

'on' Insert clock-rate pipelines for this subsystem.
'off' Do not insert clock-rate pipelines for this

subsystem, even if the parent subsystem has
clock-rate pipelining enabled.

To disable clock-rate pipelining for a subsystem within a model, set the clock-rate pipelining
parameter, ClockRatePipelining, to 'off' for that subsystem.

To learn how to set model-level clock-rate pipelining, see “Clock Rate Pipelining” on page 14-12.

Set Clock-Rate Pipelining For a Subsystem

To set clock-rate pipelining for a subsystem using the HDL Block Properties dialog box:

1 Right-click the subsystem.
2 Select HDL Code > HDL Block Properties .
3 For ClockRatePipelining, select inherit, on, or off.

To set clock-rate pipelining for a subsystem from the command line, use hdlset_param. For
example, to turn off clock-rate pipelining for a subsystem, my_dut:

hdlset_param('my_dut', 'ClockRatePipelining', 'off')
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See also hdlset_param.

CodingStyle
When you use Multiport Switch blocks, use the CodingStyle parameter to specify whether you want
to generate HDL code with if-else or case statements. By default, HDL Coder generates if-else
statements. If you have several Multiport Switch blocks in your model, you can choose to specify a
different CodingStyle for each block.

CodingStyle Setting Description
'ifelse_stmt'(Default) Generate if-else statements in the Verilog code or when-

else statements in the VHDL code for a Multiport
Switch block.

'case_stmt' Generate case statements in the Verilog code or case-
when statements in the VHDL code for a Multiport
Switch block.

Set CodingStyle For Multiport Switch Block

To set CodingStyle for a Multiport Switch using the HDL Block Properties dialog box:

1 Right-click the Multiport Switch block.
2 Select HDL Code > HDL Block Properties .
3 For CodingStyle, select ifelse_stmt or case_stmt.

To see the CodingStyle specified for a subsystem from the command line, use hdlget_param. For
example, to see the settings specified for a Multiport Switch block inside a subsystem, my_dut:

hdlget_param('my_dut/Multiport Switch', 'CodingStyle')

ans =

    'case_stmt'

See also hdlset_param.

ConstMultiplierOptimization
The ConstMultiplierOptimization implementation parameter lets you specify use of canonical
signed digit (CSD) or factored CSD optimizations for processing coefficient multiplier operations in
the generated code.

The following table shows the ConstMultiplierOptimization parameter values.

ConstMultiplierOptimization Setting Description
'none'
(Default)

By default, HDL Coder does not perform CSD or FCSD
optimizations. Code generated for the Gain block
retains multiplier operations.
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ConstMultiplierOptimization Setting Description
'CSD' When you specify this option, the generated code

decreases the area used by the model while maintaining
or increasing clock speed, using canonical signed digit
(CSD) techniques. CSD replaces multiplier operations
with add and subtract operations. CSD minimizes the
number of addition operations required for constant
multiplication by representing binary numbers with a
minimum count of nonzero digits.

'FCSD' This option uses factored CSD (FCSD) techniques,
which replace multiplier operations with shift and add/
subtract operations on certain factors of the operands.
These factors are generally prime but can also be a
number close to a power of 2, which favors area
reduction. This option lets you achieve a greater area
reduction than CSD, at the cost of decreasing clock
speed.

'auto' When you specify this option, HDL Coder chooses
between the CSD or FCSD optimizations. The coder
chooses the optimization that yields the most area-
efficient implementation, based on the number of
adders required. When you specify 'auto', the coder
does not use multipliers, unless conditions are such that
CSD or FCSD optimizations are not possible (for
example, if the design uses floating-point arithmetic).

The ConstMultiplierOptimization parameter is available for the following blocks:

• Gain
• Stateflow chart
• Truth Table
• MATLAB Function
• MATLAB System

ConstrainedOutputPipeline
Use the ConstrainedOutputPipeline parameter to specify a nonnegative number of registers to
place at the block outputs.

HDL Coder moves existing delays within your design to try to meet your constraint. New registers
are not added. If there are fewer registers than the coder needs to satisfy your constraint, the coder
reports the difference between the number of desired and actual output registers. You can add delays
to your design using input or output pipelining.

Distributed pipelining does not redistribute registers you specify with constrained output pipelining.

How to Specify Constrained Output Pipelining

To specify constrained output pipelining for a block using the GUI:
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1 Right-click the block and select HDL Code > HDL Block Properties.
2 For ConstrainedOutputPipeline, enter the number of registers you want at the output ports.

To specify constrained output pipelining, at the command line, enter:

hdlset_param(path_to_block,
             'ConstrainedOutputPipeline', number_of_output_registers)

For example, to constrain 6 registers at the output ports of a subsystem, subsys, in your model,
mymodel, enter:

hdlset_param('mymodel/subsys','ConstrainedOutputPipeline', 6)

See Also

• “Constrained Output Pipelining” on page 24-50

DistributedPipelining
The DistributedPipelining parameter enables pipeline register distribution, a speed
optimization that enables you to increase your clock speed by reducing your critical path.

The following table shows the effect of the DistributedPipelining and OutputPipeline
parameters.

DistributedPipelining OutputPipeline, nStages Result
'off' (default) Unspecified (nStages defaults

to 0)
HDL Coder does not insert
pipeline registers.

nStages > 0 The coder inserts nStages
output registers at the output of
the subsystem, MATLAB
Function block, or Stateflow
chart.

'on' Unspecified (nStages defaults
to 0)

The coder does not insert
pipeline registers.
DistributedPipelining has
no effect.

nStages > 0 The coder distributes nStages
registers inside the subsystem,
MATLAB Function block, or
Stateflow chart, based on
critical path analysis.

To achieve further optimization of code generated with distributed pipelining, perform retiming
during RTL synthesis, if possible.

Tip Output data might be in an invalid state initially if you insert pipeline registers. To avoid test
bench errors resulting from initial invalid samples, disable output checking for those samples. For
more information, see:

• “Ignore output data checking (number of samples)” on page 18-17
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• IgnoreDataChecking

See Also

• “Distributed Pipelining” on page 24-42
• “Specify Distributed Pipelining” on page 24-44
• “Distributed Pipeline Insertion for MATLAB Function Blocks” on page 29-31

DotProductStrategy
If you use the Product block for matrix multiplication in your design, use the DotProductStrategy
to specify how you want to implement the matrix multiplication.

The DotProductStrategy options are listed in the following table.

DotProductStrategy Value Description
'Fully Parallel' (default) Expands the matrix multiplication operation into

multipliers and adders. For example, if you
multiply two 2x2 matrices, the implementation
uses eight multipliers and four adders to compute
the result.

'Serial Multiply-Accumulate' Uses the Serial architecture of the Multiply-
Accumulate block to implement the matrix
multiplication.

In this architecture, the clock rate must be faster
than the clock rate that you specify with Parallel
architecture. You can see the clock rate in the
Clock Summary information of the Code
Generation report.

'Parallel Multiply-Accumulate' Uses the Parallel architecture of the Multiply-
Accumulate block to implement the matrix
multiplication.

DSPStyle
DSPStyle enables you to generate code that includes synthesis attributes for multiplier mapping in
your design. You can choose whether to map a particular block’s multipliers to DSPs or logic in
hardware.

For Xilinx targets, the generated code uses the use_dsp48 attribute. For Altera targets, the
generated code uses the multstyle attribute.

The DSPStyle options are listed in the following table.

DSPStyle Value Description
'none' (default) Do not insert a DSP mapping synthesis attribute.
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DSPStyle Value Description
'on' Insert synthesis attribute that directs the

synthesis tool to map to DSPs in hardware.
'off' Insert synthesis attribute that directs the

synthesis tool to map to logic in hardware.

The DSPStyle parameter is available for the following blocks:

• Gain
• Product
• Product of Elements with Architecture set to Tree
• Subsystem
• Atomic Subsystem
• Variant Subsystem
• Enabled Subsystem
• Triggered Subsystem
• Model with Architecture set to ModelReference

Hierarchy Flattening Behavior

If you specify hierarchy flattening for a subsystem that also has a nondefault DSPStyle setting, HDL
Coder propagates the DSPStyle setting to the parent subsystem.

If the flattened subsystem contains Gain, Product, or Product of Elements blocks, the coder keeps
their nondefault DSPStyle settings, and replaces default DSPStyle settings with the flattened
subsystem DSPStyle setting.

Synthesis Attributes in Generated Code

The generated code for synthesis attributes depends on:

• Target language
• DSPStyle value
• SynthesisTool value

The following table shows examples of synthesis attributes in generated code.

DSPStyle
Value

TargetLangua
ge Value

SynthesisTool Value
'Altera Quartus II' 'Xilinx ISE'

'Xilinx Vivado'
'none' 'Verilog' wire signed [32:0]

m4_out1;
wire signed [32:0]
m4_out1;

'VHDL' m4_out1 : signal; m4_out1 : signal;
'on' 'Verilog' (* multstyle = "dsp" *)

wire signed [32:0]
m4_out1;

(* use_dsp48 = "yes" *)
wire signed [32:0]
m4_out1;
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DSPStyle
Value

TargetLangua
ge Value

SynthesisTool Value
'Altera Quartus II' 'Xilinx ISE'

'Xilinx Vivado'
'VHDL' attribute multstyle :

string ;

attribute multstyle of
m4_out1 : signal is
"dsp" ;

attribute use_dsp48 :
string ;

attribute use_dsp48 of
m4_out1 : signal is
"yes" ;

'off' 'Verilog' (* multstyle = "logic" *)
wire signed [32:0]
m4_out1;

(* use_dsp48 = "no" *)
wire signed [32:0]
m4_out1;

'VHDL' attribute multstyle :
string ;

attribute multstyle of
m4_out1 : signal is
"logic" ;

attribute use_dsp48 :
string ;

attribute use_dsp48 of
m4_out1 : signal is
"no" ;

Requirement For Synthesis Attribute Specification

You must specify a synthesis tool by using the SynthesisTool property.

How To Specify a Synthesis Attribute

To specify a synthesis attribute using the HDL Block Properties dialog box:

1 Right-click the block.
2 Select HDL Code > HDL Block Properties .
3 For DSPStyle, select on, off, or none.

To specify a synthesis attribute from the command line, use hdlset_param. For example, suppose
you have a model, my_model, with a DUT subsystem, my_dut, that contains a . Gain block,
my_multiplier. To insert a synthesis attribute to map my_multiplier to a DSP, enter:

hdlset_param('my_model/my_dut/my_multiplier', 'DSPStyle', 'on')

See also hdlset_param.

Limitations For Synthesis Attribute Specification

• When you specify a nondefault DSPStyle block property, the ConstMultiplierOptimization
property must be set to 'none'.

• Inputs to multiplier components cannot use the double data type.
• Gain constant cannot be a power of 2.

FlattenHierarchy
FlattenHierarchy enables you to remove subsystem hierarchy from the HDL code generated from
your design.
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FlattenHierarchy Setting Description
'inherit' (default) Use the hierarchy flattening setting of the parent

subsystem. If this subsystem is the highest-level
subsystem, do not flatten.

'on' Flatten this subsystem.
'off' Do not flatten this subsystem, even if the parent

subsystem is flattened.

To flatten hierarchy, you must also have the MaskParameterAsGeneric global property set to
'off'. For more information, see “Generate parameterized HDL code from masked subsystem” on
page 16-59.

How To Flatten Hierarchy

To set hierarchy flattening using the HDL Block Properties dialog box:

• In the Apps tab, select HDL Coder. The HDL Code tab appears. Select the Subsystem and then
click HDL Block Properties. For FlattenHierarchy, select on, off, or inherit.

• Right-click the Subsystem and select HDL Code > HDL Block Properties. For
FlattenHierarchy, select on, off, or inherit.

To set hierarchy flattening from the command line, use hdlset_param. For example, to turn on
hierarchy flattening for a subsystem, my_dut:

hdlset_param('my_dut', 'FlattenHierarchy', 'on')

See also hdlset_param.

Limitations For Hierarchy Flattening

A subsystem cannot be flattened if the subsystem is:

• A Synchronous Subsystem or uses the State Control block in Synchronous mode.
• A black box implementation or model reference.
• A Triggered Subsystem when “Use trigger signal as clock” on page 16-43 is enabled.
• A masked subsystem that contains any of the following:

• Bus.
• Enumerated data type.
• Lookup table blocks: 1-D Lookup Table, 2-D Lookup Table, Cosine HDL Optimized, Direct

LookupTable (n-D), Prelookup, Sine HDL Optimized, n-D Lookup Table.
• MATLAB System block.
• Stateflow blocks: Chart, State Transition Table, Sequence Viewer.
• Blocks with a pass-through or no-op implementation. See “Pass through, No HDL, and Cascade

Implementations” on page 21-55.

Note This option removes subsystem boundaries before code generation. It does not necessarily
generate HDL code with a completely flat hierarchy.
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InputPipeline
InputPipeline lets you specify a implementation with input pipelining for selected blocks. The
parameter value specifies the number of input pipeline stages (pipeline depth) in the generated code.

The following code specifies an input pipeline depth of two stages for each Sum block in the model:
sblocks = find_system(gcb, 'BlockType', 'Sum');
for ii=1:length(sblocks),hdlset_param(sblocks{ii},'InputPipeline', 2), end;

Note The InputPipeline setting does not have any effect on blocks that do not have an input port.

When generating code for pipeline registers, HDL Coder appends a postfix string to names of input or
output pipeline registers. The default postfix string is _pipe. To customize the postfix string, use the
Pipeline postfix option in the Global Settings / General pane in the HDL Code Generation pane
of the Configuration Parameters dialog box. Alternatively, you can pass the desired postfix as a
character vector in the makehdl property PipelinePostfix. For an example, see “Pipeline postfix”
on page 16-29.

InstantiateFunctions
For the MATLAB Function block, you can use the InstantiateFunctions parameter to generate a
VHDL entity or Verilog module for each function. HDL Coder generates code for each entity or
module in a separate file.

The InstantiateFunctions options for the MATLAB Function block are listed in the following table.

InstantiateFunctions Setting Description
'off' (default) Generate code for functions inline.
'on' Generate a VHDL entity or Verilog module for

each function, and save each module or entity
in a separate file.

How To Generate Instantiable Code for Functions

To set the InstantiateFunctions parameter using the HDL Block Properties dialog box:

1 Right-click the MATLAB Function block.
2 Select HDL Code > HDL Block Properties.
3 For InstantiateFunctions, select on.

To set the InstantiateFunctions parameter from the command line, use hdlset_param. For
example, to generate instantiable code for functions in a MATLAB Function block, myMatlabFcn, in
your DUT subsystem, myDUT, enter:

hdlset_param('my_DUT/my_MATLABFcnBlk', 'InstantiateFunctions', 'on')

Generate Code Inline for Specific Functions

If you want to generate instantiable code for some functions but not others, enable the option to
generate instantiable code for functions, and use coder.inline. See coder.inline for details.
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Limitations for Instantiable Code Generation for Functions

The software generates code inline when:

• Function calls are within conditional code or for loops.
• Any function is called with a nonconstant struct input.
• The function has state, such as a persistent variable, and is called multiple times.
• There is an enumeration anywhere in the design function.

If you enable InstantiateFunctions, UseMatrixTypesInHDL has no effect.

InstantiateStages
For a Cascade architecture, you can use the InstantiateStages parameter to generate a VHDL
entity or Verilog module for each computation stage. HDL Coder generates code for each entity
or module in a separate file.

InstantiateStages Setting Description
'off' (default) Generate cascade stages in a single VHDL

entity or Verilog module.
'on' Generate a VHDL entity or Verilog module for

each cascade stage, and save each module or
entity in a separate file.

LoopOptimization
LoopOptimization enables you to stream or unroll loops in code generated from a MATLAB
Function block. Loop streaming optimizes for area; loop unrolling optimizes for speed.

Note If you specify the MATLAB Datapath architecture of the MATLAB Function block, you can only
unroll loops. To stream loops, you can use the streaming optimization by specifying a
StreamingFactor. See “HDL Optimizations Across MATLAB Function Block Boundary Using
MATLAB Datapath Architecture” on page 24-72.

LoopOptimization Setting Description
'none' (default) Do not optimize loops.
'Unrolling' Unroll loops.
'Streaming' Stream loops.

How to Optimize MATLAB Function Block For Loops

To select a loop optimization using the HDL Block Properties dialog box:

1 Right-click the MATLAB Function block.
2 Select HDL Code > HDL Block Properties.
3 For LoopOptimization, select none, Unrolling, or Streaming.
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To select a loop optimization from the command line, use hdlset_param. For example, to turn on
loop streaming for a MATLAB Function block, my_mlfn:

hdlset_param('my_mlfn', 'LoopOptimization', 'Streaming')

See also hdlset_param.

Limitations for MATLAB Function Block Loop Optimization

HDL Coder cannot stream a loop if:

• The loop index counts down. The loop index must increase by 1 on each iteration.
• There are 2 or more nested loops at the same level of hierarchy within another loop.
• Any particular persistent variable is updated both inside and outside a loop.

HDL Coder can stream a loop when the persistent variable is:

• Updated inside the loop and read outside the loop.
• Read within the loop and updated outside the loop.

LUTRegisterResetType
Use the LUTRegisterResetType block parameter to control synthesis of a LUT into a ROM
structure on an FPGA.

LUTRegisterResetType Value Description
default LUT output register has default reset logic. When

you generate HDL, the LUT will be synthesized as
registers.

none LUT output register has no reset logic. When you
generate HDL, the LUT will be synthesized as a
ROM.

You can specify LUTRegisterResetType for the following blocks:

• Gamma Correction
• Lookup Table

The NCO HDL Optimized block ignores this parameter.

MapPersistentVarsToRAM
With the MapPersistentVarsToRAM implementation parameter, you can use RAM-based mapping
for persistent arrays of a MATLAB Function block instead of mapping to registers.

MapPersistentVarsToRAM
Setting

Mapping Behavior

off Persistent arrays map to registers in the generated HDL code.
on Persistent array variables map to RAM. For restrictions, see “RAM

Mapping Restrictions” on page 21-16.
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RAM Mapping Restrictions

When you enable RAM mapping, a persistent array or user-defined System object private property
maps to a block RAM when all of the following conditions are true:

• Each read or write access is for a single element only. For example, submatrix access and array
copies are not allowed.

• Address computation logic is not read-dependent. For example, computation of a read or write
address using the data read from the array is not allowed.

• Persistent variables or user-defined System object private properties are initialized to 0 if they
have a cyclic dependency. For example, if you have two persistent variables, A and B, you have a
cyclic dependency if A depends on B, and B depends on A.

• If an access is within a conditional statement, the conditional statement uses only simple logic
expressions (&&, ||, ~) or relational operators. For example, in the following code, r1 does not
map to RAM:

if (mod(i,2) > 0)
    a = r1(u);
else
    r1(i) = u;
end 

Rewrite complex conditions, such as conditions that call functions, by assigning them to
temporary variables, and using the temporary variables in the conditional statement. For example,
to map r1 to RAM, rewrite the previous code as follows:

temp = mod(i,2);
if (temp > 0)
    a = r1(u);
else
    r1(i) = u;
end 

• The persistent array or user-defined System object private property value depends on external
inputs.

For example, in the following code, bigarray does not map to RAM because it does not depend
on u:

function z = foo(u)

persistent cnt bigarray
if isempty(cnt)
    cnt = fi(0,1,16,10,hdlfimath);
    bigarray = uint8(zeros(1024,1));
end
z = u + cnt;
idx = uint8(cnt);
temp = bigarray(idx+1);
cnt(:) = cnt + fi(1,1,16,0,hdlfimath) + temp;
bigarray(idx+1) = idx; 

• RAMSize is greater than or equal to the RAMMappingThreshold value. RAMSize is the product
NumElements * WordLength * Complexity.

• NumElements is the number of elements in the array.
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• WordLength is the number of bits that represent the data type of the array.
• Complexity is 2 for arrays with a complex base type; 1 otherwise.

If any of the above conditions is false, the persistent array or user-defined System object private
property maps to a register in the HDL code.

RAMMappingThreshold

The default value of RAMMappingThreshold is 256. To change the threshold, use hdlset_param.
For example, the following command changes the mapping threshold for the sfir_fixed model to
128 bits:

hdlset_param('sfir_fixed', 'RAMMappingThreshold', 128);

You can also change the RAM mapping threshold in the Configuration Parameters dialog box. For
more information, see RAM mapping threshold (bits) section in “RAM Mapping” on page 14-5.

Example

For an example that shows how to map persistent array variables to RAM in a MATLAB Function
block, see “RAM Mapping With the MATLAB Function Block” on page 24-37.

OutputPipeline
OutputPipeline lets you specify a implementation with output pipelining for selected blocks. The
parameter value specifies the number of output pipeline stages (pipeline depth) in the generated
code.

The following code specifies an output pipeline depth of two stages for each Sum block in the model:
sblocks = find_system(gcb, 'BlockType', 'Sum');
for ii=1:length(sblocks),hdlset_param(sblocks{ii},'OutputPipeline', 2), end;

Note The OutputPipeline setting does not have any effect on blocks that do not have an output
port.

When generating code for pipeline registers, HDL Coder appends a postfix string to names of input or
output pipeline registers. The default postfix string is _pipe. To customize the postfix string, use the
Pipeline postfix option in the Configuration Parameters dialog box, in the HDL Code Generation >
Global Settings > General tab. Alternatively, you can use the PipelinePostfix property with
makehdl. For an example, see “Pipeline postfix” on page 16-29.

See also “Distributed Pipeline Insertion for MATLAB Function Blocks” on page 29-31.

RAMDirective
RAMDirective lets you specify whether you want to map the RAM blocks in your Simulink model to
distributed RAMs, block RAMs, or UltraRAM memory. When you select a value for this setting, HDL
Coder generates a ramstyle attribute in the HDL code. This attribute specifies the type of RAM
memory unit that you want the synthesis tool to use when inferring the RAM blocks in your design.
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RAMDirective Value Description
none (default) Do not generate the ramstyle attribute in the HDL code. The synthesis

tool determines the type of inferred RAM for mapping the RAM blocks in
your model.

distributed Generate HDL attribute for mapping the RAM blocks in your model to
distributed RAMs. Distributed RAMs are constructed with LUT. These
RAMs are faster but occupy a larger number of LUT slices on the FPGA.

This VHDL code shows the ramstyle attribute set to distributed:

 attribute ram_style: string;
 attribute ram_style of ram : signal is "distributed";

This Verilog code shows the ramstyle attribute set to distributed:

(* ram_style = "distributed" *)

block Generate HDL attribute for mapping the RAM blocks in your model to
block RAMs. A block RAM is a dedicated memory unit on the FPGA
device. The number of block RAMs available depends on the FPGA
device that you are deploying the HDL code to. Sizes of block RAMs can
be 4kb, 8kb, 16kb, and 32kb.

To map your RAM blocks to block RAM:

• Specify the synthesis tool. You must target a Xilinx device that
contains block RAM resources.

Note If the target device does not contain block RAMs, the synthesis
tool ignores this attribute and might infer the RAM as distributed
RAMs or LUT slices.

• Enter a target frequency greater than zero.

This VHDL code shows the ramstyle attribute set to block:

 attribute ram_style: string;
 attribute ram_style of ram : signal is "block";

This Verilog code shows the ramstyle attribute set to block:

(* ram_style = "block" *)
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RAMDirective Value Description
ultra Generate HDL attribute for mapping the RAM blocks in your model to

UltraRAM memory. An UltraRAM is a dedicated memory block on the
target FPGA. The number of UltraRAM memory units available depends
on the FPGA device that you are deploying the HDL code to. UltraRAM
units are larger than block RAMs and can be as large as 500Mb in size.

To map your RAM blocks to UltraRAM:

• Specify Xilinx Vivado as the synthesis tool. You must target a Xilinx
device that contains UltraRAM resources, such as Virtex® UltraScale
+™.

Note If the target device does not contain UltraRAM memory, the
synthesis tool ignores this attribute and might infer the RAM as
distributed RAMs or LUT slices. To map the RAM blocks to block
RAMs instead, set RAMDirective to block.

• Enter a target frequency greater than zero.
• The RAM blocks in your design must follow a fixed-read behavior and

have a single clock interface. In the HDL RAMs library, except for
Dual Port RAM and Dual Rate Dual Port RAM blocks, you can map all
other RAM blocks to UltraRAM.

• The RAM blocks must not have an initial value specified. When you
use the RAM System blocks such as Single Port RAM System, Specify
the RAM initial value must be set to 0. On device reset, all memory
locations in the UltraRAM are initialized to zero.

This VHDL code shows the ramstyle attribute set to ultra:

 attribute ram_style: string;
 attribute ram_style of ram : signal is "ultra";

This Verilog code shows the ramstyle attribute set to ultra:

(* ram_style = "ultra" *)

Set RAMDirective for RAM Blocks

In the HDL RAMs library, except for the Dual Rate Dual Port RAM, you can specify the
RAMDirective property for all other RAM blocks.

To set RAMDirective for a RAM block from the HDL Block Properties dialog box:

1 Right-click the RAM block.
2 Select HDL Code > HDL Block Properties .
3 For RAMDirective, select none, distributed, block, or ultra.

Note For the Dual Port RAM block, you cannot specify ultra as the RAMDirective because the
block does not have a fixed read behavior.
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To set RAMDirective for a block from the command line, use hdlset_param. For example, to set
RAMDirective to ultra for a Single Port RAM block inside a subsystem, my_dut:

hdlset_param('my_dut/Single Port RAM', 'RAMDirective', 'ultra');

See also hdlset_param.

ResetType
Use the ResetType block parameter to suppress reset logic generation.

ResetType Value Description
default Generate reset logic.
none Do not generate reset logic.

Reset is not applied to generated registers.
Therefore, mismatches between Simulink and the
generated code occur for some number of
samples during the initial phase, when registers
are not fully loaded.

To avoid test bench errors during the initial
phase, determine the number of samples required
to fully load the registers. Then, set the Ignore
output data checking (number of samples)
option accordingly. See also Ignore output data
checking (number of samples) in “Test Bench
Stimulus and Output” on page 18-16.

You can specify ResetType for the following blocks:

• Chart
• Convolutional Deinterleaver
• Convolutional Interleaver
• Delay
• Delay (DSP System Toolbox)
• General Multiplexed Deinterleaver
• General Multiplexed Interleaver
• MATLAB Function
• MATLAB System
• Memory
• Tapped Delay
• Truth Table
• Unit Delay Enabled
• Unit Delay
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Reset Logic for Optimizations in the MATLAB Function Block

When you set ResetType to none for a MATLAB Function block, HDL Coder does not generate reset
logic for persistent variables in the MATLAB code.

However, if you specify other optimizations for the block, the coder may insert registers that use
reset logic. The coder does not suppress reset logic generation for these registers. Therefore, if you
set ResetType to none along with other block optimizations, your generated code may have a reset
port at the top level.

How to Suppress Reset Logic Generation

To suppress reset logic generation for a block using the UI:

1 Right-click the block and select HDL Code > HDL Block Properties.
2 For ResetType, select none.

To suppress reset logic generation, on the command line, enter:
hdlset_param(path_to_block,'ResetType','none')

For example, to suppress reset logic generation for a Unit Delay block, UnitDelay1, within a
subsystem, mySubsys, on the command line, enter:

hdlset_param('mySubsys/UnitDelay1','ResetType','none');

Specify Synchronous or Asynchronous Reset

To specify a synchronous or asynchronous reset, use the ResetType model-level parameter. For
details, see Reset type in “Reset Settings” on page 16-8.

SerialPartition
Use this parameter on Min/Max blocks to specify partitions for a serial cascade architecture. The
default setting uses the minimum number of partitions.

To Generate This
Architecture...

Set SerialPartition to...

Cascade-serial with explicitly
specified partitioning

[p1 p2 p3...pN]: a vector of N integers, where N is the number of serial
partitions. Each element of the vector specifies the length of the corresponding
partition. The sum of the vector elements must be equal to the length of the
input data vector. The values of the vector elements must be in descending
order, except the last two elements can be equal. For example, for an input of 8
elements, partitions [5 3] or [4 2 2] are legal, but the partitions [2 2 2
2] or [3 2 3] raise an error at code generation time.

Cascade-serial with
automatically optimized
partitioning

0

This property is also used for serial filter architectures. For how to configure filter blocks, see
“SerialPartition” on page 21-42.
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SharingFactor
Use SharingFactor to specify the number of functionally equivalent resources to map to a single
shared resource. The default is 0. See “Resource Sharing” on page 24-23.

SoftReset
Use the SoftReset block parameter to specify whether to generate hardware-friendly synchronous
reset logic, or local reset logic that matches the Simulink simulation behavior. This property is
available for the Unit Delay Resettable block or Unit Delay Enabled Resettable block.

SoftReset Value Description
off (default) Generate local reset logic that matches the

Simulink simulation behavior.
on Generate synchronous reset logic for the block.

This option generates code that is more efficient
for synthesis, but does not match the Simulink
simulation behavior.

When SoftReset set to 'off', the following code is generated for a Unit Delay Resettable block :

always @(posedge clk or posedge reset)
  begin : Unit_Delay_Resettable_process
    if (reset == 1'b1) begin
      Unit_Delay_Resettable_zero_delay <= 1'b1;
      Unit_Delay_Resettable_switch_delay <= 2'b00;
    end
    else begin
      if (enb) begin
        Unit_Delay_Resettable_zero_delay <= 1'b0;
        if (UDR_reset == 1'b1) begin
          Unit_Delay_Resettable_switch_delay <= 2'b00;
        end
        else begin
          Unit_Delay_Resettable_switch_delay <= In1;
        end
      end
    end
  end

assign Unit_Delay_Resettable_1 = 
            (UDR_reset || 
             Unit_Delay_Resettable_zero_delay ? 1'b1 : 1'b0);
assign out0 = (Unit_Delay_Resettable_1 == 1'b1 ? 2'b00 :
            Unit_Delay_Resettable_switch_delay);

When SoftReset set to 'on', the following code is generated for a Unit Delay Resettable block :

always @(posedge clk or posedge reset)
  begin : Unit_Delay_Resettable_process
    if (reset == 1'b1) begin
      Unit_Delay_Resettable_reg <= 2'b00;
    end
    else begin
      if (enb) begin
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        if (UDR_reset != 1'b0) begin
          Unit_Delay_Resettable_reg <= 2'b00;
        end
        else begin
          Unit_Delay_Resettable_reg <= In1;
        end
      end
    end
  end

assign out0 = Unit_Delay_Resettable_reg;

StreamingFactor
Number of parallel data paths, or vectors, to transform into serial, scalar data paths by time-
multiplexing serial data paths and sharing hardware resources. The default is 0, which implements
fully parallel data paths. See also “Streaming” on page 24-20.

UseMatrixTypesInHDL
The UseMatrixTypesInHDL block property specifies whether to generate 2-D matrices in HDL code
when you have MATLAB matrices in your MATLAB Function block.

UseMatrixTypesInHDL Setting Description
off (default) Generate HDL vectors with index computation logic for

MATLAB matrices. This option can use more area in the
synthesized hardware.

on Generate HDL matrices for MATLAB matrices. This option can
save area in the synthesized hardware.

The following requirements apply:

• You cannot use matrices at the block input or output ports.
• Matrix elements cannot be complex or struct data types.
• You cannot use linear indexing to specify matrix elements.

For example, if you have a 3x3 matrix, A, you cannot use
A(4). Instead, use A(2,1).

You can also use a colon operator in either the row or
column subscript, but not both. For example, you can use
A(3,1:3) and A(2:3,1), but not A(2:3, 1:3).

• InstantiateFunctions must be set to 'off'. If you
enable InstantiateFunctions, UseMatrixTypesInHDL
has no effect.

• UseMatrixTypesInHDL has no effect if you have System
objects in your MATLAB code.

To generate 2-D matrices in HDL code:

1 Right-click the MATLAB Function block and select HDL Code > HDL Block Properties.
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2 For UseMatrixTypesInHDL, select on.

Alternatively, at the command line, use makehdl or hdlset_param to set the
UseMatrixTypesInHDL block property to 'on'.

For example, suppose you have a model, myModel, with a subsystem, dutSubsys, that contains a
MATLAB Function block, myMLFcn. To generate 2-D matrices in HDL code for myMLFcn, enter:

hdlset_param('myModel/dutSubsys/myMLFcn', 'UseMatrixTypesInHDL', 'on')

UsePipelines
You can use this mode with Product blocks in Divide and Reciprocal modes. This property becomes
available when you set the HDL architecture for the blocks to ShiftAdd. This architecture uses a
non-restoring division algorithm that performs multiple shift and add operations to compute the
quotient. The ShiftAdd architecture provides improved accuracy compared to the Newton-Raphson
approximation method.

When you use the ShiftAdd architecture, you can use the UsePipelines implementation
parameter to specify whether to use a pipelined or non-pipelined implementation of the non-restoring
division.

UsePipelines Setting Mapping Behavior
on (default) Use a pipelined implementation of the non-restoring shift and add

operation for Divide and Reciprocal blocks. This setting adds more delays
to your design but achieves a higher maximum clock frequency on the
target FPGA device. The number of pipelines inserted matches the number
of iterations that the algorithm requires to compute the quotient or
reciprocal.

off Use a non-pipelined implementation of the non-restoring shift and add
operation for Divide and Reciprocal blocks. This setting does not add
delays to your design. As division and reciprocal are resource-intensive
operations, to achieve higher clock frequencies on the target FPGA, set
UsePipelines to on.

Set UsePipelines for Divide and Reciprocal Blocks

To set UsePipelines for a subsystem from the HDL Block Properties dialog box:

1 Right-click the subsystem.
2 Select HDL Code > HDL Block Properties .
3 For UsePipelines, select on or off.

To set UsePipelines for a block from the command line, use hdlset_param. For example, to turn
off UsePipelines for a Divide block inside a subsystem, my_dut:

hdlset_param('my_dut/divide', 'UsePipelines', 'off');

See also hdlset_param.
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UseRAM
The UseRAM implementation parameter enables using RAM-based mapping for a block instead of
mapping to a shift register.

UseRAM Setting Mapping Behavior
off The delay maps to a shift register in the generated HDL code, except in

one case. For details, see “Effects of Streaming and Distributed Pipelining”
on page 21-27.

on The delay maps to a dual-port RAM block when the following conditions
are true:

• Initial value of the delay is zero.
• The Delay block does not have an external reset or enable port.
• Delay length > 4.
• Delay has one of the following set of numeric and data type attributes:

• (a) Real scalar with a non-floating-point data type (such as signed
integer, unsigned integer, fixed point, or Boolean)

• (b) Complex scalar with real and imaginary parts that use non-
floating-point data type

• (c) Vector where each element is either (a) or (b)
• RAMSize is greater than or equal to the RAMMappingThreshold value.

RAMSize is the product DelayLength * WordLength *
ComplexLength.

• DelayLength is the number of delays that the Delay block specifies.
• WordLength is the number of bits that represent the data type of

the delay.
• ComplexLength is 2 for complex signals; 1 otherwise.

If any condition is false, the delay maps to a shift register in the HDL code
unless it merges with other delays to map to a single RAM. For more
information, see “Mapping Multiple Delays to RAM” on page 21-25.

This implementation parameter is available for the Delay block in the Simulink Discrete library and
the Delay block in the DSP System Toolbox Signal Operations library.

Mapping Multiple Delays to RAM

HDL Coder can also merge several delays of equal length into one delay and then map the merged
delay to a single RAM. This optimization provides the following benefits:

• Increased occupancy on a single RAM
• Sharing of address generation logic, which minimizes duplication of identical HDL code
• Mapping of delays to a RAM when the individual delays do not satisfy the threshold

The following rules control whether or not multiple delays can merge into one delay:
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• The delays must:

• Be at the same level of the subsystem hierarchy.
• Use the same compiled sample time.
• Have UseRAM set to on, or be generated by streaming or resource sharing.
• Have the same ResetType setting, which cannot be none.

• The total word length of the merged delay cannot exceed 128 bits.
• The RAMSize of the merged delay is greater than or equal to the RAMMappingThreshold value.

RAMSize is the product DelayLength * WordLength * VectorLength * ComplexLength.

• DelayLength is the total number of delays.
• WordLength is the number of bits that represent the data type of the merged delay.
• VectorLength is the number of elements in a vector delay. VectorLength is 1 for a scalar

delay.
• ComplexLength is 2 for complex delays; 1 otherwise.

Example of Multiple Delays Mapping to a Block RAM

RAMMappingThreshold for the following model is 100 bits.

The Delay and Delay1 blocks merge and map to a dual-port RAM in the generated HDL code by
satisfying the following conditions:

• Both delay blocks:

• Are at the same level of the hierarchy.
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• Use the same compiled sample time.
• Have UseRAM set to on in the HDL block properties dialog box.
• Have the same ResetType setting of default.

• The total word length of the merged delay is 28 bits, which is below the 128-bit limit.
• The RAMSize of the merged delay is 112 bits (4 delays * 28-bit word length), which is greater than

the mapping threshold of 100 bits.

When you generate HDL code for this model, HDL Coder generates additional files to specify RAM
mapping. The coder stores these files in the same source location as other generated HDL files, for
example, the hdlsrc folder.

Effects of Streaming and Distributed Pipelining

When UseRAM is off for a Delay block, HDL Coder maps the delay to a shift register by default.
However, the coder changes the UseRAM setting to on and tries to map the delay to a RAM under the
following conditions:

• Streaming is enabled for the subsystem with the Delay block.
• Distributed pipelining is disabled for the subsystem with the Delay block.

Suppose that distributed pipelining is enabled for the subsystem with the Delay block.

• When UseRAM is off, the Delay block participates in retiming.
• When UseRAM is on, the Delay block does not participate in retiming. HDL Coder does not break

up a delay marked for RAM mapping.

Consider a subsystem with two Delay blocks, three Constant blocks, and three Product blocks:

When UseRAM is on for the Delay block on the right, that delay does not participate in retiming.

The following summary describes whether or not HDL Coder tries to map a delay to a RAM instead of
a shift register.

UseRAM Setting
for the Delay
Block

Optimizations Enabled for Subsystem with Delay Block
Distributed Pipelining
Only

Streaming Only Both Distributed
Pipelining and
Streaming

On Yes Yes Yes
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UseRAM Setting
for the Delay
Block

Optimizations Enabled for Subsystem with Delay Block
Distributed Pipelining
Only

Streaming Only Both Distributed
Pipelining and
Streaming

Off No Yes, because mapping to
a RAM instead of a shift
register can provide an
area-efficient design.

No

VariablesToPipeline

Warning VariablesToPipeline is not recommended. Use coder.hdl.pipeline instead.

The VariablesToPipeline parameter enables you to insert a pipeline register at the output of one or
more MATLAB variables. Specify a list of variables as a character vector, with spaces separating the
variables.

See also “Pipeline MATLAB Expressions” on page 8-8.
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HDL Block Properties: Native Floating Point
In this section...
“Overview” on page 21-29
“CheckResetToZero” on page 21-29
“DivisionAlgorithm” on page 21-30
“HandleDenormals” on page 21-31
“InputRangeReduction” on page 21-32
“LatencyStrategy” on page 21-32
“NFPCustomLatency” on page 21-34
“MantissaMultiplyStrategy” on page 21-35
“MaxIterations” on page 21-36

Overview
Block implementation parameters enable you to control details of the code generated for specific
block implementations. See “Set and View HDL Model and Block Parameters” on page 21-51 to
learn how to select block implementations and parameters in the GUI or the command line.

Property names are specified as character vectors. The data type of a property value is specific to the
property. This section describes the syntax of each block implementation parameter that you can
specify in the Native Floating Point tab of the HDL Block Properties. You can see how specifying
the parameter affects the generated code.

CheckResetToZero
You can use the CheckResetToZero property for the mod and rem functions of the Math Function
block in native floating-point mode. If you have numbers a and b such that the quotient a/b is close
to an integer, this setting treats a as an integral multiple of b, and rem(a,b)=0. This result is
numerically accurate and matches the Simulink simulation result. However, computing this result
uses additional resources and increases the area footprint on the target FPGA device.

For example, for these sets of numbers, you get different simulation results when you enable and
disable the CheckResetToZero setting.

CheckResetToZero Setting Description
'on' (default) When you compute mod or rem of two numbers

whose quotient is closer to an integer, and has a
precision greater than that of the floating point
data type you use, HDL Coder adds the required
logic to output the result of mod or rem as zero
when the quotient of the numbers is close to an
integer.

'off' HDL Coder does not insert the additional logic to
calculate the quotient, which saves area on the
target FPGA device.
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Set CheckResetToZero For the Math Function Block

To set CheckResetToZero for a block from the HDL Block Properties dialog box:

1 Right-click the block.
2 Select HDL Code HDL Block Properties .
3 For CheckResetToZero, select on or off.

To set CheckResetToZero for the Math Function block inside a subsystem, my_dut in your Simulink
model my_design:

hdlset_param('my_design/my_dut/Math', 'CheckResetToZero, 'on')

See also hdlset_param.

DivisionAlgorithm
You can use the DivisionAlgorithm property when you enable Native Floating Point mode
for the Divide block and the Math Function block in Reciprocal mode.

DivisionAlgorithm Setting Description
Radix-2 (default) The default Radix-2 mode performs repeated

subtractions by computing one bit of the quotient
in each iteration.

To design for lower area usage while trading off
for latency, use the Radix-2 mode in combination
with the LatencyStrategy set to MAX.

Radix-4 The Radix-4 mode performs repeated
subtractions by computing two bits of the
quotient in each iteration. To compute the result,
the Radix-4 mode uses half the number of
iterations that is required by the Radix-2 mode.

To design for lower latency while trading off for
area, use the Radix-4 mode in combination with
the LatencyStrategy set to MAX.

Single-Precision Division Resource Utilization and Maximum Clock Frequency on Xilinx
Virtex-7

DivisionAlgori
thm Mode

LatencyStrate
gy

Latency Fmax LUTs Registers

Radix-2 MIN 17 334.4MHz 1248 1011
MAX 32 454.5MHz 1294 1797

Radix-4 MIN 11 245.5MHz 1956 865
MAX 20 453.1MHz 1854 1522

Specify DivisionAlgorithm For the Math Function or Division Block

To specify DivisionAlgorithm for a block from the HDL Block Properties dialog box:
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1 Right-click the block.
2 Select HDL Code > HDL Block Properties.
3 In the Native Floating Point tab, specify the DivisionAlgorithm.

To specify DivisionAlgorithm for the block at the command line, use hdlset_param. For example,
this command specifies Radix-4 mode for a Divide block inside a subsystem, my_dut in your Simulink
model my_design:

hdlset_param('my_design/my_dut/Divide, 'DivisionAlgorithm', 'Radix-4')

HandleDenormals
You can use the HandleDenormals property for certain blocks that support HDL code generation in
Native Floating Point mode. Denormal numbers are numbers that have magnitudes less than
the smallest floating-point number that can be represented without leading zeros in the mantissa.
With this setting, you can specify whether you want HDL Coder to insert additional logic to handle
the denormal numbers in your design. For more information, see “Denormal Numbers” on page 10-
52.

HandleDenormals Setting Description
'inherit' (default) Use the handle denormals setting of the parent

subsystem. If this subsystem is the highest-level
subsystem, use the handle denormals setting for
the model.

'on' If you have denormal numbers at these block
inputs, HDL Coder adds the logic to normalize
the denormal numbers.

'off' HDL Coder does not insert additional logic to
handle denormal numbers in your design. The
code generator treats the denormal value as zero
before performing any computation.

To enable HandleDenormals for a block within a model, set the parameter, HandleDenormals, to
'on' for that block.

Set Handle Denormals For a Block

To set handle denormals for a block from the HDL Block Properties dialog box:

1 Right-click the block.
2 Select HDL Code > HDL Block Properties .
3 For HandleDenormals, select inherit, on, or off.

To set handle denormals for a block from the command line, use hdlset_param. For example, to
enable adaptive pipelining for a Product block inside a subsystem, my_dut in your Simulink model
my_design:

hdlset_param('my_design/my_dut/Product', 'HandleDenormals', 'on')

See also hdlset_param.
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InputRangeReduction
You can use the InputRangeReduction property for the sin, cos, tan, sincos, and cos+jsin functions
of the Trigonometric Function block in Native Floating Point mode. By default, this setting is
enabled for the block, and it assumes that your input range is unbounded. If your input to the block is
bounded in the range [-pi, pi], your design does not require the logic to reduce the input range.
In that case, you can disable this setting, and the block implementation incurs a lower latency and
uses fewer resources on the target hardware. When you disable the setting, the generated model
contains a block that verifies whether the inputs are bounded in the range [-pi, pi].If you have
unbounded inputs, the generated model triggers an assertion during simulation.

InputRangeReduction Setting Description
'on' (default) Assumes that the input range is unbounded and

inserts additional logic to reduce the input
argument range to [-pi, pi] before computing
the algorithm.

'off' Assumes that the input argument is bounded in
the range [-pi, pi] and does not insert the
additional logic to reduce the input argument
range. This implementation reduces the latency
and saves area on the target platform.

Set InputRangeReduction For the Trigonometric Function Block

To set InputRangeReduction for a block from the HDL Block Properties dialog box:

1 Right-click the block.
2 Select HDL Code HDL Block Properties .
3 In the Native Floating Point tab, for InputRangeReduction, select on or off.

To disable InputRangeReduction for the Trigonometric Function block inside a subsystem,
my_trigonometric in your Simulink model my_design:

hdlset_param('my_design/my_dut/my_trigonometric', 'InputRangeReduction, 'off')

See also hdlset_param.

LatencyStrategy
You can use the LatencyStrategy property for certain blocks that support HDL code generation in
native floating-point mode. The property specifies whether you want the blocks in your design to map
to minimum, maximum, or a custom latency for the native floating-point operator.

LatencyStrategy Setting Description
'inherit' (default) Use the latency strategy setting of the parent

subsystem. If this subsystem is the highest-level
subsystem, use the latency strategy setting for
the model.
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LatencyStrategy Setting Description
'Max' During code generation, HDL Coder uses the

maximum latency value for the native floating
point operator.

'Min' During code generation, HDL Coder uses the
minimum latency value for the native floating
point operator.

'Zero' During code generation, HDL Coder does not add
any latency for the native floating point operator.

'Custom' During code generation, HDL Coder adds latency
equal to the value that you specify for the
NFPCustomLatency setting of the native
floating point operator. You can use this setting
for certain blocks in the native floating-point
mode. To see the blocks for which you can specify
the setting, see “NFPCustomLatency” on page
21-34.

To specify the minimum latency option for a block within a model, set the parameter,
LatencyStrategy, to 'MIN' for that block.

To learn how to set model-level latency strategy setting, see “Latency Considerations with Native
Floating Point” on page 10-63.

Set Latency Strategy For a Block

To set latency strategy for a subsystem from the HDL Block Properties dialog box:

1 Right-click the block.
2 Select HDL Code > HDL Block Properties.
3 In the Native Floating Point tab, for LatencyStrategy, select inherit, Max, Min, Zero, or

Custom.
4 If you set LatencyStrategy to Custom, you must specify a value for the NFPCustomLatency.

For details, see the "HDL Code Generation" section of each block page.

You can set LatencyStrategy to Custom for these blocks with single and double data types.

• Add
• Subtract
• Product
• Math Function in Reciprocal mode
• Gain
• Divide
• Relational Operator
• Data Type Conversion

You can also set LatencyStrategy to Custom for these blocks with single data types.
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• Sqrt
• Reciprocal Sqrt
• Sum of Elements
• Product of Elements

To specify the latency strategy for a block from the command line, use hdlset_param. For example,
to specify the minimum latency for a Product block inside a subsystem my_dut in your Simulink
model my_design:

hdlset_param('my_design/my_dut/Product', 'LatencyStategy', 'MIN')

See also hdlset_param.

NFPCustomLatency
You can specify a custom latency for certain blocks in the native floating-point mode. By using the
custom latency strategy, you can trade-off between clock frequency and power consumption. To
specify a custom latency strategy, set LatencyStrategy to Custom and specify a value for
NFPCustomLatency. For details, see the "HDL Code Generation" section of each block page.

You can specify the NFPCustomLatency setting for these blocks with both single and double data
types.

• Add
• Subtract
• Product
• Math Function in Reciprocal mode
• Gain
• Divide
• Relational Operator
• Data Type Conversion
• Rounding Function

You can also specify a NFPCustomLatency setting for these blocks with single data types.

• Sqrt
• Reciprocal Sqrt
• Sum of Elements
• Product of Elements

Set Custom Latency Value For a Block

To set custom latency value for a subsystem from the HDL Block Properties dialog box:

1 Right-click the block.
2 Select HDL Code > HDL Block Properties.
3 In the Native Floating Point tab, for LatencyStrategy, select Custom.
4 Specify a value for the NFPCustomLatency.
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To specify the latency strategy for a block from the command line, use hdlset_param. For example,
to specify a custom latency of four for a Product block inside a subsystem my_dut in your Simulink
model my_design:

hdlset_param('my_design/my_dut/Product', 'LatencyStategy', 'Custom')
hdlset_param('my_design/my_dut/Product', 'NFPCustomLatency', 4)

See also hdlset_param.

MantissaMultiplyStrategy
You can use the MantissaMultiplyStrategy property for multipliers that support HDL code
generation in native floating-point mode. Blocks that have this setting include Product, Divide, Math
Function (in Reciprocal mode), and so on. By using this setting, you can specify how you want HDL
Coder to implement the mantissa multiplication operation for the blocks.

MantissaMultiplyStrategy Setting Description
'inherit' (default) Use the mantissa multiply strategy setting of the

parent subsystem. If this subsystem is the
highest-level subsystem, use the mantissa
multiply strategy setting for the model.

'FullMultiplier' HDL Coder uses multipliers to perform the
mantissa multiplication operation for the native
floating point operator. The multipliers can utilize
DSP units on the target device.

'PartMultiplierPartAddShift' HDL Coder splits the implementation into two
parts. One part is implemented with multipliers.
The other part is implemented with a
combination of adders and shifters. The
multipliers can utilize the DSP units on the target
device. The combination of adders and shifters
does not utilize the DSP.

'NoMultiplierFullAddShift' HDL Coder uses adders and shifters to implement
the mantissa multiplication. This option does not
utilize DSP units on the target device. You can
also use this option if your target device does not
contain DSP units.

To implement the mantissa multiplication with adders and shifters, set
MantissaMultiplyStrategy, to 'NoMultiplierFullAddShift' for that block.

Set Mantissa Multiply Strategy For a Block

To set adaptive pipelining for a subsystem from the HDL Block Properties dialog box:

1 Right-click the block.
2 Select HDL Code > HDL Block Properties.
3 In the Native Floating Point tab, for MantissaMultiplyStrategy, select inherit,

FullMultiplier, PartMultiplierPartAddShift, or NoMultiplierFullAddShift.
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To specify the mantissa multiply strategy for a block from the command line, use hdlset_param. For
example, to implement the mantissa multiplication using adders and shifters for a Product block
inside a subsystem my_dut in your Simulink model my_design:

hdlset_param('my_design/my_dut/Product', ... 
                'MantissaMultiplyStategy', 'PartMultiplierPartAddShift')

See also hdlset_param.

MaxIterations
You can use the MaxIterations property for the mod and rem functions of the Math Function block
in Native Floating Point mode. If you have numbers a and b that are significantly large
integers, you can increase the MaxIterations setting to match the Simulink simulation result.
However, computing this result uses additional resources and increases the area footprint on the
target FPGA device.

MaxIterations Setting Description
32 (default) The default number of iterations to compute the

result of mod and rem functions in Native
Floating Point mode. This implementation
can potentially result in a numerical mismatch
with the Simulink simulation results for large
integers.

64 Specify 64 as the number of iterations to
compute the result of mod and rem functions in
Native Floating Point mode. In this mode,
the implementation has higher probability of
matching the Simulink simulation result for
significantly large integers but can use more
hardware resources.

128 Specify 128 as the number of iterations to
compute the result of mod and rem functions in
Native Floating Point mode. In this mode,
the implementation matches the Simulink
simulation result for large integers but uses more
hardware resources.

Set MaxIterations For the Math Function Block

To set MaxIterations for a block from the HDL Block Properties dialog box:

1 Right-click the block.
2 Select HDL Code > HDL Block Properties .
3 In the Native Floating Point tab, for MaxIterations, select 32, 64, or 128.

To set handle denormals for a block from the command line, use hdlset_param. For example, to
enable adaptive pipelining for a Product block inside a subsystem, my_dut in your Simulink model
my_design:

hdlset_param('my_design/my_dut/Product', 'HandleDenormals', 'on')
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See also hdlset_param.

See Also

Related Examples
• “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

More About
• “Getting Started with HDL Coder Native Floating-Point Support” on page 10-49
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HDL Filter Block Properties
In this section...
“AdderTreePipeline” on page 21-38
“AddPipelineRegisters” on page 21-38
“ChannelSharing” on page 21-39
“CoeffMultipliers” on page 21-39
“DALUTPartition” on page 21-39
“DARadix” on page 21-40
“FoldingFactor” on page 21-41
“MultiplierInputPipeline” on page 21-41
“MultiplierOutputPipeline” on page 21-41
“NumMultipliers” on page 21-42
“ReuseAccum” on page 21-42
“SerialPartition” on page 21-42

AdderTreePipeline
This property applies to frame-based filters. It specifies how many pipeline registers the architecture
includes between levels of the adder tree. These pipeline stages increase filter throughput while
adding latency. The default value is 0. To improve the speed of this architecture, the recommended
setting is 2.

Pipeline stages introduce delays along the path in the model that contains the affected filter. When
you enable this pipeline option, the coder automatically adds balancing delays on parallel data paths.

For more information on the frame-based filter architecture, see “Frame-Based Architecture” on page
21-46.

AddPipelineRegisters
This property applies to scalar input filters. When you enable this property, the default linear adder of
the filter is implemented as a pipelined tree adder instead. This architecture increases filter
throughput while adding latency. The default value is off.

The following limitations apply to AddPipelineRegisters:

• If you use AddPipelineRegisters, the code generator forces full precision in the HDL and the
generated filter model. This option implements a pipelined adder tree structure in the HDL code
for which only full precision is supported. If you generate a validation model, you must use full
precision in the original model to avoid validation mismatches.

• Pipeline stages introduce delays along the path in the model that contains the affected filter. When
you enable this pipeline option, the coder automatically adds balancing delays on parallel data
paths.

Note When you use this property with the CIC Interpolation block, delays in parallel paths are
not automatically balanced. Manually add delays where needed by your design.
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For filter architecture diagrams that indicate where the pipeline stages are added, see “HDL Filter
Architectures” on page 21-44.

ChannelSharing
You can use the ChannelSharing implementation parameter with a multichannel filter to enable
sharing a single filter implementation among channels for a more area-efficient design. This
parameter is either 'on' or 'off'. The default is 'off', and a separate filter will be implemented
for each channel.

See “Multichannel FIR Filter for FPGA” (DSP System Toolbox).

CoeffMultipliers
The CoeffMultipliers implementation parameter lets you specify use of canonical signed digit
(CSD) or factored CSD optimizations for processing coefficient multiplier operations in code
generated for certain filter blocks. Specify the CoeffMultipliers parameter using one of the
following options:

• 'csd': Use CSD techniques to replace multiplier operations with shift-and-add operations. CSD
techniques minimize the number of addition operations required for constant multiplication by
representing binary numbers with a minimum count of nonzero digits. This representation
decreases the area used by the filter while maintaining or increasing clock speed.

• 'factored-csd': Use factored CSD techniques, which replace multiplier operations with shift-
and-add operations on prime factors of the coefficients. This option lets you achieve a greater
filter area reduction than CSD, at the cost of decreasing clock speed.

• 'multipliers' (default): Retain multiplier operations.

HDL Coder supports CoeffMultipliers for fully-parallel filter implementations. It is not supported
for fully-serial and partly-serial architectures.

DALUTPartition
The size of the LUT grows exponentially with the order of the filter. For a filter with N coefficients, the
LUT must have 2^N values. For higher order filters, LUT size must be reduced to reasonable levels. To
reduce the size, you can subdivide the LUT into a number of LUTs, called LUT partitions. Each LUT
partition operates on a different set of taps. The results obtained from the partitions are summed.

For example, for a 160-tap filter, the LUT size is (2^160)*W bits, where W is the word size of the LUT
data. Dividing this into 16 LUT partitions, each taking 10 inputs (taps), the total LUT size is reduced
to 16*(2^10)*W bits.

Although LUT partitioning reduces LUT size, more adders are required to sum the LUT data.

You can use DALUTPartition to enables DA code generation and specify the number and size of
LUT partitions.

Specify LUT partitions as a vector of integers [p1 p2...pN] where:

• N is the number of partitions.
• Each vector element specifies the size of a partition. The maximum size for an individual partition

is 12.
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• The sum of all vector elements equals the filter length FL. FL is calculated differently depending
on the filter type. You can find how FL is calculated for different filter types in the next section.

See “Distributed Arithmetic for HDL Filters” on page 21-49.

Specifying DALUTPartition for Single-Rate Filters

To determine the LUT partition for one of the supported single-rate filter types, calculate FL as shown
in the following table. Then, specify the partition as a vector whose elements sum to FL.

Filter Type Filter Length (FL) Calculation
Direct-form FIR FL = length(find(Hd.numerator ~= 0))
Direct-form asymmetrical FIR, direct-form
symmetrical FIR

FL = ceil(length(find(Hd.numerator ~= 0))/2)

You can also specify generation of DA code for your filter design without LUT partitioning. To do so,
specify a vector of one element, whose value is equal to the filter length.

Specifying DALUTPartition for Multirate Filters

For supported multirate filters (FIR Decimation and FIR Interpolation), you can specify the LUT
partition as

• A vector defining a partition for LUTs for all polyphase subfilters.
• A matrix of LUT partitions, where each row vector specifies a LUT partition for a corresponding

polyphase subfilter. In this case, the FL is uniform for all subfilters. This approach provides fine
control for partitioning each subfilter.

The following table shows the FL calculations for each type of LUT partition.

LUT Partition Filter Length (FL) Calculation
Vector: Determine FL as shown in the Filter Length (FL)
Calculation column to the right. Specify the LUT partition as a
vector of integers whose elements sum to FL.

FL = size(polyphase(Hm), 2)

Matrix: Determine the subfilter length FLi based on the polyphase
decomposition of the filter, as shown in the Filter Length (FL)
Calculation column to the right. Specify the LUT partition for
each subfilter as a row vector whose elements sum to FLi.

p = polyphase(Hm);
FLi = length(find(p(i,:)));
 

where i is the index to the ith row of the
polyphase matrix of the multirate filter. The
ith row of the matrix p represents the ith
subfilter.

DARadix
The inherently bit-serial nature of DA can limit throughput. To improve throughput, the basic DA
algorithm can be modified to compute more than one bit sum at a time. The number of simultaneously
computed bit sums is expressed as a power of two called the DA radix. For example, a DA radix of 2
(2^1) indicates that one bit sum is computed at a time. A DA radix of 4 (2^2) indicates that two bit
sums are computed at a time, and so on.

To compute more than one bit sum at a time, the LUT is replicated. For example, to perform DA on 2
bits at a time (radix 4), the odd bits are fed to one LUT and the even bits are simultaneously fed to an
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identical LUT. The LUT results corresponding to odd bits are left-shifted before they are added to the
LUT results corresponding to even bits. This result is then fed into a scaling accumulator that shifts
its feedback value by 2 places.

Processing more than one bit at a time introduces a degree of parallelism into the operation,
improving speed at the expense of area.

You can use DARadix to specify the number of bits processed simultaneously in DA. The number of
bits is expressed as N, which must be:

• A nonzero positive integer that is a power of two
• Such that mod(W, log2(N)) = 0, where W is the input word size of the filter

The default value for N is 2, specifying processing of one bit at a time, or fully serial DA, which is slow
but low in area. The maximum value for N is 2^W, where W is the input word size of the filter. This
maximum specifies fully parallel DA, which is fast but high in area. Values of N between these
extrema specify partly serial DA.

Note When setting a DARadix value for symmetrical and asymmetrical filters, see “Considerations
for Symmetrical and Asymmetrical Filters” on page 21-50.

See “Distributed Arithmetic for HDL Filters” on page 21-49.

FoldingFactor
FoldingFactor specifies the total number of clock cycles taken for the computation of filter output
in an IIR SOS filter with serial architecture. It is complementary with “NumMultipliers” on page 21-
42. You must select one property or the other; you cannot use both. If you do not specify either
FoldingFactor or NumMultipliers, HDL code for the filter is generated with fully parallel
architecture.

MultiplierInputPipeline
You can use this parameter to generate a specified number of pipeline stages at multiplier inputs for
FIR filter structures. The default value is 0.

The following limitation applies to MultiplierInputPipeline:

• Pipeline stages introduce delays along the path in the model that contains the affected filter. When
you enable this pipeline option, the coder automatically adds balancing delays on parallel data
paths.

For diagrams of where these pipeline stages occur in the filter architecture, see “HDL Filter
Architectures” on page 21-44.

MultiplierOutputPipeline
You can use this parameter to generate a specified number of pipeline stages at multiplier outputs for
FIR filter structures. The default value is 0.

The following limitation applies to MultiplierOutputPipeline:
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• Pipeline stages introduce delays along the path in the model that contains the affected filter. When
you enable this pipeline option, the coder automatically adds balancing delays on parallel data
paths.

For diagrams of where these pipeline stages occur in the filter architecture, see “HDL Filter
Architectures” on page 21-44.

NumMultipliers
NumMultipliers specifies the total number of multipliers used for the filter implementation in an
IIR SOS filter with serial architecture. It is complementary with “FoldingFactor” on page 21-41
property. You must select one property or the other; you cannot use both. If you do not specify either
FoldingFactor or NumMultipliers, HDL code for the filter is generated with fully parallel
architecture.

ReuseAccum
You can use this parameter to enable or disable accumulator reuse in a serial HDL architecture. The
default is a fully parallel architecture.

To Generate This
Architecture...

Set ReuseAccum to...

Fully parallel Omit this property
Fully serial Not specified, or 'off'
Partly serial 'off'
Cascade-serial with explicitly specified
partitioning

'on'

Cascade-serial with automatically optimized
partitioning

'on'

For more information on parallel and serial filter architectures, see “HDL Filter Architectures” on
page 21-44

SerialPartition
Use this parameter to specify partitions for a serial filter architecture. The default is a fully parallel
architecture.

To Generate This
Architecture...

Set SerialPartition to...

Fully parallel Omit this property
Fully serial N, where N is the length of the filter
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To Generate This
Architecture...

Set SerialPartition to...

Partly serial [p1 p2 p3...pN]: A vector of integers having N elements, where N is the
number of serial partitions. Each element of the vector specifies the length of
the corresponding partition. The sum of the vector elements must be equal to
the length of the filter. When you define the partitioning for a partly serial
architecture, consider the following:

• The filter length should be divided as uniformly as possible into a vector
equal in length to the number of multipliers intended. For example, if your
design requires a filter of length 9 with 2 multipliers, the recommended
partition is [5 4]. If your design requires 3 multipliers, the recommended
partition is[3 3 3] rather than some less uniform division such as [1 4
4] or [3 4 2].

• If your design is constrained by the need to compute each output value
(corresponding to each input value) in an exact number N of clock cycles,
use N as the largest partition size and partition the other elements as
uniformly as possible. For example, if the filter length is 9 and your design
requires exactly 4 cycles to compute the output, define the partition as [4 3
2]. This partition executes in 4 clock cycles, at the cost of 3 multipliers.

Cascade-serial with explicitly
specified partitioning

[p1 p2 p3...pN]: A vector of N integers, where N is the number of serial
partitions. Each element of the vector specifies the length of the corresponding
partition. The sum of the vector elements must be equal to the length of the
filter. The values of the vector elements must be in descending order, except the
last two elements, which can be equal. For example, for a filter length of 8,
partitions [5 3] or [4 2 2] are valid, but the partitions [2 2 2 2] and [3 2
3] raise an error at code generation time.

Cascade-serial with
automatically optimized
partitioning

Omit this property.

For more information on parallel and serial filter architectures, see “HDL Filter Architectures” on
page 21-44.

This property is also used for Min/Max blocks with cascade-serial architectures. For how to configure
Min/Max cascades, see “SerialPartition” on page 21-21.

See Also

More About
• “Set and View HDL Model and Block Parameters” on page 21-51
• “HDL Block Properties: General” on page 21-3
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HDL Filter Architectures
The HDL Coder software provides architecture options that extend your control over speed vs. area
tradeoffs in the realization of filter designs. To achieve the desired tradeoff for generated HDL code,
you can either specify a fully parallel architecture, or choose one of several serial architectures.
Configure a serial architecture using the “SerialPartition” on page 21-42 and “ReuseAccum” on page
21-42 parameters. You can also choose a frame-based filter for increased throughput.

Use pipelining parameters to improve speed performance of your filter designs. Add pipelines to the
adder logic of your filter using AddPipelineRegisters on page 21-38 for scalar input filters, and
“AdderTreePipeline” on page 21-38 for frame-based filters. Specify pipeline stages before and after
each multiplier with MultiplierInputPipeline on page 21-41 and MultiplierOutputPipeline on page 21-
41. Set the number of pipeline stages before and after the filter using “InputPipeline” on page 21-13
and “OutputPipeline” on page 21-17. The architecture diagrams show the locations of the various
configurable pipeline stages.

Fully Parallel Architecture
This option is the default architecture. A fully parallel architecture uses a dedicated multiplier and
adder for each filter tap. The taps execute in parallel. A fully parallel architecture is optimal for
speed. However, it requires more multipliers and adders than a serial architecture, and therefore
consumes more chip area. The diagrams show the architectures for direct form and for transposed
filter structures with fully parallel implementations, and the location of configurable pipeline stages.

Direct Form

By default, the block implements linear adder logic. When you enable AddPipelineRegisters, the
adder logic is implemented as a pipelined adder tree. The adder tree uses full-precision data types. If
you generate a validation model, you must use full precision in the original model to avoid validation
mismatches.
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Transposed

The AddPipelineRegisters parameter has no effect on a transposed filter implementation.

Serial Architectures
Serial architectures reuse hardware resources in time, saving chip area. Configure a serial
architecture using the “SerialPartition” on page 21-42 and “ReuseAccum” on page 21-42 parameters.
The available serial architecture options are fully serial, partly serial, and cascade serial.

Fully Serial

A fully serial architecture conserves area by reusing multiplier and adder resources sequentially. For
example, a four-tap filter design uses a single multiplier and adder, executing a multiply-accumulate
operation once for each tap. The multiply-accumulate section of the design runs at four times the
filter's input/output sample rate. This design saves area at the cost of some speed loss and higher
power consumption.

In a fully serial architecture, the system clock runs at a much higher rate than the sample rate of the
filter. Thus, for a given filter design, the maximum speed achievable by a fully serial architecture is
less than that of a parallel architecture.

Partly Serial

Partly serial architectures cover the full range of speed vs. area tradeoffs that lie between fully
parallel and fully serial architectures.

In a partly serial architecture, the filter taps are grouped into a number of serial partitions. The taps
within each partition execute serially, but the partitions execute in parallel with respect to one
another. The outputs of the partitions are summed at the final output.

When you select a partly serial architecture, you specify the number of partitions and the length
(number of taps) of each partition. Suppose you specify a four-tap filter with two partitions, each
having two taps. The system clock runs at twice the filter's sample rate.
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Cascade Serial

A cascade-serial architecture closely resembles a partly serial architecture. As in a partly serial
architecture, the filter taps are grouped into a number of serial partitions that execute in parallel
with respect to one another. However, the accumulated output of each partition is cascaded to the
accumulator of the previous partition. The output of all partitions is therefore computed at the
accumulator of the first partition. This technique is termed accumulator reuse. A final adder is not
required, which saves area.

The cascade-serial architecture requires an extra cycle of the system clock to complete the final
summation to the output. Therefore, the frequency of the system clock must be increased slightly
with respect to the clock used in a noncascade partly serial architecture.

To generate a cascade-serial architecture, specify a partly serial architecture with accumulator reuse
enabled. If you do not specify the serial partitions, HDL Coder automatically selects an optimal
partitioning.

Latency in Serial Architectures

Serialization of a filter increases the total latency of the design by one clock cycle. The serial
architectures use an accumulator (an adder with a register) to add the products sequentially. An
additional final register is used to store the summed result of all the serial partitions, requiring an
extra clock cycle for the operation. To model this latency, HDL Coder inserts a Delay block into the
generated model after the filter block.

Full-Precision for Serial Architectures

When you choose a serial architecture, the code generator uses full precision in the HDL code. HDL
Coder therefore forces full precision in the generated model. If you generate a validation model, you
must use full precision in the original model to avoid validation mismatches.

Frame-Based Architecture
When you select a frame-based architecture and provide an M-sample input frame, the coder
implements a fully parallel filter architecture. The filter includes M parallel subfilters for each input
sample.
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Each of the subfilters includes every Mth coefficient. The subfilter results are added so that each
output sample is the sum of each of the coefficients multiplied with one input sample.

The diagram shows the filter architecture for a frame size of two samples (M = 2), and a filter length
of six coefficients. The input is a vector with two values representing samples in time. The input
samples, x[2n] and x[2n+1], represent the nth input pair. Every second sample from each stream is
fed to two parallel subfilters. The four subfilter results are added together to create two output
samples. In this way, each output sample is the sum of each of the coefficients multiplied with one of
the input samples.

The sums are implemented as a pipelined adder tree. Set “AdderTreePipeline” on page 21-38 to
specify the number of pipeline stages between levels of the adder tree. To improve clock speed, it is
recommended that you set this parameter to 2. To fit the multipliers into DSP blocks on your FPGA,
add pipeline stages before and after the multipliers using MultiplierInputPipeline on page 21-41 and
MultiplierOutputPipeline on page 21-41.
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For symmetric or antisymmetric coefficients, the filter architecture reuses the coefficient multipliers
and adds design delay between the multiplier and summation stages as required.

See Also

More About
• “HDL Filter Block Properties” on page 21-38
• “Distributed Arithmetic for HDL Filters” on page 21-49
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Distributed Arithmetic for HDL Filters
Distributed Arithmetic (DA) is a widely used technique for implementing sum-of-products
computations without the use of multipliers. Designers frequently use DA to build efficient Multiply-
Accumulate Circuitry (MAC) for filters and other DSP applications. The main advantage of DA is its
high computational efficiency. DA distributes multiply and accumulate operations across shifters,
lookup tables (LUTs) and adders in such a way that conventional multipliers are not required.

In a DA realization of a FIR filter structure, a sequence of input data words of width W is fed through
a parallel to serial shift register, producing a serialized stream of bits. The serialized data is then fed
to a bit-wise shift register. This shift register serves as a delay line, storing the bit serial data
samples.

The delay line is tapped (based on the input word size W), to form a W-bit address that indexes into a
lookup table (LUT). The LUT stores all possible sums of partial products over the filter coefficients
space. The LUT is followed by a shift and adder (scaling accumulator) that adds the values obtained
from the LUT sequentially.

A table lookup is performed sequentially for each bit (in order of significance starting from the LSB).
On each clock cycle, the LUT result is added to the accumulated and shifted result from the previous
cycle. For the last bit (MSB), the table lookup result is subtracted, accounting for the sign of the
operand.

This basic form of DA is fully serial, operating on one bit at a time. If the input data sequence is W bits
wide, then a FIR structure takes W clock cycles to compute the output. Symmetric and asymmetric
FIR structures are an exception, requiring W+1 cycles, because one additional clock cycle is needed to
process the carry bit of the preadders.

You can control how DA code is generated by using the DALUTPartition and DARadix
implementation parameters. The DALUTPartition and DARadix parameters have certain
requirements and restrictions that are specific to different filter types. These requirements are
included in the discussions of each parameter.

• Reduce LUT Size: “DALUTPartition” on page 21-39
• Improve Performance with Parallelism: “DARadix” on page 21-40

For information on the theoretical foundations of DA, see “Further References” on page 21-50.

Requirements and Considerations for Generating Distributed
Arithmetic Code
Fixed-Point Quantization Required

Generation of DA code is supported only for fixed-point filter designs.

Specifying Filter Precision

The data path in HDL code generated for the DA architecture is carefully optimized for full precision
computations. The filter result is cast to the output data size only at the final stage when it is
presented to the output.
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Distributed arithmetic merges the product and accumulator operations and does computations at full
precision. This approach ignores the Product output and Accumulator properties of the Digital
Filter block and sets these properties to full precision.

Coefficients with Zero Values

DA ignores taps that have zero-valued coefficients and reduces the size of the DA LUT accordingly.

Considerations for Symmetrical and Asymmetrical Filters

For symmetrical and asymmetrical filters:

• A bit-level preadder or presubtractor is required to add tap data values that have coefficients of
equal value and/or opposite sign. One extra clock cycle is required to compute the result because
of the additional carry bit.

• HDL Coder takes advantage of filter symmetry where possible. This reduces the DA LUT size
substantially, because the effective filter length for these filter types is halved.

Further References
Detailed discussions of the theoretical foundations of DA appear in the following publications:

• Meyer-Baese, U., Digital Signal Processing with Field Programmable Gate Arrays, Second Edition,
Springer, pp 88–94, 128–143

• White, S.A., Applications of Distributed Arithmetic to Digital Signal Processing: A Tutorial Review.
IEEE ASSP Magazine, Vol. 6, No. 3
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Set and View HDL Model and Block Parameters
In this section...
“Set HDL Block Parameters” on page 21-51
“Set HDL Block Parameters for Multiple Blocks Programmatically” on page 21-51
“View All HDL Block Parameters” on page 21-53
“View Non-Default HDL Block Parameters” on page 21-53
“View HDL Model Parameters” on page 21-53

You can view and set HDL-related block properties, such as implementation and implementation
parameters, at the model level and at the individual block level.

Set HDL Block Parameters
To set the HDL Block parameters from the UI, open the HDL Block Properties dialog box, and modify
the block properties as needed. To open the HDL Properties dialog box, either:

• In the Apps tab, select HDL Coder. The HDL Code tab appears. Select the block for which you
want to see the HDL parameters and then select HDL Block Properties.

• Right-click the block and select HDL Code > HDL Block Properties.

To set the HDL-related parameters at the command line, use hdlset_param.
hdlset_param(path,Name, Value) sets HDL-related parameters in the block or model
referenced by path. One or more Name,Value pair arguments specify the parameters to be set, and
their values. You can specify several name and value pair arguments in any order as Name1,Value1,
…,NameN,ValueN.

For example, to set the sharing factor to 2 and the architecture to Tree for a block in your model:

1 Open the model and select the block.
2 Enter the following at the command line:

hdlset_param (gcb, 'SharingFactor', 2, 'Architecture', 'Tree')

To view the HDL parameters specified for a block, use hdlget_param. For example, to see the HDL
architecture setting for a block, at the command line, enter:

hdlget_param(gcb, 'Architecture')

You can also assign the returned HDL block parameters to a cell array. In the following example,
hdlget_param returns all HDL block parameters and values to the cell array p.
 p = hdlget_param(gcb, 'all')

p = 

    'Architecture'  'Linear'  'InputPipeline'  [0]  'OutputPipeline'  [0]

Set HDL Block Parameters for Multiple Blocks Programmatically
For models that contain a large number of blocks, using the HDL Block Properties dialog box to
select block implementations or set implementation parameters for individual blocks may not be
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practical. It is more efficient to set HDL-related model or block parameters for multiple blocks
programmatically. You can use the find_system function to locate the blocks of interest. Then, use a
loop to call hdlset_param to set the desired parameters for each block.

The following example uses the sfir_fixed model to demonstrate how to locate a group of blocks in
a subsystem and specify the same output pipeline depth for all the blocks.

open_system('sfir_fixed')

% Find all Product blocks in the model
prodblocks = find_system('sfir_fixed/symmetric_fir', ... 
                            'BlockType', 'Product')

% Set the output pipeline to 2 for the blocks
for ii=1:length(prodblocks)
    hdlset_param(prodblocks{ii}, 'OutputPipeline', 2)
end

prodblocks =

  4×1 cell array

    {'sfir_fixed/symmetric_fir/m1'}
    {'sfir_fixed/symmetric_fir/m2'}
    {'sfir_fixed/symmetric_fir/m3'}
    {'sfir_fixed/symmetric_fir/m4'}

To verify the settings, use hdlget_param to display the value of the OutputPipeline parameter for
the blocks .
% Get the output pipeline to 2 for the blocks
for ii=1:length(prodblocks)
    hdlget_param(prodblocks{ii}, 'OutputPipeline')
end

ans =

     2

ans =

     2

ans =

     2

ans =

     2
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View All HDL Block Parameters
hdldispblkparams displays the HDL block parameters available for a specified block.

The following example displays HDL block parameters and values for the currently selected block.
hdldispblkparams(gcb,'all')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
HDL Block Parameters ('simplevectorsum/vsum/Sum of
Elements')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Implementation

    Architecture  : Linear

Implementation Parameters

    InputPipeline : 0
    OutputPipeline : 0

See also hdldispblkparams.

View Non-Default HDL Block Parameters
The following example displays only HDL block parameters that have non-default values for the
currently selected block.
hdldispblkparams(gcb)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
HDL Block Parameters ('simplevectorsum/vsum/Sum of
Elements')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Implementation

    Architecture : Linear

Implementation Parameters

    OutputPipeline : 3

View HDL Model Parameters
To display the names and values of HDL-related properties in a model, use the hdldispmdlparams
function.

The following example displays HDL-related properties and values of the current model, in
alphabetical order by property name.
hdldispmdlparams(bdroot,'all')

%%%%%%%%%%%%%%%%%%%%%%%%%
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HDL CodeGen Parameters
%%%%%%%%%%%%%%%%%%%%%%%%%

AddPipelineRegisters                  : 'off'
Backannotation                        : 'on'
BlockGenerateLabel                    : '_gen'
CheckHDL                              : 'off'
ClockEnableInputPort                  : 'clk_enable'
.
.
.
VerilogFileExtension                  : '.v'

The following example displays only HDL-related properties that have non-default values.
hdldispmdlparams(bdroot)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
HDL CodeGen Parameters (non-default)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

CodeGenerationOutput           : 'GenerateHDLCodeAndDisplayGeneratedModel'
HDLSubsystem                   : 'simplevectorsum/vsum'
ResetAssertedLevel             : 'Active-low'
Traceability                   : 'on'

See Also
Functions
hdldispblkparams | hdldispmdlparams | hdlget_param | hdlset_param

More About
• “HDL Block Properties: General” on page 21-3
• “HDL Block Properties: Native Floating Point” on page 21-29
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Pass through, No HDL, and Cascade Implementations

Pass-through and No HDL Implementations
Implementation Description
Pass-through
implementations

Provides a pass-through implementation in which the block's inputs are passed
directly to its outputs. HDL Coder supports the following blocks with a pass-
through implementation:

• Convert 1-D to 2-D
• Reshape
• Signal Conversion
• Signal Specification

No HDL The NoHDL implementation completely removes the block from the generated
code. Thus, you can use the block in simulation but treat it as a “no-op” in the
HDL code. This implementation is used for many blocks (such as Scopes and
Assertions) that are significant in simulation but would be meaningless in HDL
code.

You can also use this implementation as an alternative implementation for
subsystems.

For more information related to special-purpose implementations, see “External Component
Interfaces”.

Cascade Architecture Best Practices
HDL Coder supports cascade implementations for the Sum of Elements, Product of Elements, and
MinMax blocks. These implementations require multiple clock cycles to process their inputs;
therefore, their inputs must be kept unchanged for their entire sample-time period. Generated test
benches accomplish this by using a register to drive the inputs.

A recommended design practice, when integrating generated HDL code with other HDL code, is to
provide registers at the inputs. While not strictly required, adding registers to the inputs improves
timing and avoids problems with data stability for blocks that require multiple clock cycles to process
their inputs.
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Build a ROM Block with Simulink Blocks
HDL Coder does not provide a ROM block, but you can easily build one using basic Simulink blocks.
The Getting Started with RAM and ROM example includes a ROM built using a 1-D Lookup Table
block and a Unit Delay block. To open the example, type the following command at the MATLAB
prompt:

hdlcoderramrom
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Wireless Communications Design for FPGAs and ASICs
In this section...
“From Mathematical Algorithm to Hardware Implementation” on page 21-57
“HDL-Optimized Blocks” on page 21-59
“Reference Applications” on page 21-59
“Generate HDL Code and Prototype on FPGA” on page 21-60

Deploying algorithmic models to FPGA hardware makes it possible to do over-the-air testing and
verification. However, designing wireless communications systems for hardware requires design
tradeoffs between hardware resources and throughput. You can speed up hardware design and
deployment by using HDL-optimized blocks that have hardware-suitable interfaces and architectures,
reference applications that implement portions of the LTE and 5G NR physical layer, and automatic
HDL code generation. You can also use hardware support packages to assist with deploying and
verifying your design on real hardware.

MathWorks® HDL products, such as Wireless HDL Toolbox, allow you to start with a mathematical
model, such as MATLAB code from LTE Toolbox™ or 5G Toolbox™, and design a hardware
implementation of that algorithm that is suitable for FPGAs and ASICs.

From Mathematical Algorithm to Hardware Implementation
Wireless communications design often starts with algorithm development and testing using MATLAB
functions. MATLAB code, which usually operates on matrices of floating-point data, is good for
developing mathematical algorithms, manipulating large data sets, and visualizing data.

Hardware engineers typically receive a mathematical specification from an algorithm team, and
reimplement the algorithm for hardware. Hardware designs require tradeoffs of resource usage for
clock speed and overall throughput. Usually this tradeoff means operating on streaming data, and
using some logic to control the storage and flow of data. Hardware engineers usually work in
hardware description languages (HDLs), like VHDL and Verilog, that provide cycle-based modeling
and parallelism.

To bridge this gap between mathematical algorithm and hardware implementation, use the MATLAB
algorithm model as a starting point for hardware implementation. Make incremental changes to the
design to make it suitable for hardware, and progress towards a Simulink model that you can use to
automatically generate HDL code by using HDL Coder.

This diagram shows the design progression from mathematical algorithm in MATLAB, to hardware-
compatible implementation in Simulink, and then the generated VHDL code.
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While both MATLAB and Simulink support automatic generation of HDL code, you must construct
your design with hardware requirements in mind, and Simulink is better-suited for cycle-based
modeling for hardware. It can represent parallel data paths and streaming data with control signals
to manage the timing of the data stream. To aid in fixed-point type choices, it clearly visualizes data
type propagation in the design. It also allows for easy pipelining of mathematical operations to
improve maximum clock frequency in hardware.

While you create your hardware-ready design, use the MATLAB algorithm as a "golden reference" to
verify that each version of the design still meets the mathematical requirements. The workflow shown
in the diagram uses MATLAB and Simulink as collaboration and communication tools between the
algorithm and hardware design teams.

For instance, when designing for LTE or 5G wireless standards, you can use LTE Toolbox and 5G
Toolbox functions to create a golden reference in MATLAB. Then transition to Simulink and create a
hardware-compatible implementation by using library blocks from Wireless HDL Toolbox and blocks
from Communications Toolbox and DSP System Toolbox that support HDL code generation. You can
reuse test and data generation infrastructure from MATLAB by importing data from MATLAB to your
Simulink model and returning the output of the model to MATLAB to verify it against the "golden
reference".
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HDL-Optimized Blocks
Library blocks from Wireless HDL Toolbox implement encoders, decoders, modulators, demodulators,
and sequence generators for use in an LTE, 5G, or general wireless communications system. These
blocks use a standard streaming data interface for hardware. This interface makes it easy to connect
parts of the algorithm together, and includes control signals that manage the flow of data and mark
frame boundaries. These blocks support automatic HDL code generation with HDL Coder. You can
also use blocks from Communications Toolbox and DSP System Toolbox that support HDL code
generation.

The blocks provide hardware-suitable architectures that optimize resource use, such as including
adder and multiplier pipelining to fit well into FPGA DSP slices. They also support automatic and
configurable fixed-point data types. Using predefined blocks also allows you to try different
parameter configurations without changing the rest of the design.

For lists of blocks that support HDL code generation, see Wireless HDL Toolbox Block List (HDL Code
Generation), Communications Toolbox Block List (HDL Code Generation), and DSP System Toolbox
Block List (HDL Code Generation).

Reference Applications
Wireless HDL Toolbox provides reference applications that contain hardware-ready implementations
of large parts of the LTE and 5G NR physical layer. These designs are verified against the "golden
reference" functions provided by LTE Toolbox and 5G Toolbox. They have also been tested on FPGA
boards to confirm that they encode and decode over-the-air waveforms and use a reasonable amount
of hardware resources. They are designed to be modular, scalable, and extensible so you can insert
additional physical channels. The receiver design was tested using waveforms captured off-the-air.

The suite of reference applications includes:

• LTE and 5G NR primary and secondary synchronization signal (PSS/SSS) generation and detection
• LTE downlink shared control channel detector and master information block (MIB) generation and

recovery
• LTE first system information block (SIB1) decoder
• Hardware-software interface models for MIB and SIB1 bit parsing and channel estimation data

indexing
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• LTE waveform generation for multiple-antenna transmission
• Support for FDD and TDD for LTE transmitter and receiver applications

These reference applications can be used as-is to deliver packet information to your unique
application and to generate synthesizable VHDL or Verilog with HDL Coder. They also serve as
examples to illustrate recommended practices for implementing communications algorithms on FPGA
or ASIC hardware.

Generate HDL Code and Prototype on FPGA
Wireless HDL Toolbox provides blocks that support HDL code generation. To generate HDL code from
designs that use these blocks, you must have an HDL Coder license. HDL Coder produces device-
independent code with signal names that correspond to the Simulink model. HDL Coder also provides
a tool to drive the FPGA synthesis and targeting process, and enables you to generate scripts and test
benches for use with third-party HDL simulators.

To assist with the setup and targeting of programmable logic on a prototype board, and to verify your
wireless communications system design on hardware, download a hardware support package such as
Communications Toolbox Support Package for Xilinx Zynq®-Based Radio.

See Also

External Websites
• Wireless HDL Toolbox
• HDL Coder
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Generating HDL Code for Multirate
Models

• “Code Generation from Multirate Models” on page 22-2
• “Timing Controller for Multirate Models” on page 22-4
• “Generate Reset for Timing Controller” on page 22-5
• “Multirate Model Requirements for HDL Code Generation” on page 22-6
• “Generate a Global Oversampling Clock” on page 22-8
• “Using Triggered Subsystems for HDL Code Generation” on page 22-13
• “Generate Multicycle Path Information Files” on page 22-16
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Code Generation from Multirate Models
HDL Coder supports HDL code generation for single-clock and multiple clock multirate models. Your
model can include blocks running at multiple sample rates:

• Within the device under test (DUT).
• In the test bench driving the DUT. In this case, the DUT inherits multiple sample rates from its

inputs or outputs.
• In both the test bench and the DUT.

In general, generating HDL code for a multirate model does not differ greatly from generating HDL
code for a single-rate model. However, there are a few requirements and restrictions on the
configuration of the model and the use of specialized blocks (such as Rate Transitions) that apply to
multirate models. For details, see “Multirate Model Requirements for HDL Code Generation” on page
22-6.

Clock Enable Generation for a Multirate DUT
The following block diagram shows the interior of a subsystem containing blocks that are explicitly
configured with different sample times. The upper and lower Counter Free-Running blocks have
sample times of 10 s and 20 s respectively. The counter output signals are routed to output ports
ST10 and ST20, which inherit their sample times. The signal path terminating at ST10 runs at the
base rate of the model; the signal path terminating at ST20 is a subrate signal, running at half the
base rate of the model.

As shown in the next figure, the outputs of the multirate DUT drive To Workspace blocks in the test
bench. These blocks inherit the sample times of the DUT outputs.
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The following listing shows the VHDL entity declaration generated for the DUT.

ENTITY DUT IS
  PORT( clk                               :   IN    std_logic;
        reset                             :   IN    std_logic;
        clk_enable                        :   IN    std_logic;
        ce_out_0                          :   OUT   std_logic;
        ce_out_1                          :   OUT   std_logic;
        ST10                              :   OUT   std_logic_vector(7 DOWNTO 0);  -- uint8
        ST20                              :   OUT   std_logic_vector(5 DOWNTO 0)  -- ufix6
        );
END DUT;

The entity has the standard clock, reset, and clock enable inputs and data outputs for the ST10 and
ST20 signals. In addition, the entity has two clock enable outputs (ce_out_0 and ce_out_1). These
clock enable outputs replicate internal clock enable signals maintained by the timing controller entity.

The following figure, showing a portion of a Mentor Graphics ModelSim simulation of the generated
VHDL code, lets you observe the timing relationship of the base rate clock (clk), the clock enables,
and the computed outputs of the model.

After the assertion of clk_enable (replicated by ce_out_0), a new value is computed and output to
ST10 for every cycle of the base rate clock.

A new value is computed and output for subrate signal ST20 for every other cycle of the base rate
clock. An internal signal, enb_1_2_1 (replicated by ce_out_1) governs the timing of this
computation.
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Timing Controller for Multirate Models
A timing controller entity generates the required rates from a single master clock, using one or more
counters to create multiple clock enables. The master clock rate is the fastest rate in the model in
single clock mode. In multiple clock mode, it can be any clock in the DUT. The outputs of the timing
controller are clock enable signals running at rates an integer multiple slower than the timing
controller's master clock

When using single clock mode, HDL code generated from multirate models employs a single master
clock that corresponds to the base rate of the DUT. When using multiple clock mode, HDL code
generated from multirate models employs one clock input for each rate in the DUT. The number of
timing controllers generated in multiple clock mode depends on the design in the DUT.

Each timing controller entity definition is written to a separate code file. The timing controller file
and entity names derive from the name of the subsystem that is selected for code generation (the
DUT). To form the timing controller name, HDL Coder appends the value of the
TimingControllerPostfix property to the DUT name.

See Also
Functions
makehdl | makehdltb

Simulink Configuration Parameters
Optimize timing controller | Timing controller architecture | Timing controller postfix

Related Examples
• “Using Multiple Clocks in HDL Coder™”
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Generate Reset for Timing Controller
In this section...
“Requirements for Timing Controller Reset Port Generation” on page 22-5
“How To Generate Reset for Timing Controller” on page 22-5
“Limitations for Timing Controller Reset Port Generation” on page 22-5

You can generate a reset port for the timing controller, which generates the clock, clock enable, and
reset signals in a multirate DUT. In the generated code, the reset for the timing controller is a DUT
input port.

Requirements for Timing Controller Reset Port Generation
Your design must use single-clock mode. That is, the ClockInputs property value must be
'Single'.

How To Generate Reset for Timing Controller
To generate a reset port for the timing controller, set the TimingControllerArch property to
'resettable' using makehdl or hdlset_param.

To disable reset port generation for the timing controller, set the TimingControllerArch property
to 'default'.

For example, for a model, sfir_fixed, specify a reset port for the timing controller by entering:

hdlset_param('sfir_fixed','TimingControllerArch','resettable')

Limitations for Timing Controller Reset Port Generation
The following workflows are not compatible with timing controller reset port generation:

• FPGA Turnkey
• FPGA-in-the-Loop
• Custom IP core generation
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Multirate Model Requirements for HDL Code Generation
In this section...
“Model Configuration Parameters” on page 22-6
“Sample Rate” on page 22-6
“Blocks To Use For Rate Transitions” on page 22-6

Model Configuration Parameters
Before generating HDL code, configure the parameters of your model using the hdlsetup command.
This sets up your multirate model for HDL code generation. This section summarizes settings applied
to the model by hdlsetup that are relevant to multirate code generation. These include:

• Solver options that are recommended or required for HDL code generation:

• Type: Fixed-step.
• Solver: Discrete (no continuous states). Other fixed-step solvers could be selected,

but this option is usually best for simulating discrete systems.
• Tasking mode: Must be explicitly set to SingleTasking. Do not set Tasking mode to Auto.

• hdlsetup configures the following Diagnostics / Sample time options for all models:

• Multitask rate transition: error
• Single task rate transition: error

In multirate models intended for HDL code generation, Rate Transition blocks must be explicitly
inserted when blocks running at different rates are connected. Set Multitask rate transition and
Single task rate transition to error to detect illegal rate transitions before code is generated.

To learn more about the settings that hdlsetup configures, see “Check for safe model parameters”
on page 38-5.

Sample Rate
HDL Coder requires that at least one valid sample rate (sample time > 0) must exist in the model. If
all rates are 0, –1, or –2, the code generator (makehdl) and compatibility checker (checkhdl)
terminates with an error message.

Blocks To Use For Rate Transitions
Use Rate Transition blocks, rather than the following blocks, to create rate transitions in models
intended for HDL code generation:

• Delay
• Tapped Delay
• Unit Delay
• Unit Delay Enabled
• Zero-Order Hold
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The Delay blocks listed should be configured to have the same input and output sample rates.

Zero-Order Hold blocks must be configured with inherited (-1) sample times.

 Multirate Model Requirements for HDL Code Generation
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Generate a Global Oversampling Clock

In this section...
“Why Use a Global Oversampling Clock?” on page 22-8
“Requirements for the Oversampling Factor” on page 22-8
“Specifying the Oversampling Factor From the GUI” on page 22-8
“Specifying the Oversampling Factor From the Command Line” on page 22-9
“Resolving Oversampling Rate Conflicts” on page 22-10

Why Use a Global Oversampling Clock?
In many designs, the DUT is not self-contained. For example, consider a DUT that is part of a larger
system that supplies timing signals to its components under control of a global clock. The global clock
typically runs at a higher rate than some of the components under its control. By specifying such a
global oversampling clock, you can integrate your DUT into a larger system without using Upsample
or Downsample blocks.

To generate global clock logic, you specify an oversampling factor. The oversampling factor expresses
the desired rate of the global oversampling clock as a multiple of the base rate of your model.

When you specify an oversampling factor, HDL Coder generates the global oversampling clock and
derives the required timing signals from clock signal. Generation of the global oversampling clock
affects only generated HDL code. The clock does not affect the simulation behavior of your model.

Requirements for the Oversampling Factor
When you specify the oversampling factor for a global oversampling clock, note these requirements:

• The oversampling factor must be an integer greater than or equal to 1.
• The default value is 1. In the default case, HDL Coder does not generate a global oversampling

clock.
• Some DUTs require multiple sampling rates for their internal operations. In such cases, the other

rates in the DUT must divide evenly into the global oversampling rate. For more information, see
“Resolving Oversampling Rate Conflicts” on page 22-10 .

Specifying the Oversampling Factor From the GUI
You can specify the oversampling factor for a global clock from the GUI as follows:

1 Select the HDL Code Generation > Global Settings pane in the Configuration Parameters
dialog box.

2 For Oversampling factor in the Clock settings section, enter the desired oversampling factor.
In the following figure, Oversampling factor specifies a global oversampling clock that runs at
ten times the base rate of the model.
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3 Click Generate on the HDL Code Generation pane to initiate code generation.

HDL Coder reports the oversampling clock rate:
### Begin VHDL Code Generation
### MESSAGE: The design requires 10 times faster clock with respect to the base rate = 1.
### Working on symmetric_fir_tc as hdlsrc\symmetric_fir_tc.vhd
### Working on sfir_fixed/symmetric_fir as hdlsrc\symmetric_fir.vhd
### HDL Code Generation Complete.

Specifying the Oversampling Factor From the Command Line
You can specify the oversampling factor for a global clock from the command line by setting the
Oversampling property with hdlset_param or makehdl. The following example specifies an
oversampling factor of 7:
>> makehdl(gcb,'Oversampling', 7)
### Generating HDL for 'sfir_fixed/symmetric_fir'
### Starting HDL Check.
### HDL Check Complete with 0 errors, 0 warnings and 0 messages.

### Begin VHDL Code Generation
### MESSAGE: The design requires 7 times faster clock with respect to the base rate = 1.
### Working on symmetric_fir_tc as hdlsrc\symmetric_fir_tc.vhd
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### Working on sfir_fixed/symmetric_fir as hdlsrc\symmetric_fir.vhd
### HDL Code Generation Complete.

Resolving Oversampling Rate Conflicts

The HDL realization of some designs is inherently multirate, even though the original Simulink model
is single-rate. As an example, consider the simplevectorsum_cascade model.

This model consists of a subsystem, vsum, driven by a vector input of width 10, with a scalar output.
The following figure shows the root level of the model.

The device under test is the vsum subsystem, shown in the following figure. The subsystem contains a
Sum block, configured for vector summation.

The simplevectorsum_cascade model specifies a cascaded implementation
(SumCascadeHDLEmission) for the Sum block. The generated HDL code for a cascaded vector Sum
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block implementation runs at two effective rates: a faster (oversampling) rate for internal
computations and a slower rate for input/output. HDL Coder reports that the inherent oversampling
rate for the DUT is five times the base rate:
>> dut = 'simplevectorsum_cascade/vsum';
>> makehdl(dut);
### Generating HDL for 'simplevectorsum_cascade/vsum'
### Starting HDL Check.
### HDL Check Complete with 0 errors, 0 warnings and 0 messages.

### The code generation and optimization options you have chosen have introduced
    additional pipeline delays. 
### The delay balancing feature has automatically inserted matching delays for
    compensation.
### The DUT requires an initial pipeline setup latency. Each output port
    experiences these additional delays
### Output port 0: 1 cycles

### Begin VHDL Code Generation
### MESSAGE: The design requires 5 times faster clock with respect to the
    base rate = 1.
...

In some cases, the clock requirements for such a DUT conflict with the global oversampling rate. To
avoid oversampling rate conflicts, verify that subrates in the model divide evenly into the global
oversampling rate.

For example, if you request a global oversampling rate of 8 for the simplevectorsum_cascade
model, the coder displays a warning and ignores the requested oversampling factor. The coder
instead respects the oversampling factor that the DUT requests:
>> dut = 'simplevectorsum_cascade/vsum';
>> makehdl(dut,'Oversampling',8);
### Generating HDL for 'simplevectorsum/vsum'
### Starting HDL Check.
### HDL Check Complete with 0 errors, 0 warnings and 0 messages.

### The code generation and optimization options you have chosen have introduced
    additional pipeline delays. 
### The delay balancing feature has automatically inserted matching delays for
    compensation.
### The DUT requires an initial pipeline setup latency. Each output port
    experiences these additional delays
### Output port 0: 1 cycles

### Begin VHDL Code Generation
### WARNING: The design requires 5 times faster clock with respect to 
        the base rate = 1, which is incompatible with the oversampling 
        value (8). Oversampling value is ignored.
...

An oversampling factor of 10 works in this case:
>> dut = 'simplevectorsum_cascade/vsum';
>> makehdl(dut,'Oversampling',10);
### Generating HDL for 'simplevectorsum_cascade/vsum'
### Starting HDL Check.
### HDL Check Complete with 0 errors, 0 warnings and 0 messages.

### The code generation and optimization options you have chosen have introduced
    additional pipeline delays. 
### The delay balancing feature has automatically inserted matching delays for
    compensation.
### The DUT requires an initial pipeline setup latency. Each output port
    experiences these additional delays
### Output port 0: 1 cycles

 Generate a Global Oversampling Clock

22-11



### Begin VHDL Code Generation
### MESSAGE: The design requires 10 times faster clock with respect to 
    the base rate = 1.
...
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Using Triggered Subsystems for HDL Code Generation
In this section...
“Best Practices” on page 22-13
“Using the Signal Builder Block” on page 22-13
“Using Trigger As Clock” on page 22-13
“Requirements” on page 22-14
“Specify Trigger As Clock” on page 22-14
“Limitations” on page 22-14

The Triggered Subsystem block is a Subsystem block that executes each time the control signal has a
trigger value. To learn more about the block, see Triggered Subsystem.

Best Practices
When using triggered subsystems in models targeted for HDL code generation, consider the
following:

• For synthesis results to match Simulink results, drive the trigger port with registered logic (with a
synchronous clock) on the FPGA.

• It is good practice to put unit delays on Triggered Subsystem output signals. Doing so prevents
the code generator from inserting extra bypass registers in the HDL code.

• The use of triggered subsystems can affect synthesis results in the following ways:

• In some cases, the system clock speed can drop by a small percentage.
• Generated code uses more resources, scaling with the number of triggered subsystem

instances and the number of output ports per subsystem.

Using the Signal Builder Block
When you connect outputs from a Signal Builder block to a triggered subsystem, you might need to
use a Rate Transition block. To run all triggered subsystem ports at the same rate:

• If the trigger source is a Signal Builder block, but the other triggered subsystem inputs come from
other sources, insert a Rate Transition block into the signal path before the trigger input.

• If all inputs (including the trigger) come from a Signal Builder block, they have the same rate, so
special action is not required.

Using Trigger As Clock
Using the trigger as clock in triggered subsystems enables you to partition your design into different
clock regions in the generated code. Make sure that the Clock edge setting in the Configuration
Parameters dialog box matches the Trigger type of the Trigger block inside the triggered subsystem.

For example, you can model:

• A design with clocks that run at the same rate, but out of phase.
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• Clock regions driven by an external or internal clock divider.
• Clock regions driven by clocks whose rates are not integer multiples of each other.
• Internally generated clocks.
• Clock gating for low-power design.

Note Using the trigger as clock for triggered subsystems can result in timing mismatches of one
cycle during testbench simulation.

Requirements
When you use the trigger as clock in triggered subsystems, each triggered subsystem input or output
data signal must have delays immediately outside and immediately inside the subsystem. These
delays act as a synchronization interface between the regions running at different rates.

Specify Trigger As Clock
• In HDL Code Generation > Global Settings > Optimization tab, select Use trigger signal as

clock.
• Set the TriggerAsClock property using makehdl or hdlset_param. For example, to generate

HDL code that uses the trigger signal as clock for triggered subsystems in a DUT subsystem,
myDUT, in a model, myModel, enter:

makehdl ('myModel/myDUT','TriggerAsClock','on')

Limitations
HDL Coder supports HDL code generation for triggered subsystems that meet the following
conditions:

• The triggered subsystem is not the DUT.
• The subsystem is not both triggered and enabled.
• The trigger signal is a scalar.
• The data type of the trigger signal is either boolean or ufix1.
• Outputs of the triggered subsystem have an initial value of 0.
• All inputs and outputs of the triggered subsystem (including the trigger signal) run at the same

rate.
• The Show output port parameter of the Trigger block is set to Off.
• If the DUT contains the following blocks, RAMArchitecture is set to WithClockEnable:

• Dual Port RAM
• Simple Dual Port RAM
• Single Port RAM

• The triggered subsystem does not contain the following blocks:

• Discrete-Time Integrator
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• CIC Decimation
• CIC Interpolation
• FIR Decimation
• FIR Interpolation
• Downsample
• Upsample
• HDL Cosimulation blocks for HDL Verifier
• Rate Transition
• Pixel Stream FIFO (Vision HDL Toolbox)
• PN Sequence Generator, if the Use trigger signal as clock option is selected.
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Generate Multicycle Path Information Files

In this section...
“Overview” on page 22-16
“Format and Content of a Multicycle Path Information File” on page 22-17
“File Naming and Location Conventions” on page 22-20
“Generating Multicycle Path Information Files Using the GUI” on page 22-20
“Generating Multicycle Path Information Files Using the Command Line” on page 22-20
“Limitations” on page 22-21

Overview
HDL Coder implements multirate systems in HDL by generating a master clock running at the
model's base rate, and generating subrate timing signals from the master clock (see also “Code
Generation from Multirate Models” on page 22-2). The propagation time between two subrate
registers can be more than one cycle of the master clock. A multicycle path is a path between two
such registers.

When synthesizing HDL code, it is often useful to provide an analysis of multicycle register-to-
register paths to the synthesis tool. If the synthesis tool can identify multicycle paths, you may be
able to:

• Realize higher clock rates from your multirate design.
• Reduce the area of your design.
• Reduce the execution time of the synthesis tool.

Using the Generate multicycle path information option (or the equivalentMulticyclePathInfo
property for makehdl) you can instruct the coder to analyze multicycle paths in the generated code,
and generate a multicycle path information file.

A multicycle path information file is a text file that describes one or more multicycle path constraints.
A multicycle path constraint is a timing exception – it relaxes the default constraints on the system
timing by allowing signals on a given path to have a longer propagation time. When using multiple
clock mode, the file also contains clock definitions.

Typically a synthesis tool gives every signal a time budget of exactly 1 clock cycle to propagate from a
source register to a destination register. A timing exception defines a path multiplier , N, that informs
the synthesis tool that a signal has N clock cycles (N > 1) to propagate from the source to destination
register. The path multiplier expresses some number of cycles of a relative clock at either the source
or destination register. Where a timing exception is defined for a path, the synthesis tool has more
flexibility in meeting the timing requirements for that path and for the system as a whole.

The generated multicycle path information file does not follow the native constraint file format of a
particular synthesis tool. The file contains the multicycle path information required by popular
synthesis tools. You can manually convert this information to multicycle path constraints in the format
required by your synthesis tool, or write a script or tool to perform the conversion. The next section
describes the format of a multicycle path constraint file in detail.
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Format and Content of a Multicycle Path Information File
The following listing shows a simple multicycle path information file.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Constraints Report 
%     Module: Sbs
%     Model: mSbs.mdl
%
%     File Name: hdlsrc/Sbs_constraints.txt
%     Created: 2009-04-10 09:50:10
%     Generated by MATLAB 7.9 and HDL Coder 1.6
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Multicycle Paths
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FROM : Sbs.boolireg; TO : Sbs.booloreg; PATH_MULT : 2; RELATIVE_CLK : source,
   Sbs.clk;
FROM : Sbs.boolireg_v<0>; TO : Sbs.booloreg_v<0>; PATH_MULT : 2; 
   RELATIVE_CLK : source, Sbs.clk;
FROM : Sbs.doubireg; TO : Sbs.douboreg; PATH_MULT : 2; RELATIVE_CLK : source,
   Sbs.clk;
FROM : Sbs.doubireg_v<0>; TO : Sbs.douboreg_v<0>; PATH_MULT : 2; 
   RELATIVE_CLK : source, Sbs.clk;
FROM : Sbs.intireg(7:0); TO : Sbs.intoreg(7:0); PATH_MULT : 2; 
   RELATIVE_CLK : source, Sbs.clk;
FROM : Sbs.intireg_v<0>(7:0);TO : Sbs.intoreg_v<0>(7:0);PATH_MULT : 2 
   RELATIVE_CLK : source,Sbs.clk;

The first section of the file is a header that identifies the source model and gives other information
about how HDL Coder generated the file. this section terminates with the following comment lines:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Multicycle Paths
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Note For a single-rate model or a model without multicycle paths, the coder generates only the
header section of the file.

The main body of the file follows. This section contains a flat table, each row of which defines a
multicycle path constraint.

Each constraint consists of four fields. The format of each field is one of the following:

• KEYWORD : field;
• KEYWORD : subfield1,... subfield_N;

The keyword identifies the type of information contained in the field. The keyword string in each field
terminates with a space followed by a colon.

The delimiter between fields is the semicolon. Within a field, the delimiter between subfields is the
comma.

The following table defines the fields of a multicycle path constraint, in left-to-right order.
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Keyword : field (or subfields) Field Description
FROM : src_reg_path; The source (or FROM) register of a multicycle path in the system. The

value of src_reg_path is the HDL path of the source register's output
signal. See also “Register Path Syntax for FROM : and TO : Fields” on
page 22-18 .

TO : dst_reg_path; The destination (or TO) register of a multicycle path in the system. The
FROM register drives the TO register in the HDL code. The value of
dst_reg_path is the HDL path of the destination register's output
signal. See also “Register Path Syntax for FROM : and TO : Fields” on
page 22-18.

PATH_MULT : N; The path multiplier defines the number of clock cycles that a signal has to
propagate from the source to destination register. The RELATIVE_CLK
field describes the clock associated with the path multiplier (the relative
clock for the path).

The path multiplier value N indicates that the signal has N clock cycles of
its relative clock to propagate from source to destination register.

The coder does not report register-to-register paths where N = 1, because
this is the default path multiplier.

RELATIVE_CLK : relclock,
sysclock;

The RELATIVE_CLK field contains two comma-delimited subfields. Each
subfield expresses the location of the relative clock in a different form, for
the use of different synthesis tools. The subfields are:

• relclock: Since HDL Coder currently generates only single-clock
systems, this subfield takes the value source. In a multi-clock system,
the relative clock associated with a multicycle path could be either the
source or destination register of the path, and this subfield could take
on either of the values source or destination. This usage is
reserved for future release of the coder.

• sysclock: This subfield is intended for use with synthesis tools that
require the actual propagation time for a multicycle path. sysclock
provides the path to the system's top-level clock (e.g., Sbs.clk) You
can use the period of this clock and the path multiplier to calculate the
propagation time for a given path.

Register Path Syntax for FROM : and TO : Fields

The FROM : and TO: fields of a multipath constraint provide the path to a source or destination
register and information about the signal data type, size, and other characteristics.
Fixed Point Signals

For fixed point signals, the register path has the form

reg_path<ps> (hb:lb)

where:

• reg_path is the HDL hierarchical path of the signal. The delimiter between hierarchical levels is
the period, for example: Sbs.u_H1.initreg.

• <ps>: Part select (zero-origin integer index) for vector signals. Angle brackets <> delimit the part
select field
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• (hb:lb): Bit select field, indicated from high-order bit to low-order bit. The signal width (hb:lb)
is the same as the defined width of the signal in the HDL code. This representation does not
necessarily imply that the bits of the FROM : register are connected to the corresponding bits of
the TO: register. The actual bit-to-bit connections are determined during synthesis.

Boolean and Double Signals

For boolean and double signals, the register path has the form

reg_path<ps>

where:

• reg_path is the HDL hierarchical path of the signal. The delimiter between hierarchical levels is
the period (.), for example: Sbs.u_H1.initreg.

• <ps>: Part select (zero-origin integer index) for vector signals. Angle brackets <> delimit the part
select field

For boolean and double signals, no bit select field is present.

Note The format does not distinguish between boolean and double signals.

Examples

The following table gives several examples of register-to-register paths as represented in a multicycle
path information file.

Path Description
FROM : Sbs.intireg(7:0); TO :
Sbs.intoreg(7:0);

Both signals are fixed point and eight bits wide.

FROM : Sbs.intireg; TO : Sbs.intoreg; Both signals are either boolean or double.
FROM : Sbs.intireg<0>(7:0); TO :
Sbs.intoreg<1>(7:0);

The FROM signal is the first element of a vector. The TO
signal is the second element of a vector. Both signals
are fixed point and eight bits wide.

FROM : Sbs.u_H1.intireg(7:0); TO :
Sbs.intoreg(7:0);

The signal intireg is defined in the module H1, and H1
is inside the module Sbs. u_H1 is the instance name of
H1 in Sbs. Both signals are fixed point and eight bits
wide.

Ordering of Multicycle Path Constraints

For a given model or subsystem, the ordering of multicycle path constraints within a multicycle path
information file may vary depending on whether the target language is VHDL or Verilog, and on other
factors. The ordering of constraints may also change in future versions of the coder. When you design
scripts or other tools that process multicycle path information file, do not build in any assumptions
about the ordering of multicycle path constraints within a file.

Clock Definitions

When you use multiple clock mode, the multicycle path information file also contains a "Clock
Definitions" section, as shown in the following listing. This section is located after the header and
before the "Multicycle Paths" section.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Clock Definitions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CLOCK: Sbs.clk PERIOD: 0.05
CLOCK: Sbs.clk_1_2 BASE_CLOCK: Sbs.clk MULTIPLIER: 2 PERIOD: 0.1

The following table defines the fields for the clock definitions.

Keyword : field (or subfields) Field Description
CLOCK: clock_name Each clock in the design has a CLOCK definition line.
PERIOD: float_value The Simulink rate (floating point value) associated with

this CLOCK.
BASE_CLOCK: base_clock_name Names the master clock. This field does not appear on the

master clock.
MULTIPLIER: int_value Gives the ratio of the period of this clock to the master

clock. This field does not appear on the master clock.

File Naming and Location Conventions
The file name for the multicycle path information file derives from the name of the DUT and the
postfix string '_constraints', as follows:

DUTname_constraints.txt

For example, if the DUT name is symmetric_fir, the name of the multicycle path information file is
symmetric_fir_constraints.txt.

HDL Coder writes the multicycle path information file to the target .

Generating Multicycle Path Information Files Using the GUI
To enable generation of multicycle path information files, select Register-to-register path info in
the Multicycle Path Constraints section of the HDL Code Generation > Target and
Optimizations pane of the Configuration Parameters dialog box.

When you select this check box and generate code for your model, the code generator creates a
multicycle path information file.

Generating Multicycle Path Information Files Using the Command Line
To generate a multicycle path information file from the command line, pass in the property/value pair
'MulticyclePathInfo','on' to makehdl, as in the following example.
>> dut = 'hdlfirtdecim_multicycle/Subsystem';
>> makehdl(dut, 'MulticyclePathInfo','on');
### Generating HDL for 'hdlfirtdecim_multicycle/Subsystem'
### Starting HDL Check.
### HDL Check Complete with 0 errors, 0 warnings and 1 message.

### MESSAGE: For the block 'hdlfirtdecim_multicycle/Subsystem/downsamp0'
   The initial condition may not be used when the sample offset is 0.

### Begin VHDL Code Generation
### Working on Subsystem_tc as hdlsrc\Subsystem_tc.vhd
### Working on hdlfirtdecim_multicycle/Subsystem as hdlsrc\Subsystem.vhd
### Generating package file hdlsrc\Subsystem_pkg.vhd
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### Finishing multicycle path connectivity analysis.
### Writing multicycle path information in hdlsrc\Subsystem_constraints.txt
### HDL Code Generation Complete.

Limitations
Unsupported Blocks and Implementations

The following table lists block implementations (and associated Simulink blocks) that will not
contribute to multicycle path constraints information.

Implementation Block(s)
SumCascadeHDLEmission Add, Subtract, Sum, Sum of Elements
ProductCascadeHDLEmission Product, Product of Elements
MinMaxCascadeHDLEmission MinMax, Maximum, Minimum
ModelReferenceHDLInstantiation Model
SubsystemBlackBoxHDLInstiation Subsystem
RamBlockDualHDLInstantiation Dual Port RAM
RamBlockSimpDualHDLInstantiation Simple Dual Port RAM
RamBlockSingleHDLInstantiation Single Port RAM

Limitations on MATLAB Function Blocks and Stateflow Charts
Loop-Carried Dependencies

HDL Coder does not generate constraints for MATLAB Function blocks or Stateflow charts that
contain a for loop with a loop-carried dependency.
Indexing Vector or Matrix Variables

In order to generate constraints for a vector or matrix index expression, the index expression must be
one of the following:

• A constant
• A for loop induction variable

For example, in the following example of code for a MATLAB Function block, the index expression
reg(i) does not generate constraints.

function y = fcn(u)
%#codegen 

N=length(u);
persistent reg;
if isempty(reg)
    reg = zeros(1,N);
end

y = reg;

for i = 1:N-1
    reg(i) = u(i) + reg(i+1);
end
reg(N) = u(N);
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File Generation Time

Tip Generation of constraint files for large models can be slow.
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Generating Bit-True Cycle-Accurate
Models
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Locate Numeric Differences After Speed Optimization
This example first selects a speed-optimized Sum block implementation for simple model that
computes a vector sum. It then examines a generated model and locates the numeric changes
introduced by the optimization.

The model, simplevectorsum, consists of a Subsystem, vsum, driven by a vector input of width 10,
with a scalar output. The following figure shows the root level of the model.

The device under test is the vsum subsystem, shown in the following figure. The subsystem contains a
Sum block, configured for vector summation.

The model is configured to use the Tree implementation when generating HDL code for the Sum
block within the vsum subsystem. This implementation, optimized for minimal latency, generates a
tree-shaped structure of adders for the Sum block.
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To select a nondefault implementation for an individual block:

1 Right-click the block and select HDL Code > HDL Block Properties .
2 In the HDL Properties dialog box, select the desired implementation from the Architecture

menu.
3 Click Apply and close the dialog box.

After code generation, you can view the validation model, gm_simplevectorsum_tree_vnl.

The vsum subsystem has been highlighted in cyan. This highlighting indicates that the subsystem
differs in some respect from the vsum subsystem of the original model.

The following figure shows the vsum subsystem in the generated model. Observe that the Sum block
is now implemented as a subsystem, which also appears highlighted.

The following figure shows the internal structure of the Sum subsystem.

 Locate Numeric Differences After Speed Optimization

23-3



The generated model implements the vector sum as a tree of adders (Sum blocks). The vector input
signal is demultiplexed and connected, as five pairs of operands, to the five leftmost adders. The
widths of the adder outputs increase from left to right, as required to avoid overflow in computing
intermediate results.
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Optimization

• “Automatic Iterative Optimization” on page 24-2
• “Generated Model and Validation Model” on page 24-5
• “Simplify Constant Operations and Reduce Design Complexity in HDL Coder™” on page 24-8
• “Optimization with Constrained Overclocking” on page 24-13
• “Resolve Numerical Mismatch with Delay Balancing” on page 24-15
• “Streaming” on page 24-20
• “Resource Sharing” on page 24-23
• “Delay Balancing” on page 24-27
• “Find Feedback Loops” on page 24-32
• “Hierarchy Flattening” on page 24-34
• “RAM Mapping for Simulink Models” on page 24-36
• “RAM Mapping With the MATLAB Function Block” on page 24-37
• “Distributed Pipelining” on page 24-42
• “Hierarchical Distributed Pipelining” on page 24-47
• “Constrained Output Pipelining” on page 24-50
• “Clock-Rate Pipelining” on page 24-52
• “Adaptive Pipelining” on page 24-56
• “Critical Path Estimation Without Running Synthesis” on page 24-63
• “HDL Optimizations Across MATLAB Function Block Boundary Using MATLAB Datapath

Architecture” on page 24-72
• “Subsystem Optimizations for Filters” on page 24-82
• “Remove Redundant Logic and Optimize Unconnected Ports in Design” on page 24-91
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Automatic Iterative Optimization
In this section...
“How Automatic Iterative Optimization Works” on page 24-2
“Automatic Iterative Optimization Output” on page 24-2
“Automatic Iterative Optimization Report” on page 24-3
“Requirements for Automatic Iterative Optimization” on page 24-3
“Limitations of Automatic Iterative Optimization” on page 24-3

Automatic iterative optimization enables you to optimize your clock frequency without specifying
individual optimization options, such as input or output pipelining, distributed pipelining, or loop
unrolling.

There are two ways to use hdlcoder.optimizeDesign to optimize your clock frequency:

• Best clock frequency: You specify the maximum number of iterations you want HDL Coder to
perform, and the coder iterates to minimize the critical path in your design.

• Target clock frequency: You specify a clock frequency target for your design and the maximum
number of iterations you want HDL Coder to perform. The coder iterates until it meets your target
clock frequency or reaches the maximum number of iterations.

HDL Coder can also determine that your target clock frequency is not achievable because your
target clock period is less than the latency of the largest atomic combinational group of logic in
your design.

How Automatic Iterative Optimization Works
You specify your clock frequency goal and the maximum number of iterations. HDL Coder performs
the following steps for each iteration:

1 Analyzes the logic in your design.
2 Generates code.
3 Uses the synthesis tool to analyze the generated code, and obtains post-map timing analysis data.
4 Back annotates the design with the timing analysis data.
5 Inserts pipeline registers to break the critical path.
6 Balances delays.
7 Saves iteration data in a new folder.

When HDL Coder has met your clock frequency goal or it has reached the maximum number of
iterations, it saves the generated code and iteration data in a new folder and generates a report that
describes the final critical path.

Automatic Iterative Optimization Output
When HDL Coder exits the optimization loop, it saves the results of the final iteration in a folder,
hdlsrc/your_model_name/hdlexpl/Final-timestamp.

The final iteration folder contains:
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• The generated HDL code, in hdlsrc/your_model_name
• A data file, cpGuidance.mat, that you can use with your original model to regenerate code

without rerunning the iterative optimization.
• The optimization report, summary.html.

HDL Coder also saves

Automatic Iterative Optimization Report
HDL Coder generates a report for the final optimization iteration and saves it in the final iteration
folder, hdlsrc/your_model_name/hdlexpl/Final-timestamp.

The final optimization report, summary.html, contains the following:

• Summary Section, with:

• Final critical path latency.
• Critical path latency and elapsed time for each iteration.

• Diagnostic Section, with:

• Reason for stopping at the final iteration.
• Model or block settings that can reduce the accuracy of the critical path analysis.

If your model has these settings, remove them where possible, and rerun
hdlcoder.optimizeDesign. Some optimizations, such as distributed pipelining and
constrained output pipeline, change the placement of pipeline registers after the coder
analyzes the critical path.

• Critical path description, which shows signals and components in both the original model and
generated model that are part of the critical path.

You may see a message that says a signal or component on the critical path cannot be traced
back to the original model. HDL Coder may not be able to map its internal representation of
your design back to the original design. Each optimization iteration changes the internal
representation, so the final representation can have a structure that is different from your
original design.

Requirements for Automatic Iterative Optimization
Your synthesis tool must be Xilinx ISE or Xilinx Vivado, and your target device must be a Xilinx FPGA.

Limitations of Automatic Iterative Optimization
• In the current release, automatic iterative optimization does not support Altera hardware.
• Running automatic iterative optimization can take a long time, depending on the complexity of

your design. To help mitigate the time cost, hdlcoder.optimizeDesign can regenerate code
from a previous run, or resume from an interrupted run.

• Automatic iterative optimization is available from the command line only.
• HDL Coder uses post-map timing information, which the synthesis tool generates before

performing place and route. Post-map timing information is less accurate than timing information
the synthesis tool generates after place and route, but is faster to obtain.
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See Also
hdlcoder.optimizeDesign
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Generated Model and Validation Model

In this section...
“Generated Model” on page 24-5
“Validation Model” on page 24-6

HDL Coder enables you to view the effect of HDL optimizations and block settings in the generated
model.

Generated Model
Before generating code, HDL Coder creates a behavioral model of the HDL code called the generated
model. The generated model is an intermediate model that captures cycle-accurate and bit-true
behavior of the generated code in area and timing optimizations during code generation. It shows
latency and numeric differences between your Simulink DUT and the generated HDL code. Delays
that the code generator inserts are highlighted in the generated model in various colors. See the
table below for different delays in code generation, the corresponding highlight color, and how the
delays are named in the generated model.

Delays Highlight Color Naming Convention
• Block implementation
• RAM mapping

Cyan The block is highlighted in cyan. Delay
blocks inside this block use the default
name Delay and are not highlighted.

“Constrained Output Pipelining” on
page 24-50

Green Constrained output pipelining: rd_n

• “Distributed Pipelining” on page
24-42

• “InputPipeline” on page 21-13 and
“OutputPipeline” on page 21-17

• “Delay Balancing” on page 24-27
• “Clock-Rate Pipelining” on page

24-52
• “Adaptive Pipelining” on page 24-

56

Orange • Distributed pipelining: rd_n
• Input pipelining:

in_n_pipe_in_pipe and output
pipelining: out_n_pipe_in_pipe

• Delay balancing: delayMatch
• Clock-rate pipelining: rd_n
• Adaptive pipelining:

HwModeRegister at block inputs
and PipelineRegister at the
block output.

With timing and area optimizations, the generated model is substantially different from the original
model. For example, you can see additional integer delays next to blocks if you request optimizations
and additional balanced delays wherever necessary to maintain the accuracy of the algorithm. You
see additional rates in the model if you request resource sharing or streaming optimization where the
same operator is time multiplexed across multiple operations.

The generated model is used in RTL testbench generation. The input stimulus and output response
are captured from the generated model instead of the original model because the generated model
reflects the algorithms timing changes required for optimizations. If you disable model generation,
you cannot generate a test bench in HDL Coder.
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After code generation, the generated model is saved in the target folder. By default, the generated
model prefix is gm_. For example, if your model name is myModel, your generated model name is
gm_myModel.

Customize the Generated Model

To customize the prefix of the generated model name, use the GeneratedModelNamePrefix
property with makehdl or hdlset_param. See “Prefix for generated model name” on page 16-88.

You can also specify various options for the layout of the generated model. See “Layout Options” on
page 16-90.

Validation Model
Because the generated model is often substantially different from the original model, the coder can
also create a validation model to compare the original model to the generated model. The validation
model inserts delays at the outputs of the original model to compensate for latency differences and
compares the outputs of the two models. When you simulate the validation model, numeric
differences in the output data trigger an assertion.

Using the validation model, you can verify that the output of the optimized DUT is bit-true to the
results produced by the original DUT.

A validation model contains:

• A generated model.
• An original model that has compensating delays inserted.
• Original inputs, routed to the original model and the generated model.
• Scopes for comparing and viewing the outputs of the original model and generated model.

Latency Differences

Some block architectures and optimizations introduce latency. For example, for the Reciprocal block,
you can specify HDL block architectures that implement the Newton-Raphson method. The Newton-
Raphson method is iterative, so block architectures that use it are multicycle and introduce latency at
the block rate.

Similarly, the resource sharing area optimization time-multiplexes data over a shared hardware
resource, which introduces local multirate and latency at the upsampled rate.

Numeric Differences

HDL block architectures can introduce numeric differences. For example:

• The Newton-Raphson method is an approximation. If you select a Newton-Raphson block
implementation, the generated model shows a change in numerics.

• HDL implementations for signal processing blocks, such as filters, can change numerics.

See also “Locate Numeric Differences After Speed Optimization” on page 23-2.

Generate A Validation Model

• In the Configuration Parameters dialog box, in the HDL Code Generation > Global Settings >
Model Generation pane, select Validation Model.
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• In the HDL Workflow Advisor, in the HDL Code Generation > Generate RTL Code and
Testbench pane, enable Generate validation model.

• Use the GenerateValidationModel property with makehdl or hdlset_param.

Customize the Validation Model

To customize the suffix of the generated validation name, use the ValidationModelNameSuffix
property with makehdl or hdlset_param. See “Suffix for validation model name” on page 16-88.

Restrictions

• To generate a validation model, you must generate HDL code for the DUT Subsystem. Model
generation is not supported for generating code for the entire model instead of the DUT
Subsystem.

• Make sure the DUT subsystem has no unconnected output ports. See “Terminate Unconnected
Block Outputs and Usage of Commenting Blocks” on page 20-25.

See Also

More About
• “Delay Balancing” on page 24-27
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Simplify Constant Operations and Reduce Design Complexity in
HDL Coder™

HDL Coder performs certain optimization techniques that improve the quality of the generated HDL
code. When you use floating-point data types in Native Floating Point mode and generate code
from your model, at compile-time, HDL Coder searches for a subset of blocks that fit a certain
pattern. When the code generator recognizes the pattern, it automatically performs certain
optimization techniques to replace the blocks in the subset with other, simpler blocks.

The optimization techniques:

• Remove redundant run-time computations
• Simplify your design
• Improve quality and efficiency of generated HDL code
• Reduce latency and area footprint
• Improve timing of your design on target hardware

Simplification of Constant operations

HDL Coder removes redundant operations in your design by evaluating constant subexpressions in
advance. This optimization technique identifies Simulink® blocks in your model that have constant
values at all input ports, and then replaces the blocks with Constant blocks. The code generator
propagates the input constants inside the blocks to compute the resulting Constant value.

   For example, c = 3 * 5 becomes c = 15.

This optimization works with any Simulink block that supports HDL code generation. For example:

• Open the model hdlcoder_constant_simplification. Double-click the Trigonometric
Functions Subsystem.

open_system('hdlcoder_constant_simplification')
open_system('hdlcoder_constant_simplification/Trigonometric Functions')
set_param('hdlcoder_constant_simplification', 'SimulationCommand', 'update');
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• To generate HDL code for the hdlcoder_constant_simplification model, enter this
command.

makehdl('hdlcoder_constant_simplification')

• Open the generated model, and double-click the Trigonometric Functions subsystem.
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HDL Coder™ recognized the modeling pattern and replaced the constant single-precision
trigonometric operations with constants. This optimization results in significant area reduction and
improvements to timing when you deploy the code onto the target platform.

Replacement of Slower Operations with Faster Equivalents

This optimization automatically replaces slower operations with faster equivalents.

   For example, r1 = r2 / 2 becomes r1 = r2 >> 1.

Examples of this optimization technique include replacement of a Product block or a Divide block by a
Gain block. If one of the inputs to a Product block or a Divide block is a constant and a power of two,
the code generator replaces that block by a Gain block. The code generator propagates the Constant
value inside the Product block or the Divide block to compute the Gain parameter. This optimization
works with single data types in the Native Floating Point mode.

For example:

• Open the model hdlcoder_slow_operation_replacement. Double-click the DUT Subsystem.

open_system('hdlcoder_slow_operation_replacement')
open_system('hdlcoder_slow_operation_replacement/DUT')
set_param('hdlcoder_slow_operation_replacement', 'SimulationCommand', 'update');
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• To generate HDL code for the DUT Subsystem, enter this command:

makehdl('hdlcoder_slow_operation_replacement/DUT')

• Open the generated model, and double-click the DUT subsystem.

HDL Coder™ recognized the modeling pattern and replaced the Product block and the Divide block
by a Gain block. This optimization significantly reduces the latency of your design, and improves area
and timing on the target FPGA.

Combination of Multiple Operations

This optimization replaces several operations with one equivalent operation. Examples of this
optimization technique include replacement of a Sin block and a Cos block by a Sincos block. If you
provide the same input signal to a Sin block and a Cos block in your model, and when the HDL Block
Properties of the Sin and Cos blocks match, the code generator replaces the blocks with a Sincos
block. This optimization works with single data types in the Native Floating Point mode.

For example:

• Open the model hdlcoder_combine_operations. Double-click the DUT Subsystem.

open_system('hdlcoder_combine_operations')
open_system('hdlcoder_combine_operations/DUT')
set_param('hdlcoder_combine_operations', 'SimulationCommand', 'update');
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• To generate HDL code for the DUT Subsystem, enter this command:

makehdl('hdlcoder_combine_operations/DUT')

• Open the generated model, and double-click the DUT Subsystem. The generated model appears as
below.

HDL Coder™ recognized the modeling pattern and replaced the Sin block and the Cos block by a
Sincos block. This optimization technique significantly improves the performance of your design on
the target platform.

Considerations

• The optimizations work with floating-point data types. Fixed-point designs are not affected by this
optimization. When you use single data types, enable the Native Floating Point mode. In the
Configuration Parameters dialog box, on the HDL Code Generation > Floating Point pane, set
Floating-Point IP Library to Native Floating Point. To learn about native floating-point
support in HDL Coder, see “Generate Target-Independent HDL Code with Native Floating-Point”
on page 10-70.

• The optimizations preserve all comments from the blocks in the generated code. To learn about
specifying comments to blocks, see “Generate Code with Annotations or Comments” on page 25-
13.

• The optimizations do not optimize blocks that use tunable parameters or generic inputs because
the tunable parameters are not treated as constant values. To make these blocks participate in the
optimization, in the Mask Editor for the blocks, clear the Tunable check box. To learn about
tunable parameters, see “Generate DUT Ports for Tunable Parameters” on page 10-17.

• The optimizations treat enumeration values and constants from the Workspace browser as
constant values. The code generator therefore propagates these values inside various components
and simplifies the constant operations.

See Also

More About
• “Generated Model and Validation Model” on page 24-5
• “Remove Redundant Logic and Optimize Unconnected Ports in Design” on page 24-91
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Optimization with Constrained Overclocking
In this section...
“Why Constrain Overclocking?” on page 24-13
“Optimizations that Overclock Resources” on page 24-13
“How to Use Constrained Overclocking” on page 24-13
“Constrained Overclocking Limitations” on page 24-14

Why Constrain Overclocking?
Area and timing optimizations that you specify can result in upsampled rates in your design. For
example, when you use the resource sharing optimization, the code generator overclocks the shared
resources by an overclocking factor (OCF). The OCF depends on the number of shareable resources,
N, and the SharingFactor, SF, that you specify. If your clock rate is high, overclocking can cause
your design clock rate to exceed the maximum clock rate of your target hardware. To constrain
overclocking, use the Oversampling factor in conjunction with clock-rate pipelining to constrain the
overclocking of your design.

Optimizations that Overclock Resources
Area and speed optimizations, and certain block implementations that you specify result in
overclocking the resources in your design. For example, the following optimizations and
implementations can result in upsampled rates in your design:

• RAM mapping
• Streaming
• Resource sharing
• Loop streaming
• Specific block implementations, such as cascade architectures, Newton-Raphson architectures,

and some filter implementations

How to Use Constrained Overclocking
When using area and speed optimizations, you can specify constraints on overclocking using the
oversampling parameter. If you want a single-rate design, you can use these parameters to prevent
overclocking, or limit overclocking within a range.

Suppose that you have a design that does not currently fit in the target hardware, but is already
running at the target device maximum clock frequency, and you know that the inputs to your design
can change at most every N cycles. You can enable area optimizations, such as resource sharing, and
specify a single-rate implementation using the Oversampling factor. You can specify the
Oversampling factor in the HDL Code Generation > Global Settings pane of the Configuration
Parameters dialog box.

By default, the clock-rate pipelining optimization is enabled, and it works in conjunction with the
Oversampling factor to make the DUT sample time slower than the actual clock rate. You can
design your model at the base sample time and then set the Oversampling factor to N. This setting
gives HDL Coder a latency budget of N cycles to perform the computation. In this situation, HDL
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Coder can reuse the shared resource at the original clock rate over N cycles, instead of implementing
the sharing optimization by overclocking the shared resource.

Constrained Overclocking Limitations
When you constrain overclocking by specifying an Oversampling factor greater than 1,
ClockInputs must be set to Single.

See Also

More About
• “Oversampling factor” on page 16-15
• “Clock-Rate Pipelining” on page 24-52
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Resolve Numerical Mismatch with Delay Balancing
This example shows how to use delay balancing to resolve a numerical mismatch between the
generated model and original model after HDL code generation.

Problem

The issue is that simulating the validation model results in a numerical mismatch between the
original model and the generated model after HDL code generation. To illustrate this issue:

1. Open the hdlcoder_resolve_delaybalancing model. The DUT is a simple multirate design.

modelname = 'hdlcoder_resolve_delaybalancing';
dutname = 'hdlcoder_resolve_delaybalancing/Subsystem';
load_system(modelname)
open_system(dutname)
set_param(modelname, 'SimulationCommand', 'update');

2. Generate HDL code and validation model for the DUT.

makehdl(dutname,'GenerateValidationModel', 'on', ...
                    'TargetDirectory','C:/Temp/hdlsrc')

### Generating HDL for 'hdlcoder_resolve_delaybalancing/Subsystem'.
### Using the config set for model <a href="matlab:configset.showParameterGroup('hdlcoder_resolve_delaybalancing', { 'HDL Code Generation' } )">hdlcoder_resolve_delaybalancing</a> for HDL code generation parameters.
### Starting HDL check.
### Generating new validation model: <a href="matlab:open_system('gm_hdlcoder_resolve_delaybalancing_vnl')">gm_hdlcoder_resolve_delaybalancing_vnl</a>.
### Validation model generation complete.
### Begin VHDL Code Generation for 'hdlcoder_resolve_delaybalancing'.
### MESSAGE: The design requires 3 times faster clock with respect to the base rate = 0.1.
### Working on hdlcoder_resolve_delaybalancing/Subsystem/Sqrt/Sqrt_iv as C:\Temp\hdlsrc\hdlcoder_resolve_delaybalancing\Sqrt_iv.vhd.
### Working on hdlcoder_resolve_delaybalancing/Subsystem/Sqrt/Sqrt_core as C:\Temp\hdlsrc\hdlcoder_resolve_delaybalancing\Sqrt_core.vhd.
### Working on hdlcoder_resolve_delaybalancing/Subsystem/Sqrt as C:\Temp\hdlsrc\hdlcoder_resolve_delaybalancing\Sqrt.vhd.
### Working on Subsystem_tc as C:\Temp\hdlsrc\hdlcoder_resolve_delaybalancing\Subsystem_tc.vhd.
### Working on hdlcoder_resolve_delaybalancing/Subsystem as C:\Temp\hdlsrc\hdlcoder_resolve_delaybalancing\Subsystem.vhd.
### Generating package file C:\Temp\hdlsrc\hdlcoder_resolve_delaybalancing\Subsystem_pkg.vhd.
### Creating HDL Code Generation Check Report file://C:\Temp\hdlsrc\hdlcoder_resolve_delaybalancing\Subsystem_report.html
### HDL check for 'hdlcoder_resolve_delaybalancing' complete with 0 errors, 2 warnings, and 4 messages.
### HDL code generation complete.

3. View the validation model. The validation model compares the generated model with the original
model. The generated model displays the effect of optimizations and block-specific architectures that
you specify. Use the validation model to verify that the DUT in the generated model is bit-true to the
numerical results produced by the original DUT.
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valmodelname = 'gm_hdlcoder_resolve_delaybalancing_vnl';
valmodelsubsys = 'gm_hdlcoder_resolve_delaybalancing_vnl/Subsystem';
load_system(valmodelname)
open_system(valmodelsubsys)
set_param(valmodelname, 'SimulationCommand', 'update');

4. Simulate the validation model. HDL Coder™ generates warnings that indicate an assertion
detected at various time stamps. If you navigate through the validation model by double-clicking the
Compare Subsystem and then the Assert_Out1 Subsystem, you see a compare: Out1 Scope block.
This Scope block compares the output of the original model DUT with the generated model DUT and
displays numerical differences as an error signal. When you double-click the Scope block, you see a
nonzero error, which indicates a numerical mismatch.

Cause

To diagnose this issue:
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1. Observe the parameters saved on the original model. You see that BalanceDelays is set to off on
the model.

hdlsaveparams(modelname)

%% Set Model 'hdlcoder_resolve_delaybalancing' HDL parameters
hdlset_param('hdlcoder_resolve_delaybalancing', 'BalanceDelays', 'off');
hdlset_param('hdlcoder_resolve_delaybalancing', 'GenerateHDLTestBench', 'off');
hdlset_param('hdlcoder_resolve_delaybalancing', 'GenerateValidationModel', 'on');
hdlset_param('hdlcoder_resolve_delaybalancing', 'HDLSubsystem', 'hdlcoder_resolve_delaybalancing/Subsystem');

% Set Gain HDL parameters
hdlset_param('hdlcoder_resolve_delaybalancing/Subsystem/Gain3', 'OutputPipeline', 2);

hdlset_param('hdlcoder_resolve_delaybalancing/Subsystem/Sqrt', 'Architecture', 'RecipSqrtNewton');

2. Inspect the validation model. Inside the DUT Subsystem, you see that the code generator
implemented the reciprocal square root operation as a Subsystem. If you double-click the Sqrt
Subsystem, you see that the implementation has a latency. This latency arises due to the Newton-
Raphson implementation of reciprocal square root.

open_system('gm_hdlcoder_resolve_delaybalancing_vnl/Subsystem/Sqrt')

The simulation mismatch occurred because the Newton-Raphson choice for implementing the
Reciprocal Sqrt block results in a latency difference between the original model and the generated
model. In addition, the downsampling introduced by the Rate Transition block drops samples. As
delay balancing is disabled on the model, the code generator did not add matching delays to account
for this latency.

Solution

To fix this issue, enable delay balancing on the model. In the original model, set BalanceDelays to
on. When you enable delay balancing, the code generator detects introduction of delays along one
path and adds matching delays on other, parallel signal paths.

1. Enable BalanceDelays on the model and generate HDL code and validation model.

load_system(modelname)
makehdl(dutname,'BalanceDelays','on', ...
                'GenerateValidationModel', 'on', ...
                    'TargetDirectory','C:/Temp/hdlsrc')

### Generating HDL for 'hdlcoder_resolve_delaybalancing/Subsystem'.
### Using the config set for model <a href="matlab:configset.showParameterGroup('hdlcoder_resolve_delaybalancing', { 'HDL Code Generation' } )">hdlcoder_resolve_delaybalancing</a> for HDL code generation parameters.
### Starting HDL check.
### The code generation and optimization options you have chosen have introduced additional pipeline delays.
### The delay balancing feature has automatically inserted matching delays for compensation.
### The DUT requires an initial pipeline setup latency. Each output port experiences these additional delays.
### Output port 0: 2 cycles.
### Generating new validation model: <a href="matlab:open_system('gm_hdlcoder_resolve_delaybalancing_vnl')">gm_hdlcoder_resolve_delaybalancing_vnl</a>.
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### Validation model generation complete.
### Begin VHDL Code Generation for 'hdlcoder_resolve_delaybalancing'.
### MESSAGE: The design requires 3 times faster clock with respect to the base rate = 0.1.
### Working on hdlcoder_resolve_delaybalancing/Subsystem/Sqrt/Sqrt_iv as C:\Temp\hdlsrc\hdlcoder_resolve_delaybalancing\Sqrt_iv.vhd.
### Working on hdlcoder_resolve_delaybalancing/Subsystem/Sqrt/Sqrt_core as C:\Temp\hdlsrc\hdlcoder_resolve_delaybalancing\Sqrt_core.vhd.
### Working on hdlcoder_resolve_delaybalancing/Subsystem/Sqrt as C:\Temp\hdlsrc\hdlcoder_resolve_delaybalancing\Sqrt.vhd.
### Working on Subsystem_tc as C:\Temp\hdlsrc\hdlcoder_resolve_delaybalancing\Subsystem_tc.vhd.
### Working on hdlcoder_resolve_delaybalancing/Subsystem as C:\Temp\hdlsrc\hdlcoder_resolve_delaybalancing\Subsystem.vhd.
### Generating package file C:\Temp\hdlsrc\hdlcoder_resolve_delaybalancing\Subsystem_pkg.vhd.
### Creating HDL Code Generation Check Report file://C:\Temp\hdlsrc\hdlcoder_resolve_delaybalancing\Subsystem_report.html
### HDL check for 'hdlcoder_resolve_delaybalancing' complete with 0 errors, 0 warnings, and 4 messages.
### HDL code generation complete.

2. Open the validation model. You see that the code generator introduced matching delays to balance
the latency introduced by the Sqrt block and to offset the effect of downsampling. The additional
delays account for the latency difference.

load_system(valmodelname)
open_system(valmodelsubsys)
set_param(valmodelname, 'SimulationCommand', 'update');

3. Simulate the validation model and open the compare: Out1 Scope block. You see that the
numerical mismatch has been resolved.
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See Also

Related Examples
• “Delay Balancing and Validation Model Workflow In HDL Coder™”

More About
• “Delay Balancing” on page 24-27
• “Generated Model and Validation Model” on page 24-5
• “Check delay balancing setting” on page 38-11
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Streaming
In this section...
“What Is Streaming?” on page 24-20
“Specify Streaming” on page 24-20
“How to Determine Streaming Factor and Sample Time” on page 24-21
“Determine Blocks That Support Streaming” on page 24-21
“Requirements for Streaming Subsystems” on page 24-21
“Streaming Report” on page 24-22

What Is Streaming?
Streaming is an area optimization in which HDL Coder transforms a vector data path to a scalar data
path (or to several smaller-sized vector data paths). By default, HDL Coder generates fully parallel
implementations for vector computations. For example, the code generator realizes a vector sum as
several adders, executing in parallel during a single clock cycle. This technique can consume many
hardware resources. With streaming, the generated code saves chip area by multiplexing the data
over a smaller number of shared hardware resources.

By specifying a streaming factor for a subsystem, you can control the degree to which such resources
are shared within that subsystem. When the ratio of streaming factor (Nst) to subsystem data path
width (Vdim) is 1:1, HDL Coder implements an entirely scalar data path. A streaming factor of 0 (the
default) produces a fully parallel implementation (that is, without sharing) for vector computations.

If you know the maximal vector dimensions and the sample rate for a subsystem, you can compute
the possible streaming factors and resulting sample rates for the subsystem. However, even if the
requested streaming factor is mathematically possible, the subsystem must meet other criteria for
streaming.

By default, when you apply the streaming optimization, HDL Coder oversamples the shared hardware
resource to generate an area-optimized implementation with the original latency. If the streamed data
path is operating at a rate slower than the base rate, the code generator implements the data path at
the base rate. You can also limit the oversampling ratio to meet target hardware clock constraints. To
learn more, see “Clock-Rate Pipelining” on page 24-52.

You can generate and use the validation model to verify that the output of the optimized DUT is bit-
true to the results produced by the original DUT. To learn more about the validation model, see
“Generated Model and Validation Model” on page 24-5.

Specify Streaming
To specify streaming from the UI:

• In the Apps tab, select HDL Coder. The HDL Code tab appears. Select the subsystem, model
reference, or MATLAB Function block and then click HDL Block Properties. In the
StreamingFactor field, enter the number of resources that you want to stream.

Note For MATLAB Function blocks, to specify the StreamingFactor, in the HDL Block Properties
dialog box, you must set the HDL architecture of the block to MATLAB Datapath.
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• Right-click the subsystem, model reference, or MATLAB Function block and select HDL Code >
HDL Block Properties. In the StreamingFactor field, enter the number of resources that you
want to stream.

At the command-line, you can set StreamingFactor using the hdlset_param function, as in the
following example.

modelname = 'sfir_fixed'
dut = 'sfir_fixed/symmetric_fir';
open_system(modelname)
hdlset_param(dut,'StreamingFactor', 4);

How to Determine Streaming Factor and Sample Time
In a given subsystem, if Nst is the streaming factor, and Vdim is the maximum vector dimension, then
the data path of the resultant streamed subsystem is one of the following:

• Of width Vstream = (Vdim/Nst), if Vdim > Nst.
• Of width Vstream = (Nst/Vdim), if Nst > Vdim.
• Scalar.

If the original data path operated with a sample time, S, that is equal to the base sample time, then
the streamed subsystem operates with a sample time of:

• S / Nst, if Vdim > Nst.
• S / Vdim, if Nst > Vdim.

If the original data path operated with a sample time, S, that is greater than the base sample
time,Sbase, then the streamed subsystem operates with a sample time of Sbase / Oversampling.
Notice that the streamed sample time is independent of the original sample time, S.

Determine Blocks That Support Streaming
HDL Coder supports many blocks for streaming. As a best practice, run the checkhdl function
before generating streaming code for a subsystem. checkhdl reports blocks in your subsystem that
are incompatible with streaming. If you initiate streaming code generation for a subsystem that
contains incompatible blocks, the coder works around those blocks and generates non-streaming
code for them.

HDL Coder cannot apply the streaming optimization to a model reference.

Requirements for Streaming Subsystems
Before applying streaming, HDL Coder performs a series of checks on the subsystems to be
streamed. You can stream a subsystem if:

• The streaming factor Nst is a perfect divisor of the vector width Vdim, or the vector width must be a
perfect divisor of the streaming factor.

• All inputs to the subsystem have the same vector size. If the inputs have different vector sizes, you
can stream the subsystem by flattening the subsystem hierarchy. When you flatten the hierarchy,
the streaming optimization identifies regions with different vector sizes and creates streaming
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groups for these regions. These groups have different streaming factors that are inferred from the
vector sizes.

Streaming Report
To see the streaming information in the report, before you generate code for each subsystem or
model reference, enable the optimization report. To enable this report, in the HDL Code tab, select
Report Options, and then select Generate optimization report.

When you generate an optimization report, in the Streaming and Sharing section, you see the
effect of the streaming optimization. If streaming is unsuccessful, the report shows diagnostic
messages and offending blocks that caused streaming to fail. When the requested streaming factor
cannot be implemented, HDL Coder generates non-streaming code.

If streaming is successful, the report displays the StreamingFactor that was inferred, and a table
that specifies:

• Group: A unique group ID for a group of Simulink blocks that belong to a streaming group.
• Inferred Streaming Factor: Streaming factor inferred by HDL Coder with the Streaming

Factor that you specify in the HDL Block Properties.

To see groups of blocks that belong to a streaming group in your Simulink model and in the
generated model, click the Highlight streaming groups and diagnostics link in the report.

See Also

More About
• “Resource Sharing” on page 24-23
• “Clock-Rate Pipelining” on page 24-52
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Resource Sharing
In this section...
“How Resource Sharing Works” on page 24-23
“Benefits and Costs of Resource Sharing” on page 24-23
“Shareable Resources in Different Blocks” on page 24-24
“Specify Resource Sharing” on page 24-24
“Limitations for Resource Sharing” on page 24-24
“Block Requirements for Resource Sharing” on page 24-24
“Resource Sharing Report” on page 24-25

Resource sharing is an area optimization in which HDL Coder identifies multiple functionally
equivalent resources and replaces them with a single resource. The data is time-multiplexed over the
shared resource to perform the same operations.

How Resource Sharing Works
You can specify a sharing factor SF for a subsystem or a MATLAB Function block. HDL Coder tries to
identify a certain number of identical, shareable resources N up to SF. How the code generator
shares these resources depends on N, SF, and the Oversampling factor.

By default, the Oversampling factor is 1, and resource sharing overclocks the shared resources
by an overclocking factor (OCF) that depends on the remainder of SF and N.

if rem(SF,N) == 0
    OCF = N;
else
    OCF = SF;
end

If you specify an Oversampling factor greater than 1, your design operates a faster clock rate on
the target hardware because clock-rate pipelining is enabled by default. When you specify a
SharingFactor, the resource sharing optimization tries to share up to N resources, and overclocks
the shared resources by a factor given by:

Overclocking factor = (block_rate ÷ DUT_base_rate) × Oversampling

You can use the validation model to verify that the output of the optimized DUT is bit-true to the
results produced by the original DUT. To learn more about the validation model, see “Generated
Model and Validation Model” on page 24-5.

Benefits and Costs of Resource Sharing
Resource sharing can substantially reduce your chip area. For example, the generated code can use
one multiplier to perform the operations of several identically configured multipliers from the original
model. However, resource sharing has the following costs:

• Uses more multiplexers and can use more registers.
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• Reduces opportunities for distributed pipelining or retiming, because HDL Coder does not
pipeline across clock rate boundaries.

• Multiplies the clock rate of the target hardware by the sharing factor.

Shareable Resources in Different Blocks
If you specify a nonzero sharing factor for a MATLAB Function block, HDL Coder identifies and
shares functionally equivalent multipliers.

If you specify a nonzero sharing factor for a Subsystem, HDL Coder identifies and shares functionally
equivalent instances of the following types of blocks:

• Gain
• Product
• Multiply-Add
• Add or Sum with two inputs
• Atomic Subsystem
• MATLAB Function

The code generator shares functionally equivalent MATLAB Function blocks with fixed-point types.
When you use floating-point types or use the MATLAB Datapath architecture for MATLAB Function
blocks with fixed-point types, HDL Coder treats the MATLAB Function block as a regular Subsystem.
You can then share functionally equivalent resources inside the MATLAB Function block. To learn
more, see “Use MATLAB Datapath Architecture for Sharing with MATLAB Function Blocks” on page
20-111.

Specify Resource Sharing
To specify resource sharing from the UI:

• In the Apps tab, select HDL Coder. The HDL Code tab appears. Select the subsystem, model
reference, or MATLAB Function block and then click HDL Block Properties. In the
SharingFactor field, enter the number of shareable resources.

• Right-click the subsystem, model reference, or MATLAB Function block and select HDL Code >
HDL Block Properties. In the SharingFactor field, enter the number of shareable resources.

At the command-line, set the SharingFactor using hdlset_param, as in the following example.

modelname = 'sfir_fixed'
dut = 'sfir_fixed/symmetric_fir';
open_system(modelname)
hdlset_param(dut,'SharingFactor', 4);

Limitations for Resource Sharing
HDL Coder does not support model references for resource sharing.

Block Requirements for Resource Sharing
Blocks to be shared must have the following requirements:
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• Single-rate.
• No infinite sample rate. The DUT must not contain blocks with Sample time set to Inf. For

example, Constant blocks must have Sample time set to -1. To set the sample time to -1 for all
Constant blocks in your DUT, use the following MATLAB code:

blks = find_system(dut, 'BlockType', 'Constant');
for i = 1:length(blks) 
   set_param(blks{i}, 'SampleTime', '-1'); 
end

• No bus inputs or outputs.
• No tunable mask parameters. To share these blocks, in the Mask Editor, clear the Tunable check

box.
• If the block is within a feedback loop, at least one Unit Delay or Delay block must be connected to

each output port.

To learn about block-specific settings and requirements for resource sharing, see:

• “Resource Sharing Settings for Various Blocks” on page 20-106
• “Resource Sharing of Subsystems and Floating-Point IPs” on page 20-110

Resource Sharing Report
To see the resource sharing information in the report, before you generate code for each subsystem
or model reference, enable the optimization report. To enable this report, in the HDL Code tab,
select Report Options, and then select Generate optimization report.

When you generate the optimization report, in the Streaming and Sharing section, you see the
effect of the resource sharing optimization. If resource sharing is unsuccessful, the report shows
diagnostic messages and offending blocks that cause resource sharing to fail.

If resource sharing is successful, the report displays the SharingFactor, and a table that contains
groups of blocks that shared resources. The table contains:

• Group Id: A unique ID for a group of similar Simulink blocks, such as add or product blocks, that
share resources.

• Resource Type: The type of Simulink block in a sharing group.
• I/O Wordlengths: Word lengths of inputs to and output from the block in a sharing group.
• Group size: Number of blocks of the same type in a sharing group.
• Block name: Name of a block that belongs to a sharing group.
• Color Legend: Color that highlights all the blocks in a sharing group.

To see the shared resources in your Simulink model and in the generated model, click the Highlight
shared resources and diagnostics link.
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See Also

Related Examples
• Resource Sharing For Area Optimization
• “Single-rate Resource Sharing Architecture”

More About
• “Clock-Rate Pipelining” on page 24-52
• “Streaming” on page 24-20
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Delay Balancing
In this section...
“Why Use Delay Balancing?” on page 24-27
“Specify Delay Balancing” on page 24-27
“Delay Balancing Limitations” on page 24-28
“Delay Balancing Report” on page 24-30

Why Use Delay Balancing?
HDL Coder supports several optimizations, block implementations, and options that introduce
discrete delays into the model, with the goal of more efficient hardware usage or achieving higher
clock rates. Examples include:

• Optimizations: Optimizations such as output pipelining, streaming, or resource sharing can
introduce delays.

• Cascading: Some blocks support cascade implementations, which introduce a cycle of delay in the
generated code.

• Block implementations: Some block implementations such as the Newton-Raphson architecture
inherently introduce delays in the generated code.

When optimizations or block implementation options introduce delays along the critical path in a
model, the numerics of the original model and generated model or HDL code can differ because
equivalent delays are not introduced on other, parallel signal paths. Manual insertion of
compensating delays along the other paths is possible, but is error prone and does not scale well to
large models with many signal paths or multiple sample rates.

To help you solve this problem, HDL Coder supports delay balancing. By default, delay balancing is
enabled on the model. The code generator detects introduction of new delays along one path, and
then inserts matching delays on the other paths. When delay balancing is enabled, the generated
model is functionally equivalent to the original model. It is not recommended that you disable delay
balancing on the model. If you disable this setting, HDL Coder generates a warning that numerical
differences can occur in the validation model. To fix this warning, enable Balance delays on the
model or run the model check “Check delay balancing setting” on page 38-11.

Specify Delay Balancing
You can set delay balancing for an entire model. For finer control, you can also set delay balancing for
subsystems within the top-level DUT subsystem.

Set Delay Balancing for a Model

Use the following makehdl properties to set delay balancing for a model:

• BalanceDelays: By default, model-level delay balancing is enabled, and subsystems within the
model inherit the model-level setting. To learn how to set delay balancing for a model, see
“Balance delays” on page 14-3.

• GenerateValidationModel: By default, validation model generation is disabled. When you
enable delay balancing, generate a validation model to view delays and other differences between
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your original model and the generated model. To learn how to enable validation model generation,
see the Generate validation model section in “Model Generation for HDL Code” on page 16-85.

For example, the following commands generate HDL code with delay balancing and generate a
validation model.
dut = 'ex_rsqrt_delaybalancing/Subsystem';
makehdl(dut,'BalanceDelays','on','GenerateValidationModel','on');

Disable Delay Balancing for a Subsystem

You can disable delay balancing for an entire model or disable a subsystem within the top-level DUT
subsystem. For example, if you do not want to balance delays for a control path, you can put the
control path in a subsystem, and disable delay balancing for that subsystem.

To disable delay balancing for a subsystem within the top-level DUT subsystem, disable delay
balancing at the model level. When you disable delay balancing for the model, the validation model
does not compensate for latency inserted in the generated model due to optimizations or block
implementations. The validation model can therefore show mismatches between the original model
and generated model.

To disable delay balancing for a subsystem within the top-level DUT subsystem:

1 Disable delay balancing for the model.
2 Enable delay balancing for the top-level DUT subsystem.
3 Disable delay balancing for a subsystem within the DUT subsystem.

To learn how to set delay balancing for a subsystem, see “Set Delay Balancing For a Subsystem” on
page 21-5.

Delay Balancing Limitations
If delay balancing is unsuccessful, hdlcoder.optimizeDesign cannot optimize the generated HDL
code.

Unsupported Blocks

The following blocks and subsystems do not support delay balancing:

• Triggered Subsystem
• Atomic Subsystem
• HDLCosimulation
• Data Type Duplicate
• Decrement To Zero
• Frame Conversion
• Ground
• FFT HDL Optimized
• LMS Filter
• Model Reference
• To VCD File
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• Magnitude-Angle to Complex

Block Mode Restrictions

The following block implementations do not support delay balancing:

• hdldefaults.ConstantSpecialHDLEmission
• hdldefaults.NoHDL

Subsystem-Level Restrictions

HDL Coder does not support delay balancing, if:

• There are multiple instances of an Atomic Subsystem in different conditional subsystems.

In the Block Parameters dialog box of the Atomic Subsystem, you can set Function packaging to
Nonreusable function.

• The “BalanceDelays” on page 21-4 block property for all instances of an Atomic Subsystem or
Model Reference resolves to a different value.

To fix this error, disable BalanceDelays for all instances of the Atomic Subsystem or Model
Reference.

• The block is inside a conditional subsystem and has pipeline delays.
• A subsystem with BlackBox Architecture has the ImplementationLatency block property set

to a negative value.

To fix this error, for ImplementationLatency, enter a nonnegative integer.

Other Restrictions

HDL Coder does not support delay balancing, if:

• Delays are introduced in a feedback loop and HDL Coder cannot balance the path delays. For
example, if you apply clock-rate pipelining inside a feedback loop, HDL Coder introduces a delay
at the clock-rate, and can cause delay balancing to fail.

To reduce the number of clock-rate delays, increase the “Oversampling factor” on page 16-15.
• The sample time is not discrete or the ratio of sample times of the fastest to the slowest rate is too

large.

Delay Balancing with Constants

When you have Constant blocks as inputs inside the DUT Subsystem for which delay balancing is
enabled, you see an initial simulation mismatch in the validation model. Consider this model inside a
DUT Subsystem. The Constant block that outputs a value of 1 has the HDL block property
OutputPipeline set to 1 .
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This figure displays the generated validation model. You see that delay balancing added a matching
delay to the input port to balance the pipeline register inserted for the Delay block. The code
generator does not insert a matching delay on the parallel path containing the Constant block with
the value 2 because the output value of the block is a constant. This delay not inserted results in an
initial simulation mismatch

To resolve the simulation mismatch, in the validation model, manually add a matching delay at the
output of the Constant block with the value 2.

Delay Balancing Report
To see the delay balancing information in the report, before you generate code for each subsystem or
model reference, enable the optimization report. To enable this report, in the HDL Code tab, select
Report Options, and then select Generate optimization report.

When you generate code for each subsystem, model reference, or MATLAB Function block, HDL
Coder produces the optimization report. In the report, select the Delay Balancing section of the
report.

The Delay Balancing Report shows latency changes, pipeline delay and phase delay at the output
ports, and the number of pipelines added at the output ports to match the delays. If delay balancing
fails, the report mentions the criteria that was violated and displays the link to any block or
subsystem that caused delay balancing to fail.
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See Also

Related Examples
• “Delay Balancing and Validation Model Workflow In HDL Coder™”

More About
• “Resolve Numerical Mismatch with Delay Balancing” on page 24-15
• “Create and Use Code Generation Reports” on page 25-2
• “Validation Model” on page 24-6
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Find Feedback Loops
In this section...
“Specify Highlighting of Feedback Loops” on page 24-32
“Remove Highlighting” on page 24-32
“Limitations” on page 24-32

Feedback loops in your Simulink design can inhibit delay balancing and optimizations such as
resource sharing and streaming.

To find feedback loops in your design that are inhibiting optimizations, you can generate and run a
MATLAB script that highlights one or more feedback loops in your original model and the generated
model. When you run the script, different feedback loops are highlighted in different colors. The
feedback loop highlighting script is saved in the same target folder as the HDL code.

After you generate code, if feedback loops are inhibiting optimizations, the command window shows a
link that you can click to highlight feedback loops. If you generate an Optimization Report, the report
also contains a link you can click to highlight feedback loops.

The script can highlight feedback loops that are inhibiting the following optimizations:

• Resource sharing
• Streaming
• MATLAB variable pipelining
• Delay balancing

Specify Highlighting of Feedback Loops
By default, highlighting of feedback loops is enabled. This setting is available:

• In the Configuration Parameters dialog box, on the HDL Code Generation > Global Settings >
Advanced tab, select Highlight feedback loops inhibiting delay balancing and
optimizations.

• To generate a feedback loop highlighting script programmatically, use the
HighlightFeedbackLoops property with makehdl or hdlset_param. For example, to generate
a feedback loop highlight script for a model, myModel, enter:

hdlset_param ('myModel', 'HighlightFeedbackLoops', 'on');

Remove Highlighting
By default, HDL Coder generates a script to highlight feedback loops and a script to clear the
highlighting of feedback loops in your model. You can turn off highlighting using either of these ways:

• Click the clearhighlighting script in the MATLAB Command Window
• In the Simulink Toolstrip, select Debug > Trace Signal.

Limitations
Feedback loop highlighting cannot highlight blocks that have names that contain a single quote (').
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See Also

More About
• “Diagnostics for Optimizations” on page 16-93
• “Create and Use Code Generation Reports” on page 25-2
• “Generated Model and Validation Model” on page 24-5
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Hierarchy Flattening
In this section...
“What Is Hierarchy Flattening?” on page 24-34
“When to Flatten Hierarchy” on page 24-34
“Considerations” on page 24-34
“How to Flatten Hierarchy” on page 24-34
“Limitations for Hierarchy Flattening” on page 24-35

What Is Hierarchy Flattening?
Hierarchy flattening enables you to remove subsystem hierarchy from the HDL code generated from
your design.

HDL Coder considers blocks within a flattened subsystem to be at the same level of hierarchy, and no
longer grouped into separate subsystems. This consideration allows the coder to reorganize blocks
for optimization across the original hierarchical boundaries, while preserving functionality.

When to Flatten Hierarchy
To preserve the modularity of the design and have a one-to-one mapping from subsystem name to
corresponding HDL module or entity name, do not flatten the hierarchy. The generated HDL code
is more readable when you don't flatten the hierarchy.

Flatten hierarchy to:

• Enable more extensive area and speed optimization.
• Reduce the number of HDL output files. For every subsystem that you flatten, HDL Coder

generates one less HDL output file.

Considerations
• Before you flatten the hierarchy, you must have the MaskParameterAsGeneric property set to

off. For more information, see “Generate parameterized HDL code from masked subsystem” on
page 16-59.

• When you use optimizations such as resource sharing or streaming with hierarchy flattening, in
certain cases, HDL Coder might retain the subsystem hierarchy in the generated model. However,
the HDL code generated for the flattened subsystems is inlined, which reduces the number of HDL
files.

• When you use floating-point data types in Native Floating Point mode, HDL Coder might not
flatten the hierarchy. This is because floating-point designs generate hundreds of lines of code and
inlining the HDL files makes the generated code less readable.

How to Flatten Hierarchy
By default, a subsystem inherits its hierarchy flattening setting from the parent subsystem. However,
you can enable or disable flattening for individual subsystems. This table lists options you can specify
for hierarchy flattening options for a subsystem are listed in the following table.
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Hierarchy Flattening Setting Description
inherit (default) Use the hierarchy flattening setting of the parent subsystem. If this

subsystem is the highest-level subsystem, do not flatten.
on Flatten this subsystem.
off' Do not flatten this subsystem, even if the parent subsystem is flattened.

To set hierarchy flattening using the HDL Block Properties dialog box:

• In the Apps tab, select HDL Coder. The HDL Code tab appears. Select the Subsystem and then
click HDL Block Properties. For FlattenHierarchy, select on, off, or inherit.

• Right-click the Subsystem and select HDL Code > HDL Block Properties. For
FlattenHierarchy, select on, off, or inherit.

To set hierarchy flattening from the command line, use hdlset_param. For example, to turn on
hierarchy flattening for a subsystem, my_dut:

hdlset_param('my_dut', 'FlattenHierarchy', 'on')

See also hdlset_param.

Limitations for Hierarchy Flattening
A subsystem cannot be flattened if the subsystem is:

• A Synchronous Subsystem or uses the State Control block in Synchronous mode.
• A black box implementation or model reference.
• A Triggered Subsystem when “Use trigger signal as clock” on page 16-43 is enabled.
• A masked subsystem that contains any of the following:

• Bus.
• Enumerated data type.
• Lookup table blocks: 1-D Lookup Table, 2-D Lookup Table, Cosine HDL Optimized, Direct

LookupTable (n-D), Prelookup, Sine HDL Optimized, n-D Lookup Table.
• MATLAB System block.
• Stateflow blocks: Chart, State Transition Table, Sequence Viewer.
• Blocks with a pass-through or no-op implementation. See “Pass through, No HDL, and Cascade

Implementations” on page 21-55.

Note This option removes subsystem boundaries before code generation. It does not necessarily
generate HDL code with a completely flat hierarchy.
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RAM Mapping for Simulink Models
RAM mapping is an area optimization. You can map to RAMs in HDL code by using:

• UseRAM to map delays to RAM. For details, see “UseRAM” on page 21-25.
• MapPersistentVarsToRAM to map persistent arrays in a MATLAB Function block to RAM. For

details, see “MapPersistentVarsToRAM” on page 21-15.
• RAM blocks from the HDL Operations library:

• Single Port RAM
• Single Port RAM System
• Dual Port RAM
• Dual Port RAM System
• Simple Dual Port RAM
• Simple Dual Port RAM System
• Dual Rate Dual Port RAM

• Blocks with a RAM implementation.

See Also
Simulink Configuration Parameters
“RAM Mapping” on page 14-5

More About
• “UseRAM” on page 21-25
• “MATLAB Function Block Design Patterns for HDL” on page 29-19
• “MapPersistentVarsToRAM” on page 21-15
• “RAM Mapping With the MATLAB Function Block” on page 24-37
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RAM Mapping With the MATLAB Function Block
This example shows how to map persistent arrays to RAM by using the MapPersistentVarsToRAM
block-level parameter. The RAM size must be greater than or equal to the RAMMappingThreshold.
The resource report shows the difference in area improvements resulting from RAM mapping.

Line Buffer Model

Open the model hdlcoder_ram_mapping_matlab_function.

open_system('hdlcoder_ram_mapping_matlab_function')
set_param('hdlcoder_ram_mapping_matlab_function', 'SimulationCommand', 'Update')

The DUT Subsystem in the model drives a Line Buffer MATLAB Function block.

open_system('hdlcoder_ram_mapping_matlab_function/HDL_DUT')

To see the MATLAB® code implementation of the line buffer, open the MATLAB Function block.

open_system('hdlcoder_ram_mapping_matlab_function/HDL_DUT/Line Buffer')
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Generate HDL Code

1. Enable generation of the resource utilization report. The report displays the number of adders,
subtractors, multipliers, registers, and RAMs that the design consumes.

hdlset_param('hdlcoder_ram_mapping_matlab_function', 'resourcereport', 'on')

2. Generate HDL code for the HDL_DUT Subsystem.

makehdl('hdlcoder_ram_mapping_matlab_function/HDL_DUT')

HDL Coder™ displays the Code Generation Report. In the report, select the High-Level Resource
Report section .The design consumes 81 registers and 648 1-bit registers. By default, the
MapPersistentVarsToRAM property is disabled and the code generator does not infer or consume
RAM resources.
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Enable RAM Mapping and Generate HDL Code

1. Enable the MapPersistentVarsToRAM HDL parameter on the MATLAB Function block.

ml_subsys = 'hdlcoder_ram_mapping_matlab_function/HDL_DUT/Line Buffer';
hdlset_param(ml_subsys, 'MapPersistentVarsToRAM', 'on')

2. Generate HDL code for the HDL_DUT Subsystem.

makehdl('hdlcoder_ram_mapping_matlab_function/HDL_DUT')

In the Code Generation Report, select the High-Level Resource Report section. The design
consumes one register, eight 1-bit registers, and one RAM. The number of RAMs inferred depends on
the RAMMappingThreshold that you specify. See RAM mapping threshold(bits).

RAM Mapping with MATLAB Datapath Architecture

The MATLAB Datapath architecture treats the MATLAB Function block like a regular Subsystem.
The architecture converts the MATLAB code that you wrote to a dataflow representation in
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Simulink®. HDL Coder can then more widely use optimizations across the MATLAB Function block
with other Simulink blocks in your model.

1. Enable the MATLAB Datapath HDL architecture and then set the MapPersistentVarsToRAM
parameter on the MATLAB Function block.

hdlset_param(ml_subsys, 'Architecture', 'MATLAB Datapath')
hdlset_param(ml_subsys, 'MapPersistentVarsToRAM', 'on')

2. Generate HDL code for the HDL_DUT Subsystem.

makehdl('hdlcoder_ram_mapping_matlab_function/HDL_DUT')

The High-Level Resource Report indicates that the design consumes the same number of resources
as the design that used the default architecture of the MATLAB Function block. To see how MATLAB
Datapath architecture modifies the MATLAB code to a Simulink dataflow representation, open the
generated model gm_hdlcoder_ram_mapping_matlab_function and navigate to the HDL_DUT
Subsystem. There is a Line Buffer Subsystem in place of the MATLAB Function block. Inside the
Subsystem block is the dataflow representation that displays a RAM block inferred.
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To learn about design patterns that enable efficient RAM mapping of persistent arrays in MATLAB
Function blocks, see the eml_hdl_design_patterns/RAMs library.

See Also

More About
• “RAM Mapping” on page 14-5
• “MATLAB Function Block Design Patterns for HDL” on page 29-19
• “MapPersistentVarsToRAM” on page 21-15
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Distributed Pipelining

In this section...
“What Is Distributed Pipelining?” on page 24-42
“Benefits and Costs of Distributed Pipelining” on page 24-43
“Requirements for Distributed Pipelining” on page 24-43
“Specify Distributed Pipelining” on page 24-44
“Limitations of Distributed Pipelining” on page 24-44
“Distributed Pipelining Report” on page 24-45
“Selected Bibliography” on page 24-45

What Is Distributed Pipelining?
Distributed pipelining, or register retiming, is a speed optimization that moves existing delays in a
design to reduce the critical path while preserving functional behavior.

The HDL Coder software uses an adaptation of the Leiserson-Saxe retiming algorithm.

For example, in the following model, there is a delay of 2 at the output.
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The following diagram shows the generated model after distributed pipelining redistributes the delay
to reduce the critical path.

Benefits and Costs of Distributed Pipelining
Distributed pipelining can reduce your design’s critical path, enabling you to use a higher clock rate
and increase throughput.

However, distributed pipelining requires your design to contain a number of delays. If you need to
insert additional delays in your design to enable distributed pipelining, this increases the area and
the initial latency of your design.

Requirements for Distributed Pipelining
Distributed pipelining requires your design to contain delays or registers that can be redistributed.
You can use input pipelining or output pipelining to insert more registers.

If your design does not meet your timing requirements at first, try adding more delays or registers to
improve your results.

 Distributed Pipelining

24-43



Specify Distributed Pipelining
You can specify distributed pipelining for a subsystem, and Stateflow charts and MATLAB Function
blocks within a subsystem. See “Distributed Pipeline Insertion for MATLAB Function Blocks” on page
29-31.

To specify distributed pipelining using the UI:

• In the Apps tab, select HDL Coder. The HDL Code tab appears. Select the Subsystem and then
click HDL Block Properties. Set DistributedPipelining to on and click OK.

• Right-click the Subsystem and select HDL Code > HDL Block Properties. Set
DistributedPipelining to on and click OK.

To enable distributed pipelining, on the command line, enter:

hdlset_param('path/to/block', 'DistributedPipelining', 'on')

Tip Output data could be in an invalid state initially if you insert pipeline registers. To avoid test
bench errors resulting from initial invalid samples, disable output checking for those samples. For
more information, see:

• “Ignore output data checking (number of samples)” on page 18-17
• IgnoreDataChecking

Limitations of Distributed Pipelining
The distributed pipelining optimization has the following limitations:

• Your pipelining results might not be optimal in hardware because the operator latencies in your
target hardware may differ from the estimated operator latencies used by the distributed
pipelining algorithm.

• The HDL Coder software generates pipeline registers at the outputs in the following situations
instead of distributing the registers to reduce critical path:

• Stateflow chart containing a state, local variable, or a matrix with statically unresolvable index.
• HDL Coder distributes pipeline registers around the following blocks instead of within them:

• Model
• Sum (Cascade implementation)
• Product (Cascade implementation)
• MinMax
• Upsample
• Downsample
• Rate Transition
• Zero-Order Hold
• Reciprocal Sqrt (RecipSqrtNewton implementation)
• Trigonometric Function (CORDIC Approximation)
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• Single Port RAM
• Dual Port RAM
• Simple Dual Port RAM

• If you enable distributed pipelining for a subsystem that contains these blocks, HDL Coder
generates a message during code generation. To fix this message, place these blocks inside one or
more subsystems within the original subsystem, and disable hierarchical distributed pipelining.
HDL Coder distributes pipeline registers around nested subsystems.

• M-PSK Demodulator Baseband
• M-PSK Modulator Baseband
• QPSK Demodulator Baseband
• QPSK Modulator Baseband
• BPSK Demodulator Baseband
• BPSK Modulator Baseband
• PN Sequence Generator
• Repeat
• HDL Counter
• LMS Filter
• Sine Wave
• Viterbi Decoder
• Triggered Subsystem
• Counter Limited
• Counter Free-Running
• Frame Conversion

Distributed Pipelining Report
To see the distributed pipelining information in the report, before you generate code for each
subsystem or model reference, enable the optimization report. To enable this report, in the HDL
Code tab, select Report Options, and then select Generate optimization report.

When you generate the optimization report, in the Distributed Pipelining section, you see the effect
of the distributed pipelining optimization. If distributed pipelining is unsuccessful, the report shows
diagnostic messages and offending blocks that caused distributed pipelining to fail.

If distributed pipelining is successful, the report displays comparative listings of registers before and
after you apply the distributed pipelining transform.

Selected Bibliography
Leiserson, C.E, and James B. Saxe. “Retiming Synchronous Circuitry.” Algorithmica. Vol. 6, Number 1,
1991, pp. 5-35.
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See Also

More About
• “Distributed Pipelining” on page 14-9
• “Diagnostics for Optimizations” on page 16-93

24 Optimization

24-46



Hierarchical Distributed Pipelining

What Is Hierarchical Distributed Pipelining?
Hierarchical distributed pipelining extends the scope of distributed pipelining by moving delays
across hierarchical boundaries within a subsystem while preserving subsystem hierarchy.

If a subsystem in the hierarchy does not have distributed pipelining enabled, HDL Coder does not
move delays across that subsystem.

How Hierarchical Distributed Pipelining Works
For example, the following model has one level of subsystem hierarchy:

The following diagram shows the model after applying hierarchical distributed pipelining:
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The subsystem now contains pipeline registers:

Benefits of Hierarchical Distributed Pipelining
Hierarchical distributed pipelining enables distributed pipelining to operate on a larger part of your
design, which increases the chance that distributed pipelining can further reduce your critical path.
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Hierarchical distributed pipelining preserves the original subsystem hierarchy, which enables you to
trace the changes that occur during pipelining for nested Subsystem blocks.

Specify Hierarchical Distributed Pipelining
You can specify hierarchical distributed pipelining for your model. To specify hierarchical distributed
pipelining using the UI, in the Apps tab, select HDL Coder. The HDL Code tab appears. Click the
Subsystem and then click HDL Block Properties. Set DistributedPipelining to on

1 In the Apps tab, select HDL Coder. The HDL Code tab appears.
2 Click Settings. In the HDL Code Generation > Optimization > Pipelining tab, select

Hierarchical distributed pipelining and click OK.

To enable hierarchical distributed pipelining, on the command line, enter:

hdlset_param('modelname', 'HierarchicalDistPipelining', 'on')

Limitations of Hierarchical Distributed Pipelining
Hierarchical distributed pipelining must be disabled if your DUT subsystem contains a model
reference.

Hierarchical Distributed Pipelining Report
To see the hierarchical distributed pipelining information in the report, before you generate code for
each subsystem or model reference, enable the optimization report. To enable this report, in the HDL
Code tab, select Report Options, and then select Generate optimization report.

When you generate the optimization report, in the Distributed Pipelining section, you see the effect
of the hierarchical distributed pipelining optimization. If hierarchical distributed pipelining is
unsuccessful, the report shows diagnostic messages and offending blocks that caused hierarchical
distributed pipelining to fail.

If hierarchical distributed pipelining is successful, the report displays colored sections to distinguish
between different regions where HDL Coder applied hierarchical distributed pipelining.

Selected Bibliography
Leiserson, C.E, and James B. Saxe. “Retiming Synchronous Circuitry.” Algorithmica. Vol. 6, Number 1,
1991, pp. 5-35.
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Constrained Output Pipelining
In this section...
“What Is Constrained Output Pipelining?” on page 24-50
“When to Use Constrained Output Pipelining” on page 24-50
“Requirements for Constrained Output Pipelining” on page 24-50
“Specify Constrained Output Pipelining” on page 24-50
“Limitations of Constrained Output Pipelining” on page 24-51

What Is Constrained Output Pipelining?
With constrained output pipelining, you can specify a nonnegative number of registers at the outputs
of a block.

Constrained output pipelining does not add registers, but instead redistributes existing delays within
your design to try to meet the constraint. If HDL Coder cannot meet the constraint with existing
delays, it reports the difference between the number of desired and actual output registers in the
timing report.

Distributed pipelining does not move registers you specify with constrained output pipelining.

When to Use Constrained Output Pipelining
Use constrained output pipelining when you want to place registers at specific locations in your
design. This can enable you to optimize the speed of your design.

For example, if you know where the critical path is in your design and want to reduce it, you can use
constrained output pipelining to place registers at specific locations along the critical path.

Requirements for Constrained Output Pipelining
Your design must contain existing delays or registers. When there are fewer registers than HDL
Coder needs to satisfy your constraint, the coder reports the difference between the number of
desired and actual output registers.

You can add registers to your design using input or output pipelining.

Specify Constrained Output Pipelining
To specify constrained output pipelining for a block using the UI:

• In the Apps tab, select HDL Coder. The HDL Code tab appears. Select the Subsystem and then
click HDL Block Properties. For ConstrainedOutputPipeline, enter the number of registers
you want at the output ports.

• Right-click the block and select HDL Code > HDL Block Properties. For
ConstrainedOutputPipeline, enter the number of registers you want at the output ports.

To specify constrained output pipelining, on the command line, enter:
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hdlset_param(path_to_block,...
         'ConstrainedOutputPipeline',number_of_output_registers)

For example, to constrain six registers at the output ports of a subsystem, subsys, in your model,
mymodel, enter:

hdlset_param('mymodel/subsys','ConstrainedOutputPipeline', 6)

Limitations of Constrained Output Pipelining
HDL Coder does not constrain output pipeline register placement:

• Within a DUT subsystem, if the DUT contains a subsystem, model reference, or model reference
with black box implementation.

• At the outputs of any type of delay block or the top-level DUT subsystem.
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Clock-Rate Pipelining
In this section...
“Rationale for Clock-Rate Pipelining” on page 24-52
“How Clock-Rate Pipelining Works” on page 24-52
“Clock-Rate Pipelining and Hierarchy Flattening” on page 24-53
“Clock-Rate Pipelining for DUT Output Ports” on page 24-53
“Best Practices for Clock-Rate Pipelining” on page 24-54
“Specify Clock-Rate Pipelining” on page 24-54
“Limitations for Clock-Rate Pipelining” on page 24-54

When you enable speed and area optimizations that insert pipeline registers, use the clock-rate
pipelining optimization to identify multicycle paths in your design. Clock-rate pipelining inserts
pipeline registers at the faster clock rate, which improves clock frequency without introducing
additional latency or by adding minimal latency.

Rationale for Clock-Rate Pipelining
The code generator introduces pipelines when you specify certain block implementations or enable
some optimizations on the model, such as:

• Multi-cycle block implementations
• Input and output pipelining
• Distributed pipelining
• Floating-point library mapping
• Native floating-point HDL code generation
• Resource sharing
• Streaming

By default, in slow paths, these pipeline registers operate at the slow data rate. When you enable
clock-rate pipelining, the pipeline registers operate at the faster clock rate. Clock-rate pipelining does
not affect existing design delays in your model. It is an alternative to using multicycle path
constraints with your synthesis tool.

How Clock-Rate Pipelining Works
The clock-rate pipelining optimization identifies slow paths or regions in the model by analyzing the
block sample times. Blocks that have a sample time greater than the DUT base sample time are part
of the slow path, and are potential candidates for clock-rate pipelining. In these slow paths, the code
generator enables optimizations to introduce pipeline delays at the clock rate.

If you specify an “Oversampling factor” on page 16-15 greater than one, the DUT sample time
becomes slower than the actual clock rate. The code generator determines the maximum number of
clock-rate pipelines that it can insert based on the DUT-to-block sample time ratio and the
oversampling factor.

Maximum number of clock-rate delays = (block_rate ÷ DUT_base_rate) × Oversampling
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Clock-rate pipelining identifies regions in the model that have the same slow data rate, and are
delimited by either Delay blocks or blocks that introduce a rate transition. The code generator
converts these regions to the faster clock rate by introducing Repeat blocks at the input of the region
and Rate Transition blocks at the output of the region. If the output of a clock-rate region is a Delay
block at the data rate, HDL Coder absorbs that Delay block. To accommodate the delay, the code
generator introduces several clock-rate pipelines corresponding to the ratio of the data rate to the
clock rate.

HDL Coder generates a script that highlights blocks in your model that are obstacles to clock-rate
pipelining and a script to clear the highlighting. Sometimes, if the code generator is unable to
implement resource sharing or streaming at the clock rate, it displays a code generation error with a
recommendation for changing the Oversampling value. To turn off highlighting, either click the
clearhighlighting script in the MATLAB Command Window, or, in Simulink, select Display >
Remove Highlighting.

Clock-Rate Pipelining and Hierarchy Flattening
You can use the clock-rate pipelining optimization with or without flattening the subsystem hierarchy.
Flatten the subsystem hierarchy when you want to maximize opportunities for sharing resources in
your design. To flatten the subsystem hierarchy, enable FlattenHierarchy on the top-level
Subsystem. By default, all Subsystem blocks inside the top-level subsystem inherit this
FlattenHierarchy setting. Hierarchy flattening brings several clock-rate regions to the same level in
the hierarchy and combines them, which increases opportunities for clock-rate pipelining. However, it
breaks the modularity of your design and affects the readability of the generated HDL code. See also
“Hierarchy Flattening” on page 24-34.

To apply clock-rate pipelining without flattening the hierarchy, on the top-level subsystem in your
model, disable FlattenHierarchy. If your design uses fixed-point data types, enable some
optimizations on the underlying subsystems. In this case, the code generator introduces clock-rate
pipelines in your design while preserving the subsystem hierarchy, which:

• Improves the modularity of your design and makes navigation through the generated model easier
especially in large designs with complex hierarchies.

• Improves readability of the generated HDL code by creating multiple Verilog or VHDL files for the
various Subsystem blocks in your design.

Clock-Rate Pipelining for DUT Output Ports
To insert DUT output port pipeline registers at the clock rate instead of the data rate, select the
Allow clock-rate pipelining of DUT output ports option or use the
ClockRatePipelineOutputPorts property. This option changes the timing of your DUT interface
because it changes the sample time of your DUT output ports from a slow rate to the clock rate. To
adjust for the difference in timing, HDL Coder generates messages that provides the phase offset of
each output port. For example, this message means that the output data from portname is valid after
31 clock cycles: Phase of output port portname: 31 clock cycles.

The validation model adjusts for the timing difference by inserting a Rate Transition block at the DUT
output and comparing the output of the Rate Transition with the original output. The RTL test bench
logs the output data at the input of the Rate Transition and compares it with the DUT output in the
RTL simulation.
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Best Practices for Clock-Rate Pipelining
• If your design uses a Rate Transition block, switch the Rate Transition block with a Downsample

block that has nonzero Sample offset. Clock-rate pipelining optimizes the Downsample block by
avoiding the additional latency that the Rate Transition block can introduce, which saves area and
timing.

• Design your DUT at one rate and specify the Oversampling factor. Avoid using Rate Transition,
Upsample, Downsample, or other rate-changing blocks.

Specify Clock-Rate Pipelining
You can set clock-rate pipelining on a model or, for finer control, on subsystems within the top-level
DUT subsystem. By default, clock-rate pipelining is enabled on the model. To disable clock-rate
pipelining from the UI:

1 In the Apps tab, select HDL Coder. The HDL Code tab appears.
2 Click Settings. In the HDL Code Generation > Optimization > Pipelining tab, clear Clock-

rate pipelining and click OK.

At the command line, use the makehdl or hdlset_param function to set the
ClockRatePipelining property to off.

You can use clock-rate pipelining for a subsystem within the top-level DUT subsystem. To model a
control path in your design at the data rate instead of the clock rate, put the control path in a
subsystem, and disable clock-rate pipelining for that subsystem. To disable clock-rate pipelining for a
subsystem within the top-level DUT subsystem, set ClockRatePipelining to off for that subsystem.
See also “Set Clock-Rate Pipelining For a Subsystem” on page 21-5.

Limitations for Clock-Rate Pipelining
These blocks inhibit clock-rate pipelining, and therefore delimit clock-rate pipelining regions:

• Counter Free-Running
• Counter Limited
• Deserializer1D
• Discrete PID Controller
• Dual Port RAM
• Dual Rate Dual Port RAM
• FFT HDL Optimized
• HDL Cosimulation
• HDL FIFO
• HDL Counter
• Hit Crossing
• HDL Minimum Resource FFT
• HDL Streaming FFT
• MATLAB System, if it uses persistent variables
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• Rate Transition
• Serializer1D
• Simple Dual Port RAM
• Single Port RAM
• Subsystem, if FlattenHierarchy is not enabled

The code generator does not support clock-rate pipelining for:

• Black box subsystem or black box model reference blocks.
• Subsystems that contain blocks not supported for clock-rate pipelining.
• Altera DSP Builder subsystems.
• Xilinx System Generator subsystems
• Communications Toolbox blocks.
• DSP System Toolbox blocks, except for Delay and Discrete FIR Filter.
• Stateflow blocks.

The code generator does not support applying both the streaming and sharing optimizations on the
same resource when you use the clock-rate pipelining optimization. Either disable clock-rate
pipelining or use either the streaming optimization or the sharing optimization on the same resource
when clock-rate pipelining is enabled.

See Also

Related Examples
• “Clock Rate Pipelining”

More About
• “Clock Rate Pipelining” on page 14-12
• “Delay Balancing” on page 24-27
• “Hierarchy Flattening” on page 24-34
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Adaptive Pipelining
In this section...
“Requirements” on page 24-56
“Specify Adaptive Pipelining” on page 24-56
“Supported Blocks” on page 24-57
“Pipeline Insertion for Lookup Tables” on page 24-57
“Pipeline Insertion for Rate Transition and Downsample Blocks” on page 24-58
“Pipeline Insertion for Product and Gain Blocks” on page 24-58
“Pipeline Insertion for Multiply-Add and Multiply-Accumulate Blocks” on page 24-59
“Pipeline Insertion for MATLAB Function Blocks” on page 24-61
“Adaptive Pipelining Report” on page 24-62

Certain patterns or combination of blocks with registers can improve the achievable clock frequency
and reduce the area usage on the FPGA boards. The adaptive pipelining optimization creates these
patterns by inserting pipeline registers to the blocks in your design. To determine the optimal number
of pipeline registers to insert in your design, the optimization considers the target device, target
frequency, multiplier word lengths, and the settings in the HDL Block Properties. Use adaptive
pipelining with:

• Clock-rate pipelining to insert pipeline registers at a faster clock-rate instead of the slower data-
rate. With clock-rate pipelining, you can design your DUT at one rate, and then specify the
Oversampling factor.

• Resource sharing which saves area and timing because the code generator shares resources and
inserts adaptive pipeline registers.

Requirements
• For HDL Coder to insert adaptive pipelines, specify the target device. When your design has

multipliers, specify the target device and the target frequency.

Note If you use a target device that is not characterized for adaptive pipelining, the optimization
uses Xilinx Virtex-7 when Xilinx Vivado is specified as the Synthesis Tool, and uses Intel
Stratix® V when the Synthesis Tool is Altera Quartus II or Intel Quartus Pro.

• Make sure that delay balancing is enabled for the subsystem that you want HDL Coder to insert
adaptive pipelines for. If you disable delay balancing, the code generator does not insert adaptive
pipelines.

• Make sure that your design does not have floating-point data types or operations.

Note In some cases, when you have blocks inside a feedback loop, adaptive pipelining is unable to
insert the required number of pipeline registers at the output. Delay balancing can then fail.

Specify Adaptive Pipelining
You can set adaptive pipelining for an entire model or, for finer control, you can set adaptive
pipelining for subsystems within the top-level DUT subsystem.
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Disable Adaptive Pipelining for a Model

By default, adaptive pipelining is enabled at the model level. You can disable adaptive pipelining in
one of the following ways:

• In the HDL Workflow Advisor, on the HDL Code Generation > Set Code Generation Options >
Set Optimization Options > Pipelining tab, select Adaptive pipelining.

• In the Configuration Parameters dialog box:

1 In the Apps tab, select HDL Coder. The HDL Code tab appears.
2 Click Settings. In the HDL Code Generation > Optimization > Pipelining tab, clear

Adaptive pipelining and click OK.
• At the command line, use the makehdl or hdlset_param function to set “Adaptive pipelining” on

page 14-15 to off.

Disable Adaptive Pipelining for a Subsystem

If you want HDL Coder to selectively disable adaptive pipelines for a subsystem in your model, set
AdaptivePipelining to off for that subsystem.

To learn how to set adaptive pipelining for a subsystem, see “Set Adaptive Pipelining For a
Subsystem” on page 21-4.

Supported Blocks
Adaptive pipelining supports these lookup tables, multipliers, multiply accumulate, and rate
transition blocks for automatic pipeline insertion.

• n-D Lookup Table
• Direct Lookup Table (n-D)
• Sine HDL Optimized
• Cosine HDL Optimized
• Downsample
• Rate Transition
• Product
• Gain
• Multiply-Add
• Multiply-Accumulate
• MATLAB Function

Pipeline Insertion for Lookup Tables
Lookup tables are blocks in the HDL Coder > Lookup Tables library including the Sine HDL
Optimized and Cosine HDL Optimized blocks.

To insert adaptive pipelines for lookup table blocks:

1 Specify the target device.
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2 Make sure that Interpolation method is set to Flat.

When generating code, HDL Coder inserts a register without reset at the output of the lookup table.
The combination of lookup table block and register without reset can potentially map to RAM blocks
on the FPGA.

This figure is the generated model for an n-D Lookup Table block with Xilinx Virtex7 as the target
FPGA device.

Pipeline Insertion for Rate Transition and Downsample Blocks
To insert adaptive pipelines for the Rate Transition and Downsample blocks:

1 Specify the target device.
2 Make sure that Downsample blocks have a Downsample factor greater than two.

When generating code, HDL Coder inserts a pipeline register at the output port of the Downsample
block. Addition of the pipeline register can avoid the bypass register logic, which saves area on the
target FPGA.

This figure is the generated model for the blocks with Xilinx Virtex7 as the target FPGA device.

Pipeline Insertion for Product and Gain Blocks
To insert adaptive pipelines for these blocks:

1 Specify the target device.
2 Specify a target frequency greater than zero.

When generating code, HDL Coder inserts registers at the input and output ports of the blocks. The
combination of multipliers with the registers can potentially map to DSP units on the target device.
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This figure is the generated model for the Product, Gain, and Multiply-Add blocks with Intel Arria10
as the target FPGA device and a target frequency of 500 MHz. The inputs to the blocks are of type
int16.

The pattern and number of pipeline registers that HDL Coder inserts can vary depending on the
target device, target frequency, and the multiplier word lengths.

This figure is the generated model for the blocks with Xilinx Virtex7 as the target FPGA device and a
target frequency of 1500 MHz. The inputs are of type int8.

The blocks have a different number of pipeline registers at the output ports. To match the delays,
HDL Coder adds a delay at the output of the Product and Gain blocks.

Pipeline Insertion for Multiply-Add and Multiply-Accumulate Blocks
To insert adaptive pipelines for these blocks:

1 Specify the target device.
2 Specify a target frequency greater than zero.
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3 Use the Parallel HDL architecture for the Multiply-Accumulate block. For an input vector of
size N, this architecture uses N Multiply-Add blocks in series to compute the result.

Caution The Multiply-Add block with PipelineDepth set to auto or a value greater than zero and
the Multiply-Accumulate block with HDL architecture specified as Parallel ignore the adaptive
pipelining setting. If you specify the target FPGA device and a target frequency greater than zero, the
code generator inserts pipeline registers at the inputs and outputs of the block even when adaptive
pipelining is disabled.

When generating code, HDL Coder inserts registers at the input and output ports of the blocks. The
combination of the blocks with the registers can potentially map to DSP units on the target device.

This figure is the generated model for the Multiply-Add and Multiply-Accumulate with Intel Arria10 as
the target FPGA device and a target frequency of 500 MHz. The inputs to the blocks are of type int8.

The pattern and number of pipeline registers that HDL Coder inserts can vary depending on the
target device, target frequency, and the multiplier word lengths.

This figure is the generated model for the blocks with Xilinx Virtex7 as the target FPGA device and a
target frequency of 1500 MHz. The inputs are of type int16.
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Pipeline Insertion for MATLAB Function Blocks
To insert adaptive pipelines for MATLAB Function blocks:

1 Specify the target device.
2 Specify a target frequency greater than zero.
3 Set the HDL architecture for the MATLAB Function blocks to MATLAB Datapath.

HDL Coder treats MATLAB Function blocks with architecture set to MATLAB Datapath like regular
Subsystems. The code generator converts the MATLAB algorithm to a Simulink block diagram. If the
Simulink diagram uses blocks that are supported by adaptive pipelining such as Product or Add. the
code generator inserts pipeline registers at the input and output ports of the blocks. The combination
of multipliers with the registers can potentially map to DSP units on the target device.

Consider a MATLAB Function block that uses the MATLAB Datapath architecture. This code is the
algorithm inside the MATLAB Function block.

function y = fcn(u)

y = u*5;

This figure is the generated model for the MATLAB Function block with Intel Arria10 as the target
FPGA device and a target frequency of 500 MHz. The inputs to the blocks are of type int16. The
code generator inferred the algorithm as a multiplication by a constant and inserted adaptive
pipelines at the input and output.
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See “HDL Applications for the MATLAB Function Block” on page 29-2.

Adaptive Pipelining Report
To see the adaptive pipelining information in the report, before you generate code for each
Subsystem or model reference, enable the Code Generation report. To enable the Code Generation
report, in the Configuration Parameters dialog box, on the HDL Code Generation pane, select
Generate optimization report.

When you generate code, HDL Coder produces the Code Generation report. Select the Adaptive
Pipelining section of the Optimization report.

The Adaptive Pipelining report displays the status of the adaptive pipelining optimization and
whether HDL Coder inserted adaptive pipelines in your design.

If adaptive pipelining is successful, the report displays the blocks for which HDL Coder inserted
pipeline registers, the number of pipeline registers inserted, and any additional notes. Click the link
to the block to see the pipeline registers inserted to the blocks in your design.

If adaptive pipelining fails, the report displays the criteria that caused adaptive pipelining to fail.

See Also

More About
• “Balance delays” on page 14-3
• “AdaptivePipelining” on page 21-4
• “Clock-Rate Pipelining” on page 24-52
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Critical Path Estimation Without Running Synthesis
In this section...
“How Critical Path Estimation Works” on page 24-63
“How to Use Critical Path Estimation” on page 24-64
“Characterized Blocks” on page 24-66
“Caveats” on page 24-69

Critical path is a combinational path between an input and output that has the maximum delay. Use
the HDL Coder software to find the critical path in your design. To make the critical path timing meet
the target frequency that you want your design to achieve, break the critical path by adding delays.
The additional delays do increase the latency and register usage on the target FPGA.

To quickly identify the most likely critical path in your design, use critical path estimation. With
critical path estimation, you do not have to run synthesis or generate HDL code. Critical path
estimation speeds up this iterative process of finding the critical path, and then optimizing the critical
path until your design timing meets the target frequency that you want.

Estimating the critical path without using synthesis tools can lead to inaccurate timing results.
Critical path estimation is intended to speed up the design iteration process. Critical path estimation
is an alternative to annotating the critical path by performing FPGA Synthesis and Analysis with
the HDL Workflow Advisor.

How Critical Path Estimation Works
HDL Coder finds the estimated critical path by performing static timing analysis with timing data
from target-specific timing databases. HDL Coder has timing databases for these target devices:

• Altera Cyclone V
• Intel Stratix V
• Xilinx Virtex-7, speed grade -1
• Xilinx Zynq, speed grade -1

 Critical Path Estimation Without Running Synthesis

24-63



To create timing databases, HDL Coder characterizes basic design components, such as Simulink
blocks, block architectures, and subcomponents of those blocks, for specific target devices.

The code generator analyzes your model design to decompose it into the blocks and subcomponents
in the timing databases. If your design consists of blocks or subcomponents in the timing databases,
the code generator can estimate the timing critical path more accurately. If your design uses
components that are not in the timing databases, a separate highlighting script is generated to show
the uncharacterized blocks. If the timing data is incomplete for parts of your design, it is possible that
the estimated critical path does not match your actual critical path.

If your target hardware is one of the target devices supported for critical path estimation, the timing
numbers and estimated critical path are more accurate. If your target hardware is not a supported
device, or is not in the same device family, you can estimate the critical path, but it is possible that
the timing numbers are not accurate.

How to Use Critical Path Estimation
You can estimate the critical path for your design either in the Configuration Parameters dialog box
or at the command line. To estimate the critical path in the Configuration Parameters dialog box:

1 Enable generation of critical path estimation report.
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a In the Apps tab, select HDL Coder. The HDL Code tab appears.
b Select Settings > Report Options, and then select Generate high-level timing critical

path report.
2 Disable HDL code generation for your model. In the HDL Code Generation > Global Settings

> Advanced tab, clear the Generate HDL Code check box.

To estimate the critical path in your design, you do not have to run the complete code generation
process. When you disable HDL code generation, you run the process until HDL Coder creates
the generated model and displays the critical path estimation script. You avoid running a larger
portion of the code generation process, which saves time in estimating the critical path,
especially for large models.

3 If your design contains floating-point data types, enable the Native Floating Point mode. In
the Configuration Parameters dialog box, on the HDL Code Generation > Floating Point pane,
set Floating Point IP Library to Native Floating Point.

4 Generate a critical path estimation report. In the HDL Code Generation pane, click Apply, and
then click Generate.

HDL Coder generates a critical path estimation report and displays messages in the MATLAB
Command Window that include a link to a highlighting script and a script that clears the highlighting.

To script this workflow or generate the report at the command line, enter these commands. Specify
the modelname and dutname based on the design that you want to estimate the critical path for. This
example uses the sfir_single model.
% Specify the model and Subsystem names
modelname = 'sfir_single';
dutname = 'sfir_single/symmetric_fir';
open_system(modelname)

% Disable HDL code generation for faster generation 
% of critical path estimation report
hdlset_param(modelname, 'CriticalPathEstimation', 'on');
hdlset_param(modelname, 'GenerateHDLCode', 'off');

% If your design contains single data types, 
% enable native floating-point support
fpconfig = hdlcoder.createFloatingPointTargetConfig('NativeFloatingPoint');
hdlset_param(modelname, 'FloatingPointTargetConfig', fpconfig);

% Generate the report
makehdl(dutname)

When you click the link to the criticalpathestimated script, the code generator highlights the
critical path in the generated model. In the generated model, you see the critical path timing
information and blocks that are on this path. This figure shows a section of a Simulink model that has
the critical path annotated. The native floating-point operators are highlighted in light blue and the
delays are highlighted in orange. The block that is part of the critical path is highlighted in dark blue
with the critical path value annotated beside the block. To learn more about the different colors, see
“Generated Model and Validation Model” on page 24-5.
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You can clear the highlighting by clicking the link to the clearhighlighting script.

To optimize the critical path, break the critical path by adding pipeline registers. If you are using
Native Floating Point, set the LatencyStrategy to Max to improve timing. Regenerate the
critical path estimation report and the script that highlights the critical path in your design. You can
repeat this process until your design timing meets the target frequency that you want.

Characterized Blocks
This table shows blocks that are characterized with fixed-point and single-precision native floating-
point types. These blocks are part of the timing database for each supported target device.

Math Operations

Simulink Blocks Fixed Point Single (Native Floating
Point)

Abs ✓ ✓

Add ✓ (The block cannot have more
than two inputs)

✓

Subtract ✓ ✓

Product ✓ ✓

Gain ✓ ✓

Divide ✓ ✓

HDL Reciprocal ✓ ✓

Rounding Function ✓ ✓

Unary Minus ✓ ✓

Sign ✓ ✓

Reshape ✓ ✓

Complex to Real-Imag ✓ ✓
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Math Functions

Simulink Blocks Fixed Point Single (Native Floating
Point)

Reciprocal ✓ ✓

Hypot - ✓

Rem - ✓

Mod - ✓

Sqrt ✓ ✓

Reciprocal Sqrt ✓ ✓

Trigonometric Functions

Simulink Blocks Fixed Point Single (Native Floating
Point)

Sin - ✓

Cos - ✓

Tan - ✓

Sincos - ✓

Asin - ✓

Acos - ✓

Atan - ✓

Atan2 - ✓

Sinh - ✓

Cosh - ✓

Tanh - ✓

Atanh - ✓

Exponent/Logarithm/Power

Simulink Blocks Fixed Point Single (Native Floating
Point)

Exp - ✓

Gain to power of two - ✓

Pow10 - ✓

Log - ✓

Log10 - ✓
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Conversions and Comparisons

Simulink Blocks Fixed Point Single (Native Floating
Point)

Data Type Conversion ✓ ✓

Float Typecast - ✓

Relational Operator ✓ ✓

Compare To Constant ✓ ✓

MinMax ✓ ✓

Logic and Bit Operations

Simulink Blocks Fixed Point Single (Native Floating
Point)

Bit Concat ✓ -
Extract Bits ✓ -
Bit Shift ✓ -
Bit Slice ✓ -
Bitwise Operator ✓ -
Logical Operator ✓ ✓

Delays and Signal Routing

Simulink Blocks Fixed Point Single (Native Floating
Point)

Unit Delay ✓ ✓

Delay ✓ ✓

Bus Creator ✓ ✓

Bus Selector ✓ ✓

Demux ✓ ✓

Multiport Switch ✓ ✓

Selector ✓ ✓

Switch ✓ ✓
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HDL Operations and HDL RAMs

Simulink Blocks Fixed Point Single (Native Floating
Point)

Counter Free-Running ✓ ✓

Counter Limited ✓ ✓

HDL Counter ✓ ✓

Dual Port RAM ✓ ✓

Dual Rate Dual Port RAM ✓ ✓

Simple Dual Port RAM ✓ ✓

Single Port RAM ✓ ✓

Deserializer1D ✓ ✓

Serializer1D ✓ ✓

Signal Attributes and Lookup Tables

Simulink Blocks Fixed Point Single (Native Floating
Point)

Constant ✓ ✓

1-D Lookup Table ✓ ✓

2-D Lookup Table ✓ ✓

n-D Lookup Table ✓ ✓

Rate Transition ✓ ✓

Signal Conversion ✓ ✓

Signal Specification ✓ ✓

User-Defined Functions

Simulink Blocks Fixed Point Single (Native Floating
Point)

MATLAB Function - ✓

When you use MATLAB Function blocks and generate code by using the MATLAB Datapath
architecture, HDL Coder converts the MATLAB algorithm to a Simulink block diagram. In the
generated model, critical path estimation can annotate the critical path inside the MATLAB
Function block and across the MATLAB Function block boundary with other Simulink blocks. See
also “HDL Optimizations Across MATLAB Function Block Boundary Using MATLAB Datapath
Architecture” on page 24-72.

Caveats
Critical Path Estimation with Native Floating Point

If you have single data types in your design and you use the Native Floating Point mode, the
critical path estimation script sometimes highlights a single floating-point operator in the generated
model. The code generator highlights a single block because floating-point algorithms are
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computation-intensive, and the critical path can be an internal register-to-register path within the
floating-point operator.

In this case, to optimize the critical path timing, set the LatencyStategy to Max for the Simulink
block corresponding to that operator.

In addition, critical path estimation with native floating-point does is not supported for blocks with
LatencyStategy set to Custom.

HDL Code Generation Behavior

When you enable critical path estimation, it is possible that the generated HDL code is different from
the report for a Delay block that has an external reset or an enable port. In addition, for blocks such
as MinMax, the number of generated HDL files might differ when you enable critical path estimation.
This change occurs due to certain optimizations performed by the code generator when you enable
this optimization. The optimization only changes how the code appears and does not affect the
functionality.

Following are the Simulink blocks for which the generated HDL code can potentially be different.

• Delay block that has external reset or enable port
• MinMax
• Unit Delay Enabled Synchronous
• Unit Delay Resettable Synchronous
• Unit Delay Enabled Resettable Synchronous
• Enabled Delay
• Resettable Delay
• Tapped Delay
• Discrete FIR Filter
• Biquad Filter
• MATLAB Function

Inaccuracy in Critical Path Estimation

• Critical path estimation tries to account for routing delay by using an estimation factor. Without
running place and route, it is difficult to accurately account for routing delay.

• HDL Coder infers uncharacterized blocks that are combinational in nature as zero-delay
combinational blocks. The code generator treats other blocks as registers.

• If your target device does not have timing characteristics that are similar to one of the supported
target devices, critical path estimation cannot accurately compute your critical path.

See Also
hdlcoder.FloatingPointTargetConfig | makehdl

More About
• “Create and Use Code Generation Reports” on page 25-2
• “Generated Model and Validation Model” on page 24-5
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• “Distributed Pipelining” on page 8-10
• “Getting Started with HDL Coder Native Floating-Point Support” on page 10-49
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HDL Optimizations Across MATLAB Function Block Boundary
Using MATLAB Datapath Architecture

This example shows how to use various optimizations inside the MATLAB Function block and across
the MATLAB Function block boundary with other blocks in your Simulink® model. The example also
illustrates the difference in area and timing when you use different HDL architecture settings of the
MATLAB Function block.

Why Use MATLAB Datapath Architecture?

HDL code generation for a MATLAB Function block supports two HDL architectures: MATLAB
Function and MATLAB Datapath. Specify the HDL Architecture in the HDL Block Properties
dialog box of the MATLAB Function block.

Use the MATLAB Datapath architecture to;

• Model complex fixed-point and floating-point MATLAB algorithms inside MATLAB Function blocks
and interface this algorithm with other Simulink blocks in your model.

• Improve area and timing of your design significantly by optimizing the algorithm inside the
MATLAB Function block and across the MATLAB Function block boundary with other Simulink
blocks in your model.

This architecture is the default setting for MATLAB Function blocks with floating-point types. By
enabling the MATLAB Datapath architecture for fixed-point operations, you can use various
optimizations that include:

• Hierarchy flattening
• Resource sharing and streaming
• Clock-rate pipelining
• Adaptive pipelining
• Distributed pipelining and hierarchical distributed pipelining
• Critical path estimation

How MATLAB Datapath Architecture Works

Fixed-point Simulink® models use the MATLAB Function architecture by default. Certain HDL
optimizations such as resource sharing and distributed pipelining that you enable with this
architecture optimize the blocks surrounding the MATLAB Function block and the algorithm inside
the MATLAB Function block. To see the effect of the optimizations inside the MATLAB Function block,
examine the generated HDL code for the block. This architecture does not apply the optimizations
across the MATLAB Function block boundary with other Simulink blocks.

Floating-point Simulink models use the MATLAB Datapath architecture even if you specify MATLAB
Function as the architecture setting for the block. When you use floating-point types, specify the
native floating-point mode. With this architecture, the code generator treats the block like a regular
Subsystem block. HDL Coder transforms the control flow algorithm of the MATLAB code inside the
MATLAB Function block to a dataflow representation that uses Simulink blocks. The MATLAB
Datapath architecture unrolls loops in your code due to this transformation. If you want to stream
loops, either use the loop streaming optimization with the MATLAB Function architecture or use the
streaming optimization with MATLAB Datapath as the HDL architecture.
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By using the MATLAB Datapath architecture, You can more effectively perform various HDL Coder™
optimizations with the MATLAB Function block that you would otherwise perform with a Subsystem
block. The MATLAB Datapath architecture applies the optimization settings that you specify on the
algorithm inside the MATLAB Function block and across the MATLAB Function block boundary with
other blocks in your Simulink model.

For example, consider this model with a DUT Subsystem that consists of a Product block and a
MATLAB Function block.

open_system('hdlcoder_MLFB_simple_datapath')
set_param('hdlcoder_MLFB_simple_datapath', 'SimulationCommand', 'Update')
open_system('hdlcoder_MLFB_simple_datapath/HDL_DUT')

The MATLAB Function block implements two multiplications.

open_system('hdlcoder_MLFB_simple_datapath/HDL_DUT/MATLAB Function')

The HDL architecture of the MATLAB Function block is set to MATLAB Datapath. To generate HDL
code for the HDL_DUT Subsystem, run this command:

makehdl('hdlcoder_MLFB_simple_datapath/HDL_DUT')

When you generate HDL code, the code generator replaces the MATLAB Function block with a
subsystem that performs the multiplications c * d and e * f.
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With the MATLAB Datapath architecture, you can perform optimizations inside the MATLAB
Function block and across the MATLAB Function block with other Simulink blocks. In this example,
you can share the two multipliers inside the MATLAB Function block. To optimize the blocks, set the
SharingFactor to 2 on the MATLAB Function block.

mlsubsys = 'hdlcoder_MLFB_simple_datapath/HDL_DUT/MATLAB Function';
hdlset_param(mlsubsys, 'SharingFactor', 2)

When you generate HDL code, the code generator shares the multiplications inside the MATLAB
Function block. The sharing group is displayed in the Optimization Report. When you click the links
in the sharing group, HDL Coder displays the shared multipliers inside the MATLAB Function block in
the generated model and the original model.

You can apply the optimization across the MATLAB Function block with other Simulink blocks. In this
example, you can share the Product block outside the MATLAB Function block with the multipliers
inside the MATLAB Function block. To share these resources, remove the SharingFactor on the
MATLAB Function block, and on the parent subsystem, HDL_DUT, enable FlattenHierarchy and set
SharingFactor to 3.

hdlset_param(mlsubsys, 'SharingFactor', 0)
hdlset_param('hdlcoder_MLFB_simple_datapath/HDL_DUT', ...
                    'FlattenHierarchy', 'on', 'SharingFactor', 3)

Note: Do not use the InlineMATLABCode property with the MATLAB Datapath architecture
of the block. Use FlattenHierarchy instead.

When you generate HDL code, the code generator shares the multiplications inside the MATLAB
Function block with the Product block outside. You see the sharing group of three multipliers in the

24 Optimization

24-74



Optimization Report. When you click the links in the sharing group, the shared multipliers are
highlighted in the generated model and the original model.

MATLAB Function Block Model With Default MATLAB Function Architecture

For an example model that illustrates the MATLAB Datapath architecture and how it differs from the
MATLAB Function architecture, open the model hdlcoder_MLFB_share_pipeline. The model
uses integer types. For an example that illustrates how you use the MATLAB Datapath architecture
with floating-point types, see Generate Target-Independent HDL Code with Native Floating-Point.

open_system('hdlcoder_MLFB_share_pipeline')
set_param('hdlcoder_MLFB_share_pipeline','SimulationCommand','Update')

The model contains two DUT subsystems at the top level HDL_DUT_sharing and
HDL_DUT_distpipe. The subsystems illustrate how you can use resource sharing and distributed
pipelining optimizations across the MATLAB Function block boundary with other blocks. Both
subsystems perform basic additions and multiplications inside and outside the MATLAB Function
block.

open_system('hdlcoder_MLFB_share_pipeline/HDL_DUT_sharing')
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open_system('hdlcoder_MLFB_share_pipeline/HDL_DUT_sharing/Subsystem')

open_system('hdlcoder_MLFB_share_pipeline/HDL_DUT_distpipe')

To see the HDL parameters that are saved on the model, run the hdlsaveparams function.

hdlsaveparams('hdlcoder_MLFB_share_pipeline')

%% Set Model 'hdlcoder_MLFB_share_pipeline' HDL parameters
hdlset_param('hdlcoder_MLFB_share_pipeline', 'CriticalPathEstimation', 'on');
hdlset_param('hdlcoder_MLFB_share_pipeline', 'HDLSubsystem', 'hdlcoder_MLFB_share_pipeline/HDL_DUT_sharing');
hdlset_param('hdlcoder_MLFB_share_pipeline', 'OptimizationReport', 'on');
hdlset_param('hdlcoder_MLFB_share_pipeline', 'Oversampling', 40);
hdlset_param('hdlcoder_MLFB_share_pipeline', 'ResourceReport', 'on');
hdlset_param('hdlcoder_MLFB_share_pipeline', 'ShareAdders', 'on');
hdlset_param('hdlcoder_MLFB_share_pipeline', 'TargetDirectory', 'hdl_prj\hdlsrc');
hdlset_param('hdlcoder_MLFB_share_pipeline', 'Traceability', 'on');
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% Set SubSystem HDL parameters
hdlset_param('hdlcoder_MLFB_share_pipeline/HDL_DUT_distpipe', 'DistributedPipelining', 'on');
hdlset_param('hdlcoder_MLFB_share_pipeline/HDL_DUT_distpipe', 'FlattenHierarchy', 'on');

% Set SubSystem HDL parameters
hdlset_param('hdlcoder_MLFB_share_pipeline/HDL_DUT_sharing', 'FlattenHierarchy', 'on');
hdlset_param('hdlcoder_MLFB_share_pipeline/HDL_DUT_sharing', 'SharingFactor', 8);

You see that the default MATLAB Function HDL architecture is saved on the model.

Generate HDL Code using MATLAB Function Architecture

To generate HDL code for the sharing DUT, run this command:

makehdl('hdlcoder_MLFB_share_pipeline/HDL_DUT_sharing')

When you open the Streaming and Sharing Report, the report displays four multipliers and three
adders as shared resources.

When you click the second sharing group, the code generator highlights three adders surrounding
the MATLAB Function block. The sharing group includes the two adders inside the Subsystem and
the Add block outside. The code generator did not share the multipliers and adders that are inside
the MATLAB Function block.

Critical path estimation is enabled on the model. When you annotate the critical path, the MATLAB
Function block acts as a barrier to this optimization. If the critical path is inside the MATLAB
Function block and if you want to highlight the critical path, use the MATLAB Datapath architecture.
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To generate HDL code for HDL_DUT_distpipe, run this command:

makehdl('hdlcoder_MLFB_share_pipeline/HDL_DUT_distpipe')

When you open the Distributed Pipelining Report, you see that the code generator moved pipelines
inside the HDL_DUT_distpipe subsystem but did not distribute pipelines inside the MATLAB
Function block.
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This figure displays how distributed pipelining moved pipeline registers inside the subsystem.
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Apply Optimizations Across MATLAB Function Block and Other Simulink Blocks

To improve area and timing of your design, use the MATLAB Datapath architecture. For the
HDL_DUT_sharing subsystem, you can combine resource sharing with clock-rate pipelining and
share the resources inside the MATLAB Function block and across the MATLAB Function block with
other blocks.

To share resources:

1. Enable FlattenHierarchy and specify a SharingFactor on the parent subsystem
HDL_DUT_sharing. Set the SharingFactor to 8.

share_subsys = 'hdlcoder_MLFB_share_pipeline/HDL_DUT_sharing';
hdlset_param(share_subsys, 'FlattenHierarchy', 'on', 'SharingFactor', 8);

2. Specify the MATLAB Datapath architecture for the MATLAB Function blocks inside the
HDL_DUT_sharing subsystem.

share_mlfcn1 = 'hdlcoder_MLFB_share_pipeline/HDL_DUT_sharing/MATLAB Function';
share_mlfcn2 = 'hdlcoder_MLFB_share_pipeline/HDL_DUT_sharing/Subsystem/MATLAB Function';
hdlset_param(share_mlfcn1, 'architecture', 'MATLAB Datapath');
hdlset_param(share_mlfcn2, 'architecture', 'MATLAB Datapath');

When you open the Streaming and Sharing report, the report displays a sharing group of eight
multipliers and two sharing groups of adders.

When you select the first sharing group, you see that the optimization shared the multipliers inside
the MATLAB Function with the four Gain blocks outside. The second sharing group consists of adders
inside each of the two MATLAB Function blocks.

You can use the distributed pipelining optimization with the Distributedpipe_MLFB subsystem.
Enable hierarchical distributed pipelining at the top level and set the HDL architecture of the
MATLAB Function to MATLAB Datapath with DistributedPipelining set to on.

hdlset_param('hdlcoder_MLFB_share_pipeline', 'HierarchicalDistPipelining', 'on');
dist_subsys = 'hdlcoder_MLFB_share_pipeline/HDL_DUT_distpipe/MATLAB Function';
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hdlset_param(dist_subsys, 'architecture', 'MATLAB Datapath');
hdlset_param(dist_subsys, 'DistributedPipelining', 'on');

After you generate HDL code, open the generated model. The code generator uses hierarchical
distributed pipelining and distributed pipelining to move the pipeline registers across the blocks and
inside the MATLAB Function Subsystem.

This figure displays how distributed pipelining moved pipeline registers inside the MATLAB
Function Subsystem.

See Also
Blocks
MATLAB Function

Functions
hdlsaveparams | makehdl

More About
• “Design Guidelines for the MATLAB Function Block” on page 29-28
• “Distributed Pipeline Insertion for MATLAB Function Blocks” on page 29-31
• “RAM Mapping With the MATLAB Function Block” on page 24-37
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Subsystem Optimizations for Filters
The Discrete FIR Filter (when used with scalar or multichannel input data) and Biquad Filter blocks
participate in subsystem-level optimizations. To set optimization properties, right-click on the
subsystem and open the HDL Properties dialog box.

For these blocks to participate in subsystem-level optimizations, you must leave the block-level
Architecture set to the default, Fully parallel.

You cannot use these subsystem optimizations when using the Discrete FIR Filter in frame-based
input mode.

Sharing
These filter blocks support sharing resources within the filter and across multiple blocks in the
subsystem. When you specify a SharingFactor, the optimization tools generate a filter
implementation in HDL that shares resources using time-multiplexing. To generate an HDL
implementation that uses the minimum number of multipliers, set the SharingFactor to a number
greater than or equal to the total number of multipliers. The sharing algorithm shares multipliers that
have the same input and output data types. To enable sharing between blocks, you may need to
customize the internal data types of the filters. Alternatively, you can target a particular system clock
rate with your choice of SharingFactor.

Resource sharing applies to multipliers by default. To share adders, select the check box under
Resource sharing on the Configuration Parameters > HDL Code Generation > Global
Settings > Optimizations dialog box.

For more information, see “Resource Sharing” on page 24-23 and the “Area Reduction of Filter
Subsystem” on page 24-83 example.

You can also use a SharingFactor with multichannel filters. See “Area Reduction of Multichannel
Filter Subsystem” on page 24-85.

Streaming
Streaming refers to sharing an atomic part of the design across multiple channels. To generate a
streaming HDL implementation of a multichannel subsystem, set StreamingFactor to the number of
channels in your design.

If the subsystem contains a single filter block, the block-level ChannelSharing option and the
subsystem-level StreamingFactor option result in similar HDL implementations. Use
StreamingFactor when your subsystem contains either more than one filter block or additional
multichannel logic that can participate in the optimization. You must set block-level ChannelSharing
to off to use StreamingFactor at the subsystem level.

See “Streaming” on page 24-20 and the “Area Reduction of Multichannel Filter Subsystem” on page
24-85 example.

Pipelining
You can enable DistributedPipelining at the subsystem level to allow the filter to participate in
pipeline optimizations. The optimization tools operate on the InputPipeline and OutputPipeline
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pipeline stages specified at subsystem level. The optimization tools also operate on these block-level
pipeline stages:

• InputPipeline and OutputPipeline
• MultiplierInputPipeline and MultiplierOutputPipeline
• AddPipelineRegisters

The optimization tools do not move design delays within the filter architecture. See “Distributed
Pipelining” on page 8-10.

The filter block also participates in clock-rate pipelining, if enabled in Configuration Parameters.
This feature is enabled by default. See “Clock-Rate Pipelining” on page 24-52.

Area Reduction of Filter Subsystem
To reduce the number of multipliers in the HDL implementation of a multifilter design, use the
SharingFactor HDL Coder™ optimization.

The model includes a sinusoidal signal source feeding a filter subsystem targeted for HDL code
generation.

The subsystem contains a Discrete FIR Filter block and a Biquad Filter block. This design
demonstrates how the optimization tools share resources between multiple filter blocks.

The Discrete FIR Filter block has 43 symmetric coefficients. The Biquad Filter block has 6
coefficients, two of which are unity. With no optimizations enabled, the generated HDL code takes
advantage of symmetry and unity coefficients. The nonoptimized HDL implementation of the
subsystem uses 27 multipliers.
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To enable streaming optimization for the Multi-Filter Subsystem, right-click the subsystem and
select HDL Code > HDL Block Properties.

Set the SharingFactor to 27 to reduce the design to a single multiplier. The optimization tools
attempt to share multipliers with matching data types. To reduce to a single multiplier, you must set
the internal data types of the filter blocks to match each other.

To observe the effect of the optimization, under Configuration Parameters > HDL Code
Generation, select Generate resource utilization report and Generate optimization report.
Then, to generate HDL code, right-click the Multi-Filter Subsystem and select HDL Code >
Generate HDL for Subsystem.
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With the SharingFactor applied, the subsystem upsamples the rate by 27 to share a single multiplier
for all the coefficients.

In the Code Generation Report window, click High-level Resource Report. The generated HDL
code now uses one multiplier.

Area Reduction of Multichannel Filter Subsystem
To reduce the number of multipliers in the HDL implementation of a multichannel filter and
surrounding logic, use the StreamingFactor HDL Coder™ optimization.
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The model includes a two-channel sinusoidal signal source feeding a filter subsystem targeted for
HDL code generation.

The subsystem contains a Discrete FIR Filter block and a constant multiplier. The multiplier is
included to show the optimizations operating over all eligible logic in a subsystem.

The filter has 44 symmetric coefficients. With no optimizations enabled, the generated HDL code
takes advantage of symmetry. The nonoptimized HDL implementation uses 46 multipliers: 22 for each
channel of the filter and 1 for each channel of the Product block.
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To enable streaming optimization for the Multichannel FIR Filter Subsystem, right-click the
subsystem and select HDL Code > HDL Block Properties.
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Set the StreamingFactor to 2, because this design is a two-channel system.

To observe the effect of the optimization, under Configuration Parameters > HDL Code
Generation, select Generate resource utilization report and Generate optimization report.
Then, to generate HDL code, right-click the Multichannel FIR Filter Subsystem and select HDL Code
> Generate HDL for Subsystem.

With the streaming factor applied, the logic for one channel is instantiated once and run at twice the
rate of the original model.

In the Code Generation Report window, click High-level Resource Report. The generated HDL
code now uses 23 multipliers, compared to 46 in the nonoptimized code. The multipliers in the filter
kernel and subsequent scaling are shared between the channels.

To apply SharingFactor to multichannel filters, set the SharingFactor to 23.

24 Optimization

24-88



The optimized HDL now uses only 2 multipliers. The optimization tools do not share multipliers of
different sizes.
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See Also

More About
• “Resource Sharing” on page 24-23
• “Streaming” on page 24-20
• “Clock-Rate Pipelining” on page 24-52
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Remove Redundant Logic and Optimize Unconnected Ports in
Design

When you use floating-point data types in Native Floating Point mode, if your design contains
redundant logic or unconnected ports, HDL Coder™ removes the unconnected port, or any
component, or part of the HDL code that does not contribute to the output.

Remove Redundant Logic

Components that do not contribute to the output in the design are removed during HDL code
generation. Examples include:

• A Switch block that receives a constant input at the control port
• A Subsystem block with no active output

HDL Coder evaluates the constant conditional values available at compile time. This simplifies the
design.

To illustrate how this optimization simplifies your design:

1. Open the model hdlcoder_remove_redundant_logic and then open the DUT block.

open_system('hdlcoder_remove_redundant_logic.slx')
set_param('hdlcoder_remove_redundant_logic', 'SimulationCommand', 'update');

2. Open the DUT Subsystem block.

open_system('hdlcoder_remove_redundant_logic/DUT')
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3. To generate HDL code for the design, at the MATLAB® command prompt, enter:

makehdl('hdlcoder_remove_redundant_logic/DUT')

4. Open the generated model. Double-click the DUT Subsystem.

HDL Coder™ evaluated the switch condition at compile time to pass the input from Subsystem_2 to
the output, and eliminated Subsystem_1 input branch. In this example, there is no active output
generated from the EnabledSubsystem_1 block. The EnabledSubsystem_1 block is removed
during HDL code generation.

Removing redundant logic reduces the code size and avoids potential synthesis failures with
downstream tools when you deploy the generated code onto a target platform. This optimization
improves the performance of your design on the target hardware.

Optimize Unconnected Ports

During HDL code generation, the unconnected ports from the generated code are removed without
removing ports from top-level DUT models or subsystems. This optimization includes removing
unconnected vector and scalar ports, bus element ports, and bus ports. Removing unconnected ports
improves the readability of the generated VHDL/Verilog code and reduces code size and area usage.
The reduction avoids synthesis failure caused by unused ports in the HDL Coder™ generated VHDL/
Verilog code.
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To illustrate how unconnected ports are removed from a subsystem during HDL code generation:

1. Open the model hdlcoder_RemoveUnconnectedPorts containing bus element ports and a port
connected to an inactive output.

open_system('hdlcoder_RemoveUnconnectedPorts.slx')
set_param('hdlcoder_RemoveUnconnectedPorts', 'SimulationCommand', 'update');

2. Open the dut Subsystem block.

open_system('hdlcoder_RemoveUnconnectedPorts/dut')

3. Open the mid_Subsystem block. The mid_Subsystem contains the bus element ports. One of the
output signals is connected to a Terminator block.

open_system('hdlcoder_RemoveUnconnectedPorts/dut/mid_Subsystem')
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4. To generate HDL code for the design, at the MATLAB® command prompt, enter:

makehdl('hdlcoder_RemoveUnconnectedPorts/dut')

The generated code mid_Subsystem.v shows the code with the unconnected port optimization.
Here, the unconnected ports are removed during HDL code generation.

Following is an example of code with and without the unconnected port optimization.

Note: Removing redundant logic and the unconnected port optimizations do not affect
traceability support.

Limitations

• Only floating-point designs are optimized. Redundant logic or unconnected ports in Fixed-point
designs are not affected.

• Only unconnected data ports are removed. Control ports are not removed.
• Ports of a referenced model are not deleted.

Related Topics

• “Simplify Constant Operations and Reduce Design Complexity in HDL Coder™” on page 24-8
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• “Diagnostics for Optimizations” on page 16-93
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Create and Use Code Generation Reports

Report Generation
The HDL Coder software creates and displays an HTML code generation report when you select one
or more of the following options. You can specify the UI options in the HDL Code Generation >
Report pane of the Configuration Parameters dialog box.

GUI option makehdl Property
Generate traceability report Traceability
Generate resource utilization report ResourceReport
Generate high-level timing critical path
report

CriticalPathEstimation

Generate optimization report OptimizationReport
Generate model Web view HDLGenerateWebview

When you generate code, the Code Generation Report appears in a separate window.

Code Generation Report
The Code Generation Report is an HTML file that includes a Summary, a Clock Summary, a Code
Interface Report, and one or more of the following optional sections:

• Traceability report
• Resource utilization report
• High-level timing critical path report
• Optimization report
• Model web view

Summary
The Summary lists information about the model, the DUT, the date of code generation, and top-level
coder settings. The Summary also lists model properties that have nondefault values.

Code Interface Report
The Code Interface Report shows the DUT input and output port names, data types, and bit widths.
The report displays links corresponding to each input port and output port in your Simulink model.

Timing and Area Report
When you select Generate resource utilization report, HDL Coder adds a Timing and Area
Report section to the Code Generation Report. This section of the report contains the following
subsections:

• High-level Resource Report: This section The Summary section summarizes multipliers,
adders/subtractors, and registers consumed by the device under test (DUT).
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The Detailed Report section contains more information on the resources that each subsystem
uses. Wherever possible, the detailed report links back to corresponding blocks in your model. The
Detailed Report section also contains a Registers section. This section displays the total 1-bit
registers that is calculated as the sum of products over the bit widths of the registers and their
frequency of occurrence.

• Target-Specific Report: When you request target-specific code generation on the model, this
subsection shows the resource utilization report.

Optimization Report
When you select Generate optimization report, HDL Coder adds an Optimization Report section,
with three subsections:

• Distributed Pipelining: If a subsystem has the DistributedPipelining option enabled, this
subsection displays comparative listings of registers before and after you apply the distributed
pipelining transform.

• Streaming and Sharing: Summary and detailed information about the subsystems for which you
specify sharing or streaming optimizations and the delay balancing summary.

• Target Code Generation: Summary, status, and path delay information about the subsystems
after target code generation.

• Delay Balancing: Lists the number of pipeline delays and phase delays added at the output ports
to match the delays.

See Also

More About
• “Navigate Between Simulink Model and HDL Code by Using Traceability” on page 25-4
• “Critical Path Estimation Without Running Synthesis” on page 24-63
• “Web View of Model in Code Generation Report” on page 25-10
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Navigate Between Simulink Model and HDL Code by Using
Traceability

In this section...
“How Traceability Works” on page 25-4
“Generate Traceability Report” on page 25-5
“Report Location” on page 25-5
“View the Traceability Report” on page 25-6
“Code-to-Model Navigation” on page 25-6
“Model-to-Code Navigation” on page 25-8
“Traceability Report Limitations” on page 25-9

Even a relatively small model can generate hundreds of lines of HDL code. To identify the mapping
between your source model and the generated HDL code more easily, use the traceability support in
HDL Coder.

How Traceability Works
When you enable traceability support and generate HDL code for your model, the code generator
creates and displays an HTML code generation report.

By default, the code generator uses the line-level style to generate a traceability report. The report
generated by using this style contains hyperlinks for each line of HDL code to navigate between code
and model. You can customize the traceability style to generate a comment-based report. This style
contains hyperlinked comments above a block of code that correspond to a searchable tag for a
certain block in your model. To learn more about the two traceability styles, see “Traceability style”
on page 17-5.

You can generate reports for the root-level model or for subsystems, blocks, Stateflow charts, or
MATLAB Function blocks. By default, HDL Coder generates a report for the top-level model.

After you generate the report, you can navigate from:

• Model to code: Select a certain block in your model and navigate to corresponding lines of HDL
code in the report.

• Code to model: Select a line of code in the report and navigate to Simulink blocks corresponding
to that line of code.

HDL Coder provides this two-way navigation or bidirectional traceability. With traceability support,
you can:
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• Verify that the generated code is as you expect. You can identify which model elements correspond
to a line of code, and track code from different model elements that you have or have not
reviewed.

• Verify whether the generated code meets the design requirements. You can assign the
requirements to model elements and include the requirements as hyperlinks in the traceability
report.

Generate Traceability Report
You can generate the report in the Configuration Parameters dialog box or at the command-line.

1 Enable generation of the traceability report.

• In the Apps tab, select HDL Coder. The HDL Code tab appears. Select Settings > Report
Options, and then select Generate traceability report.

• At the command line, use hdlset_param to set the Traceability property on the model.

To learn more about this parameter, see “Generate traceability report” on page 17-3.
2 Specify the traceability style. To generate a line-level traceability report, leave this setting as the

default. To generate a comment-based traceability report:

• On the HDL Code Generation > Report pane, specify the TraceabilityStyle.
• At the command line, use hdlset_param to specify the TraceabilityStyle property on

the model.

To learn more about this parameter, see “Traceability style” on page 17-5.
3 Generate HDL code and the traceability report. Either select the DUT Subsystem and click

Generate HDL Code on the Simulink Toolstrip, or run makehdl on the DUT Subsystem at the
command line.

When HDL code generation is complete, the HTML code generation report appears in a new window.

Report Location
By default, HDL Coder writes the code generation report files to a folder in the hdlsrc\html\ folder
of the build folder. If you close the report, you can navigate to this folder to reopen the report.

Before generating code, you can customize the target folder that stores the HDL code and the report
files.

• In the Configuration Parameters dialog box, specify the target folder by using the Target setting.
• At the command line, use the TargetDirectory property.

To learn how to specify this parameter, see “Folder” on page 12-4.

To keep your traceability report up to date, regenerate the HDL code and report after modifying the
source model.
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View the Traceability Report
In the HTML code generation report window, select the Traceability Report section. In the left pane
of the report, click the names of Generated Source Files to view their contents in a MATLAB web
browser window.

This figure shows a typical traceability report.

The traceability report has several subsections that indicate the blocks or subsystems from which the
code was generated:

• The Eliminated / Virtual Blocks section accounts for blocks that are untraceable because they
are not included in the generated HDL code.

• The Traceable Simulink Blocks / Stateflow Objects / MATLAB Functions section provides a
complete mapping between model elements and code.

If you assigned block requirements, you can see the requirements as hyperlinked comments in the
traceability report. For more information, see “Include requirements in block comments” on page 16-
48.

Code-to-Model Navigation
To navigate from the HDL code to the model:

1 In the traceability report, on the Code Location column, click any hyperlink.

The code generator highlights that line of HDL code in the generated source file.
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2 Select the link corresponding to that line of code in the source file.

The code generator opens a separate window that displays the highlighted Simulink block
corresponding to that line of code.

This figure shows how to navigate from the HDL code to the model by using the traceability report
when you specify Line Level as the Traceability style.

In the traceability report, you see that HDL Coder generates line-level hyperlinks to the HDL code in
the Code Location column. Click the link to highlight that line of code in the HDL source file, and
then click the hyperlink for that line of code in the source file to highlight the corresponding block in
your model.

This figure shows how to navigate from the HDL code to the model using the traceability report when
you specify Comment Based as the Traceability style.

In the traceability report, when you select a hyperlink in the Code Location column, you see that
HDL Coder highlights a hyperlinked comment <S2>/a1 in the HDL code. When you click the
hyperlinked comment in the HDL source file, the code generator highlights the corresponding block
a1 in your model.
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Model-to-Code Navigation
Use model-to-code traceability to select a component at any level of the model and view the code
references to that component in the traceability report. For tracing, you can select these objects:

• Subsystem
• Simulink block
• MATLAB Function block
• Stateflow chart, or these elements of a Stateflow chart:

• State
• Transition
• Truth table
• MATLAB function inside a chart

You can navigate from a certain block in the model to the HDL code generated for that block by using
either of these approaches.

• Select that block and click Navigate to Code on the HDL Code tab.
• Right-click that block in your Simulink model and select HDL Code > Navigate to Code.

This figure shows the model-to-code navigation for both line-level and comment-based traceability
style.

If you use Line Level as the Traceability style and navigate from the model to the HDL code, the
traceability report highlights all lines of HDL code corresponding to that block.

If you use Comment Based as the Traceability style and navigate from the model to the HDL code,
the traceability report highlights the traceable block comment in the HDL code.
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Traceability Report Limitations
• If a block name in your model contains a single quote ('), code-to-model and model-to-code

traceability are disabled for that block.
• If an asterisk (*) in a block name in your model causes a name-mangling ambiguity relative to

other names in the model, code-to-model highlighting and model-to-code highlighting are disabled
for that block. This is most likely to occur if an asterisk precedes or follows a slash (/) in a block
name or appears at the end of a block name.

• If a block name in your model contains the character ÿ (char(255)), code-to-model highlighting
and model-to-code highlighting are disabled for that block.

• If you use certain subsystem types, the Subsystem block is not traceable from the model to the
HDL code at the subsystem level. It is possible that you can trace individual blocks within the
Subsystem block. You cannot trace from the model to the code for these subsystem types:

• Virtual
• Masked
• Nonvirtual for which code has been optimized away

• Traceability does not support Model Reference as the top-level Subsystem block.

See Also

More About
• “Create and Use Code Generation Reports” on page 25-2
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Web View of Model in Code Generation Report

In this section...
“About Model Web View” on page 25-10
“Generate HTML Code Generation Report with Model Web View” on page 25-10
“Model Web View Limitations” on page 25-11

About Model Web View
To review and analyze the generated code, it is helpful to navigate between the code and model. You
can include a Web view of the model within the HTML code generation report. You can then share
your model and generated code outside of the MATLAB environment. When you generate the report,
the Web view includes the block diagram attributes displayed in the Simulink Editor, such as, block
sorted execution order, signal properties, and port data types.

A Simulink Report Generator license is required to include a Web view (Simulink Report Generator)
of the model in the code generation report.

Browser Requirements for Web View

Web view requires a Web browser that supports Scalable Vector Graphics (SVG). Web view uses SVG
to render and navigate models.

You can use the following Web browsers:

• Mozilla Firefox Version 1.5 or later, which has native support for SVG. To download the Firefox
browser, go to www.mozilla.com/.

• The Microsoft® Internet Explorer® Web browser with the Adobe® SVG Viewer plug-in. To
download the Adobe SVG Viewer plug-in, go to www.adobe.com/svg/.

• Apple Safari Web browser

Generate HTML Code Generation Report with Model Web View
This example shows how to create an HTML code generation report which includes a Web view of the
model diagram.

1 Open the mcombo model.
2 Open the Configuration Parameters dialog box or Model Explorer and navigate to the HDL

Code Generation pane.
3 Under Code generation report, select Generate model Web view.
4 Click the Generate button.

After building the model and generating code, the code generation report opens in a MATLAB
Web browser.

5 In the left navigation pane, select a source code file. The corresponding source code is displayed
in the right pane and includes hyperlinks.
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6 Click a link in the code. The model Web view displays and highlights the corresponding block in
the model.

7 To highlight the generated code for a block in your model, click the block. The corresponding
code is highlighted in the source code pane.

8 To go back to the code generation report for the top model, at the top of the left navigation pane,
click the Back button until the top model’s report is displayed.

For more information about exploring a model in a Web view, see “Navigate the Web View” (Simulink
Report Generator).

Model Web View Limitations
The HTML code generation report includes the following limitations when using the model Web view:

• Code is not generated for virtual blocks. In the model Web view of the code generation report,
when tracing between the model and the code, when you click a virtual block, it is highlighted
yellow.
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• In the model Web view, you cannot open a referenced model diagram by double-clicking the
referenced model block in the top model. Instead, open the code generation report for the
referenced model by clicking a link under Referenced Models in the left navigation pane.

• Stateflow truth tables, events, and links to library charts are not supported in the model Web view.
• Searching in the code generation report does not find or highlight text in the model Web view.
• If you navigate from the actual model diagram (not the model Web view in the report), to the

source code in the HTML code generation report, the model Web view is disabled and not visible.
To enable the model Web view, open the report again, see “Open Code Generation Report”
(Simulink Coder).

• For a subsystem build, the traceability hyperlinks of the root level inport and outport blocks are
disabled.

• “Traceability Limitations” (Embedded Coder) that apply to tracing between the code and the
actual model diagram.
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Generate Code with Annotations or Comments
In this section...
“Simulink Annotations” on page 25-13
“Signal Descriptions” on page 25-13
“Text Comments” on page 25-13
“Requirements Comments and Hyperlinks” on page 25-13

The following sections describe how to use the HDL Coder software to add text annotations to
generated code, in the form of model annotations, text comments or requirements comments.

Simulink Annotations
You can enter text directly on the block diagram as Simulink annotations. HDL Coder renders text
from Simulink annotations as plain text comments in generated code. The comments are generated at
the same level in the model hierarchy as the subsystem(s) that contain the annotations, as if they
were Simulink blocks.

See “Describe Models Using Notes and Annotations” (Simulink) for general information on
annotations.

Signal Descriptions
You can provide a description for the signals in your Simulink model. The generated HDL code
displays these descriptions as comments above the signal declaration statements. To specify a
description for the signal, right-click the signal, and select Properties to open the Signal Properties
dialog box. Then, select the Documentation tab, and in the Description section, enter a description
for the signal. For the signal description, use ASCII characters because non-ASCII characters in the
generated code can potentially interfere with downstream synthesis and lint tools. In some cases, due
to certain optimizations that act on the signals, the generated code may not translate all signal
descriptions to HDL comments or may create replicas of HDL comments for certain signal
descriptions.

Text Comments
You can enter text comments at any level of the model by placing a DocBlock at the desired level and
entering text comments. HDL Coder renders text from the DocBlock in generated code as plain text
comments. The comments are generated at the same level in the model hierarchy as the subsystem
that contains the DocBlock.

Set the Document type parameter of the DocBlock to Text. HDL Coder does not support the HTML
or RTF options.

See DocBlock for general information on the DocBlock.

Requirements Comments and Hyperlinks
You can assign requirement comments to blocks.

 Generate Code with Annotations or Comments

25-13



If your model includes requirements comments, you can choose to render the comments in one of the
following formats:

• Text comments in generated code: To include requirements as text comments in code, use the
defaults for Include requirements in block comments (on) and Generate traceability report
(off) in the Configuration Parameters dialog box.

If you generate code from the command line, set the Traceability and RequirementComments
properties:

makehdl(gcb,'Traceability','off','RequirementComments','on');

The following figure highlights text requirements comments generated for a Gain block from the
mcombo model.

• Hyperlinked comments: To include requirements comments as hyperlinked comments in an HTML
code generation report, select both Generate traceability report and Include requirements in
block comments in the Configuration Parameters dialog box.

If you generate code from the command line, set the Traceability and RequirementComments
properties:

makehdl(gcb,'Traceability','on','RequirementComments','on');

The comments include links back to a requirements document associated with the block and to the
block within the original model. For example, the following figure shows two requirements links
assigned to a Gain block. The links point to sections of a text requirements file.
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The following figure shows hyperlinked requirements comments generated for the Gain block.
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Check Your Model for HDL Compatibility
This example shows how to check whether a subsystem or model is compatible for HDL code
generation by using the HDL compatibility checker. The HDL compatibility checker examines the
specified system for compatibility problems, such as use of unsupported blocks, illegal data type
usage, and so on. The HDL compatibility checker generates an HDL Code Generation Check Report.
The report is stored in the target hdlsrc folder. The report file naming convention is
system_report.html, where system is the name of the subsystem or model that is passed to the HDL
compatibility checker. The HDL Code Generation Check Report is displayed in a MATLAB™ web
browser window. Each entry in the HDL Code Generation Check Report has hyperlinks to the block or
subsystem that is not compatible for HDL code generation.

Open this Simulink™ model that has a Product block inside a DUT Subsystem. The inputs to the block
are a mix of double and integer data types.

load_system('hdlcoder_product_mixed_types')
open_system('hdlcoder_product_mixed_types/DUT')

To check whether the DUT Subsystem is compatible for HDL code generation, run the compatibility
checker. To run the checker from the command line, use the checkhdl function. To learn more about
the checkhdl function, see checkhdl.

checkhdl('hdlcoder_product_mixed_types/DUT', ...
    'TargetDirectory','C:/HDL_Checks/hdlsrc')

### Starting HDL check.
### Creating HDL Code Generation Check Report file://C:\HDL_Checks\hdlsrc\hdlcoder_product_mixed_types\DUT_report.html
### HDL check for 'hdlcoder_product_mixed_types' complete with 1 errors, 1 warnings, and 0 messages.
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Click the hdlcoder_product_mixed_types/DUT/Product link to highlight the Product block
inside the DUT Subsystem.

To run the compatibility checker from the UI:

1 Open the Configuration Parameters dialog box or the Model Explorer. Select the HDL Code
Generation pane.

2 From the Generate HDL for dropdown, select the DUT Subsystem you want to check.
3 Click the Run Compatibility Checker button.

For a Subsystem that passes the HDL compatibility check, the HDL Code Generation Check Report
contains a hyperlink to that subsystem.
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Show Blocks Supported for HDL Code Generation
The hdllib function displays the blocks that are compatible with for HDL code generation in the
Library Browser. It only displays those blocks for which you have a license. If you construct models
using blocks from this Library Browser view, your models are compatible with HDL code generation.

Parameter settings for blocks in this Library Browser view are compatible with HDL code generation,
and therefore can differ from the default settings.

Show Supported Blocks in Library Browser
To display the blocks that are compatible with HDL code generation:

• In the Apps tab, select HDL Coder. The HDL Code tab appears. Select HDL Block Properties
> Open HDL Block Library.

• Alternatively, at the command prompt, enter:

hdllib
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The Library Browser opens. You can drag and drop the blocks from the Library Browser into your
model.

If you close and reopen the Library Browser in the same MATLAB session, you continue to see only
the blocks that are compatible with HDL code generation. To reset the Library Browser view to show

all blocks, click the  button.

Reset Library Browser to Show All Blocks
To reset the Library Browser view so that it shows all blocks, regardless of HDL code generation
compatibility, at the command prompt, enter:

hdllib('off')
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To change the Library Browser view to show only those blocks that are compatible with HDL code

generation, click the  button.

Generate a Supported Blocks Report
To generate an HTML table that lists the blocks that are compatible with HDL Code generation:

1 At the command prompt, enter:

hdllib('html')

hdllib creates the hdlsupported library and the following HTML reports:

### HDL supported block list hdlblklist.html
### HDL implementation list hdlsupported.html

2 To see the generated list of blocks, click the hdlblklist.html link.
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See Also
hdllib

More About
• “Create Simulink Model for HDL Code Generation”
• “View HDL-Specific Block Documentation” on page 21-2
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Trace Code Using the Mapping File

Note  This section refers to generated VHDL entities or Verilog modules generically as “entities.”

A mapping file is a text report file generated by makehdl. Mapping files are generated as an aid in
tracing generated HDL entities back to the corresponding systems in the model.

A mapping file shows the relationship between systems in the model and the VHDL entities or Verilog
modules that were generated from them. A mapping file entry has the form

path --> HDL_name

where path is the full path to a system in the model and HDL_name is the name of the VHDL entity or
Verilog module that was generated from that system. The mapping file contains one entry per line.

In simple cases, the mapping file may contain only one entry. For example, the symmetric_fir
subsystem of the sfir_fixed model generates the following mapping file:

sfir_fixed/symmetric_fir --> symmetric_fir

Mapping files are more useful when HDL code is generated from complex models where multiple
subsystems generate many entities, and in cases where conflicts between identically named
subsystems are resolved by HDL Coder.

If a subsystem name is unique within the model, HDL Coder simply uses the subsystem name as the
generated entity name. Where identically named subsystems are encountered, the coder attempts to
resolve the conflict by appending a postfix string (by default, '_entity') to the conflicting
subsystem. If subsequently generated entity names conflict in turn with this name, incremental
numerals (1,2,3,...n) are appended.

As an example, consider the model shown in the following figure. The top-level model contains
subsystems named A nested to three levels.
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When code is generated for the top-level subsystem A, makehdl works its way up from the deepest
level of the model hierarchy, generating unique entity names for each subsystem.

makehdl('mapping_file_triple_nested_subsys/A')
### Working on mapping_file_triple_nested_subsys/A/A/A as A_entity1.vhd
### Working on mapping_file_triple_nested_subsys/A/A as A_entity2.vhd
### Working on mapping_file_triple_nested_subsys/A as A.vhd

### HDL Code Generation Complete.

The following example lists the contents of the resultant mapping file.

mapping_file_triple_nested_subsys/A/A/A --> A_entity1
mapping_file_triple_nested_subsys/A/A --> A_entity2
mapping_file_triple_nested_subsys/A --> A

Given this information, you can trace a generated entity back to its corresponding subsystem by
using the open_system command, for example:

open_system('mapping_file_triple_nested_subsys/A/A')

Each generated entity file also contains the path for its corresponding subsystem in the header
comments at the top of the file, as in the following code excerpt.

-- Module: A_entity2
-- Simulink Path: mapping_file_triple_nested_subsys/A
-- Hierarchy Level: 0
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Add or Remove the HDL Configuration Component
In this section...
“What Is the HDL Configuration Component?” on page 25-25
“Adding the HDL Coder Configuration Component To a Model” on page 25-25
“Removing the HDL Coder Configuration Component From a Model” on page 25-25

What Is the HDL Configuration Component?
The HDL configuration component is an internal data structure that HDL Coder creates and attaches
to a model. This component lets you view the HDL Code Generation pane in the Configurations
Parameters dialog box and set HDL code generation options. Normally, you do not need to interact
with the HDL configuration component. However, there are situations where you might want to add
or remove the HDL configuration component:

• A model that was created on a system that did not have HDL Coder installed does not have the
HDL configuration component attached. In this case, you might want to add the HDL
configuration component to the model.

• If a previous user removed the HDL configuration component, you might want to add the
component back to the model.

• If a model will be running on some systems that have HDL Coder installed, and on other systems
that do not, you might want to keep the model consistent between both environments. If so, you
might want to remove the HDL configuration component from the model.

Adding the HDL Coder Configuration Component To a Model
To add the HDL Coder configuration component to a model, In the Simulink Toolstrip, on the Apps
tab, select HDL Coder. The HDL Code tab appears. On the HDL Code tab, select Settings > Add
HDL Coder Configuration to Model.

Removing the HDL Coder Configuration Component From a Model
To remove the HDL Coder configuration component from a model, on the HDL Code tab, select
Settings > Remove HDL Configuration from Model.
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HDL Coding Standards

• “HDL Coding Standard Report” on page 26-2
• “HDL Coding Standards” on page 26-4
• “Generate an HDL Coding Standard Report from Simulink” on page 26-5
• “Basic Coding Practices” on page 26-9
• “RTL Description Techniques” on page 26-18
• “RTL Design Methodology Guidelines” on page 26-41
• “Generate an HDL Lint Tool Script” on page 26-45
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HDL Coding Standard Report
The HDL coding standard report shows how your generated HDL code conforms to an industry
coding standard you select when generating code.

The report can contain errors, warnings, and messages. Errors and warnings in the report link to
elements in your original design so you can fix problems, then regenerate code. Messages show
where HDL Coder automatically corrected the code to conform to the coding standard.

The report also lists the rules in the coding standard with which the generated code complies. You
can inspect the report to see which coding standard rules the coder checks.

To learn more about HDL coding standards, see “HDL Coding Standards” on page 26-4.

Rule Summary
The rule summary section shows the total numbers of errors, warnings, and messages, and lists the
corresponding rules. Each rule shown in the summary links to the rule in the detailed rule hierarchy
section.

Rule Hierarchy
The rule hierarchy section lists every rule HDL Coder checks, within three categories:

• Basic coding practices, including rules for names, clocks, and reset.
• RTL description techniques, including rules for combinatorial and synchronous logic, operators,

and finite state machines.
• RTL design methodology guidelines, including rules for ports, function libraries, files, and

comments.

If your HDL code does not conform to a specific rule, the rule shows either the automated correction,
or a link to the original design element causing the error or warning. When you click a link, the
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design opens with the design element highlighted. You can fix the problem in your design, then
regenerate code.

Rule and Report Customization
You can configure the report so that it does not display passing rules by using the
ShowPassingRules property of the HDL coding standard customization object. You can also disable
or customize coding standard rules. See HDL Coding Standard Customization.

How to Fix Warnings and Errors
To learn more about warnings and errors you can fix by modifying your design, see:

• “Basic Coding Practices” on page 26-9
• “RTL Description Techniques” on page 26-18
• “RTL Design Methodology Guidelines” on page 26-41

See Also

Related Examples
• “Generate an HDL Coding Standard Report from MATLAB” on page 5-36
• “Generate an HDL Coding Standard Report from Simulink” on page 26-5
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HDL Coding Standards
Industry coding standards recommend using certain HDL coding guidelines. HDL Coder generates
code that follows industry standard rules and generates a report that shows how well your generated
HDL code conforms to industry coding standards. See “HDL Coding Standard Report” on page 26-2.

HDL Coder checks for conformance of your Simulink model or MATLAB algorithm to the HDL coding
standard rules.

The coder can also generate third-party lint tool scripts to use to check your generated HDL code.
The industry standard rules fall under the following three sections:

• Section 1: “Basic Coding Practices” on page 26-9.
• Section 2: “RTL Description Techniques” on page 26-18.
• Section 3: “RTL Design Methodology Guidelines” on page 26-41.

When generating a coding standard report, HDL Coder adds a prefix to the rules. The rule prefix
depends on whether you generate the report from MATLAB or Simulink. The rule prefix for MATLAB
is CGML and for Simulink is CGSL.

To fix errors or warnings related to these rules, update your model design. You can customize some of
the coding standard rules. See HDL Coding Standard Customization.

HDL coding standards provide language-specific code usage rules to help you generate more
efficient, portable, and synthesizable HDL code, such as coding guidelines for:

• Names
• Ports, reset, and clocks
• Combinatorial and synchronous logic
• Finite state machines
• Conditional statements and operators

See Also

Related Examples
• “Generate an HDL Coding Standard Report from MATLAB” on page 5-36
• “Generate an HDL Coding Standard Report from Simulink” on page 26-5
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Generate an HDL Coding Standard Report from Simulink
In this section...
“Using the HDL Workflow Advisor” on page 26-5
“Using the Command Line” on page 26-7

You can generate an HDL coding standard report that shows how well your generated code follows
industry standards. You can optionally customize the coding standard report and the coding standard
rules.

Using the HDL Workflow Advisor
To generate an HDL coding standard report with the HDL Workflow Advisor:

1 In the HDL Code Generation task, in Set Code Generation Options > Set Advanced
Options, select the Coding standards tab.

2 For HDL coding standard, select Industry and click Apply.

 Generate an HDL Coding Standard Report from Simulink
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3 Optionally, using the other options in the Coding standards tab, customize the coding standard
rules and click Apply.

After you generate code, the message window shows a link to the HTML compliance report. To open
the report, click the report link.

Using the Command Line
To generate an HDL coding standard report using the command-line interface, set the
HDLCodingStandard property to Industry by using makehdl or hdlset_param.

For example, to generate HDL code and an HDL coding standard report for a subsystem,
sfir_fixed/symmetric_sfir, enter the following command:

makehdl('sfir_fixed/symmetric_fir','HDLCodingStandard','Industry')

### Generating HDL for 'sfir_fixed/symmetric_fir'.
### Starting HDL check.
### HDL check for 'sfir_fixed' complete with 0 errors, 0 warnings, and 0 messages.
### Begin VHDL Code Generation for 'sfir_fixed'.
### Working on sfir_fixed/symmetric_fir as hdlsrc\sfir_fixed\symmetric_fir.vhd
### Industry Compliance report with 4 errors, 18 warnings, 5 messages.
### Generating Industry Compliance Report symmetric_fir_Industry_report.html
### Generating SpyGlass script file sfir_fixed_symmetric_fir_spyglass.prj
### HDL code generation complete.

To open the report, click the report link.

You can customize the coding standard report and coding standard rule checks by specifying an HDL
coding standard customization object. For example, for a subsystem, sfir_fixed/
symmetric_sfir, you can create an HDL coding standard customization object, cso, set the
maximum if-else statement chain length to 5 by using the IfElseChain property, and generate code:

cso = hdlcoder.CodingStandard('Industry');
cso.IfElseChain.length = 5;
makehdl('sfir_fixed/symmetric_fir','HDLCodingStandard','Industry', ...
        'HDLCodingStandardCustomizations',cso)

See Also
Properties
HDL Coding Standard Customization

Related Examples
• “Generate an HDL Coding Standard Report from MATLAB” on page 5-36
• “Generate an HDL Coding Standard Report from Simulink” on page 26-5

More About
• “HDL Coding Standard Report” on page 26-2
• “Basic Coding Practices” on page 26-9
• “RTL Description Techniques” on page 26-18
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• “RTL Design Methodology Guidelines” on page 26-41
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Basic Coding Practices
In this section...
“1.A General Naming Conventions” on page 26-10
“1.B General Guidelines for Clocks and Resets” on page 26-15
“1.C Guidelines for Initial Reset” on page 26-15
“1.D Guidelines for Clocks” on page 26-16
“1.F Guidelines for Hierarchical Design” on page 26-17

HDL Coder conforms to the following naming conventions and basic coding guidelines and checks for
modeling constructs that violate these rules. HDL Coder reports potential rule violations in the HDL
coding standard report. To avoid these violations, see the rule recommendations.
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1.A General Naming Conventions
1.A.A Design and Top-Level Naming Conventions

Rule / Severity Message Problem Recommendations
1.A.A.1
Warning

Verilog: Source file
name should be same
as the name of the
module in the file.

By default, HDL Coder
generates code that has
the same module and file
name. If you use
BlackBox architecture
for your subsystem and
generate code, the source
names and file names can
be different.

If you use BlackBox
architecture for your
subsystem, make sure
that the source file name
and module name are the
same.

VHDL: File names
containing entities
should have the
extension .vhd
or .vhdl.

Source file name has to
use certain recommended
naming conventions and
file extensions.

Use the VHDL file
extension option in the
HDL Workflow Advisor, or
the VHDLFileExtension
property from the
command line.

1.A.A.2
Message

Verilog/VHDL:
Identifiers and
names should follow
recommended naming
convention.

A name in the design does
not start with a letter or
contains a character other
than a number, letter, or
underscore.

Update the names in your
design so that they start
with a letter of the
alphabet (a-z, A-Z), and
contain only alphanumeric
characters (a-z, A-Z,
0-9) and underscores (_).

1.A.A.3
Message

Verilog/VHDL:
Keywords in Verilog-
HDL(IEEE1364),
SystemVerilog(v3.1a)
, and keywords in
VHDL(IEEE1076.X)
must not be used.

There are Verilog,
SystemVerilog, or VHDL
keywords within the
names in your design.

Update the names in your
design so that they do not
contain Verilog,
SystemVerilog, or VHDL
keywords.

You can disable this rule
checking by using the
HDLKeywords property of
the HDL coding standard
customization object.

1.A.A.3vb
Message

VHDL: Do not use
standard VHDL names.

HDL Coder does not use
standard VHDL names.

No action required.

1.A.A.4
Error

Verilog/VHDL: Do not
use names starting
with VDD, VSS, VCC,
GND or VREF.

A name or names in the
design are not using the
standard naming
convention.

Update the names in your
design so that they start
with a letter of the
alphabet (a-z, A-Z), and
contain only alphanumeric
characters (a-z, A-Z,
0-9) and underscores (_).
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Rule / Severity Message Problem Recommendations
1.A.A.5
Error

Verilog/VHDL: Do not
use case variants of
name in the same
scope.

Two or more names in
your design, within the
same scope, are identical
except for case.

For example, the names
foo and Foo cannot be in
the same scope.

Update the names in your
design so that no two
names within the same
scope differ only in case.

You can disable this rule
checking by using the
DetectDuplicateNames
Check property of the
HDL coding standard
customization object.

1.A.A.6
Warning

Verilog: Primary
port names or module
names must follow
recommended naming
convention.

HDL Coder generates
code that complies with
this rule for Verilog and
VHDL.

No action required.

VHDL: Component name
should be same as
its corresponding
entity name.

1.A.A.9
Warning

Verilog/VHDL: Top-
level module/entity
and port names
should be less than
or equal to 16
characters in length
and not be mixed-
case.

A top-level module, entity,
or port name in the
generated code is longer
than 16 characters, or
uses letters with mixed
case.

Update the indicated
name in your design so
that it is less than or
equal to 16 characters
long, and all letters are
lowercase. all letters must
be either all uppercase or
all lowercase.

You can customize this
rule by using the
ModuleInstanceEntity
NameLength property of
the HDL coding standard
customization object.
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1.A.B Module Naming Conventions

Rule / Severity Message Problem Recommendations
1.A.B.1–1b
Error

Verilog: Module and
Instance names
should be between 2
and 32 characters in
length. The instance
names including
hierarchy should be
less than or equal
to 128 characters in
length.

A module, instance, or
entity name in the
generated code is fewer
than 2 characters or more
than 32 characters in
length.

Update the indicated
name in your design so
that it is from 2 through
32 characters in length.

You can customize this
rule by using the
ModuleInstanceEntity
NameLength property of
the HDL coding standard
customization object.VHDL: Entity names

and instance names
should be between 2
and 32 characters in
length. The instance
names including
hierarchy should be
less than or equal
to 128 characters in
length.

1.A.C Signal Naming Conventions

Rule / Severity Message Problem Recommendations
1.A.C.3
Error

Verilog: Signal
names, port names,
parameter names,
define names and
function names
should be between 2
and 40 characters in
length.

A signal, port, parameter,
define, or function name
in the generated code is
fewer than 2 characters,
or more than 40
characters in length.

Update function names or
subsystem names in your
design to be from 2
through 40 characters in
length.

You can customize this
rule by using the
SignalPortParamNameL
ength property of the
HDL coding standard
customization object.

VHDL: Signal names,
variable names, type
names, label names,
and function names
should be between 2
and 40 characters in
length.
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1.A.D File, Package, and Parameter Naming Conventions

Rule / Severity Message Problem Recommendations
1.A.D.1
Warning

Verilog: Include
files must have
extensions that
match ".h",
".vh",".inc", and
".h", ".inc", "ht",
".tsk" for
testbench.

The generated include
files match these
extensions for the
testbench.

No action required.

VHDL: Package file
name should be
followed by
"pac.vhd".

By default, the generated
package file postfix is
_pkg.

In the Configuration
Parameters dialog box, on
the HDL Code
Generation > Global
Settings > General
pane, specify the
Package postfix to _pac.

1.A.D.4
Warning

Verilog: Macros
defined outside a
module must not be
used in the module.

HDL Coder does not
generate macros in the
Verilog code, or redefine
constants in the VHDL
code.

No action required.

VHDL: Constants
should not be
redefined.

1.A.D.9
Warning

Verilog: Bit-width
must be specified
for parameters with
more than 32 bits.

HDL Coder does not
specify a bit-width greater
than 32 bits in the
generated code.

No action required.

VHDL: Generic must
not be used at top-
level module.

If you use generics at top-
level module or if you
have mask parameters in
your design and set the
MaskParameterAsGener
ic property, HDL Coder
reports this violation.

If you have mask
parameters in your
design, set the
MaskParameterAsGener
ic to off.
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1.A.E Register and Clock Naming Conventions

Rule / Severity Message Problem Recommendations
1.A.E.2
Warning

Verilog/VHDL: Clock,
Reset, and Enable
signals should
follow recommended
naming convention.

The clock, reset, and
enable signals are not
using the recommended
naming convention.

In the Configuration
Parameters dialog box, on
the HDL Code
Generation > Global
Settings pane, using the
clock input port, reset
input port, and clock
enable input port
options, update the names
for the clock, reset, and
enable signals
respectively. Clock signal
names must contain clk
or ck, reset signal names
must contain rstx,
resetx, rst_x, or
reset_x, and clock
enable signal names must
contain en.

1.A.F Architecture Naming Conventions

Rule / Severity Message Problem Recommendations
1.A.F.1
Warning

VHDL: Architecture
name must contain
RTL.

In the generated VHDL
code, the architecture
name does not contain
RTL.

In HDL Code
Generation > Global
Settings > General tab,
update the VHDL
architecture name to
use an architecture name
that contains RTL.

1.A.F.4
Warning

VHDL: An entity and
its architecture
must be described in
the same file.

By default, HDL Coder
describes the entity and
architecture of the VHDL
code in the same file.

If you set the
SplitEntityArch
property to on, the
generated VHDL code
describes the entity and
architecture in separate
files, so HDL Coder
reports a warning.

Set SplitEntityArch to
off so that HDL Coder
describes the entity and
architecture of the VHDL
code in the same file.
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1.B General Guidelines for Clocks and Resets
1.B.A Clock Constraints

Rule / Severity Message Problem Recommendations
1.B.A.1
Message

VHDL: Design should
have only a single
clock and use only
one edge of the
clock.

Your design uses multiple
edges of the clock or
contains more than one
clock signals.

If you set the
ClockInputs property to
multiple or use
TriggerAsClock to use
the trigger signal for a
triggered subsystem as
clock, HDL Coder
generates this message.

Update your design to use
a single clock signal. In
the HDL Code
Generation > Global
Settings panel, set Clock
inputs to Single, and
Clock edge to Rising or
Falling.

1.B.A.2
Error

Verilog/VHDL: Do not
create an RS latch
or flip-flop using
primitive cells such
as AND, OR.

HDL Coder does not
create latches, and
complies with this rule.

No action required.

1.B.A.3
Error

Verilog/VHDL: Remove
combinational loops.

HDL Coder does not
create combinational
loops.

No action required.

1.C Guidelines for Initial Reset
1.C.A Flip-Flop Clock Constraints

Rule / Severity Message Problem Recommendations
1.C.A.3
Warning

Verilog/VHDL: Do not
use asynchronous
set/reset signals
other than initial
reset.

HDL Coder does not use
asynchronous reset
signals as non-reset or
synchronous reset signals.

No action required.

1.C.A.6
Error

Verilog/VHDL:
Signals must not be
used as both
asynchronous reset
and synchronous
reset.

HDL Coder adds the reset
control logic outside the
DUT and does not
generate both
asynchronous reset and
synchronous reset signals.

No action required.

1.C.A.7
Warning

Verilog/VHDL: A
flip-flop must not
have both
asynchronous set and
asynchronous reset.

HDL Coder does not
generate code with both
asynchronous set and
reset signals.

No action required.
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1.C.B Reset Conventions

Rule / Severity Message Problem Recommendations
1.C.B.1a
Message

Verilog/VHDL:
Asynchronous resets
or sets must not be
gated.

HDL Coder does not gate
asynchronous set or reset
signals.

No action required.

1.C.B.1b
Message

Verilog/VHDL: Reset
must be generated in
separate module
instantiated at top-
level.

The generated code
complies with this rule,
because the DUT does not
contain reset
instantiation.

No action required.

1.C.B.2
Warning

Verilog/VHDL: Do not
use signals other
than initial reset
for asynchronous
reset input of flip-
flop.

HDL Coder uses only
initial reset signals for
asynchronous reset input
of flip-flop.

No action required.

1.D Guidelines for Clocks
1.D.A Clock Packaging Constraints

Rule / Severity Message Problem Recommendations
1.D.A.1
Warning

Verilog/VHDL: Clock
should be generated
in separate module
or entity
instantiated at top-
level.

HDL Coder generates
code that complies with
this rule, because the
DUT does not contain
clock instantiation.

No action required.

1.D.C Clock Gating Constraints

Rule / Severity Message Problem Recommendations
1.D.C.2–4
Message

Verilog/VHDL: Do not
use flip-flop
outputs as clocks of
other flip-flops and
flip-flop clock
signals as non-clock
signals.

HDL Coder does not use
the output of flip-flops as
clocks of other flip-flops,
or flip-flop clock signals as
nonclock signals.

No action required.

1.D.C.6
Message

Verilog/VHDL: Do not
use flip-flops with
inverted edges.

If your Simulink model
uses a Triggered
Subsystem block with
rising and falling triggers
and has
TriggerAsClock
enabled, HDL Coder
violates this rule.

Disable TriggerAsClock
or do not use Triggered
Subsystem blocks with
both rising and falling
triggers in your Simulink
model.
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1.D.D Clock Hierarchy Constraints

Rule / Severity Message Problem Recommendations
1.D.D.2
Message

Verilog: One
hierarchical level
should have a single
clock only.

Your Simulink model uses
multiple clock signals.

Update your design to use
a single clock signal. In
the HDL Code
Generation > Global
Settings panel, set Clock
inputs to Single.

1.F Guidelines for Hierarchical Design
1.F.A Basic Block Size Guidelines

Rule / Severity Message Problem Recommendations
1.F.A.4
Error

Verilog/VHDL: Clock
generation, reset
generation, RAM,
Setup/Hold ensure
buffers, and I/O
cells must be a
module at top-level.

HDL Coder generates
separate modules for the
DUT, RAM, timing
controller, so that it
complies with this rule.

No action required.

See Also
Properties
HDL Coding Standard Customization

Related Examples
• “Generate an HDL Coding Standard Report from MATLAB” on page 5-36
• “Generate an HDL Coding Standard Report from Simulink” on page 26-5

More About
• “HDL Coding Standard Report” on page 26-2
• “RTL Description Techniques” on page 26-18
• “RTL Design Methodology Guidelines” on page 26-41
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RTL Description Techniques
In this section...
“2.A Guidelines for Combinational Logic” on page 26-18
“2.B Guidelines for “Always” Constructs of Combinational Logic” on page 26-23
“2.C Guidelines for Flip-Flop Inference” on page 26-25
“2.D Guidelines for Latch Description” on page 26-28
“2.E Guidelines for Tristate Buffer” on page 26-29
“2.F Guidelines for Always/Process Construct with Circuit Structure into Account” on page 26-30
“2.G Guidelines for “IF” Statement Description” on page 26-30
“2.H Guidelines for “CASE” Statement Description” on page 26-32
“2.I Guidelines for “FOR” Statement Description” on page 26-35
“2.J Guidelines for Operator Description” on page 26-36
“2.K Guidelines for Finite State Machine Description” on page 26-39

HDL Coder conforms to the following RTL description rules and checks for modeling constructs that
violate these rules. HDL Coder reports potential rule violations in the HDL coding standard report. To
avoid these violations, see the rule recommendations.

2.A Guidelines for Combinational Logic
2.A.A Combinatorial Logic Conventions

Rule / Severity Message Problem Recommendations
2.A.A.1
Reference

VHDL: Package
IEEE.std_logic_1164
must be included in
each entity.

HDL Coder includes the
package in each entity in
the generated VHDL code.

No action required.

2.A.A.2
Warning

Verilog: A function
description must
assign return values
to all possible
states of the
function.

HDL Coder does not
generate functions for
DUT.

No action required.

2.A.A.3
Warning

Verilog: Check using
RTL parsing tool for
error prevention.

HDL Coder generates
VHDL and Verilog code
with the correct syntax
and complies with this
rule.

No action required.
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2.A.B Function Conventions

Rule / Severity Message Problem Recommendations
2.A.B.1
Error

Verilog: Function
statement should not
be used for
asynchronous reset
line logic in an
always construct for
FF inference.

HDL Coder does not
generate functions for
DUT.

No action required.

VHDL: Use std_logic
or std_logic_vector
data types to
describe ports of an
entity.

At the inputs and
outputs,HDL Coder uses
std_logic or
std_logic_vector to
describe the ports.

No action required.

2.A.B.2–3
Error

Verilog: Do not use
nonblocking
assignment, or input
argument as input in
function
description.

The generated HDL code
complies with this rule for
Verilog.

No action required.

VHDL: Use range
specification for
integer types.

By default, HDL Coder
specifies the range for
integer types in the
generated code.

No action required.

2.A.B.4
Error

Verilog: Task
constructs should
not be used in the
design.

HDL Coder does not use
tasks or fork-join
constructs in the Verilog
code.

No action required.

VHDL: Do not use bit
and bit vector data
types in the design.

HDL Coder does not use
bit or bit vector data types
in the generated code.

No action required.

2.A.B.5
Error

Verilog: Clock edges
should not be used
in a task
description.

When generating Verilog
code, HDL Coder does not
use clock edges in a task
description.

No action required.

2.A.B.6
Error

VHDL: Specify range
for
std_logic_vector.

HDL Coder complies with
this rule, because the
generated VHDL code
specifies the range that
std_logic_vector uses.

No action required.
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2.A.C Bit Width Matching Conventions

Rule / Severity Message Problem Recommendations
2.A.C.1–2
Error

Verilog: Ensure that
bitwidth of function
arguments matches
that of
corresponding
function inputs, and
bitwidth of function
return value matches
that of assignment
destination signal.

At module instantiation,
HDL Coder enforces type
matching, so that it
complies with this rule.

No action required.

VHDL: Use only 'in',
'out', and 'inout'
ports. Do not use
buffer and linkage.

When generating VHDL
code, HDL Coder specifies
‘IN’, ’OUT’, or ‘INOUT’
ports, and does not use
buffer or linkage.

No action required.

2.A.C.3
Error

Verilog: Use
concatenation when
assigning to
multiple signals.

HDL Coder complies with
this rule.

No action required.

VHDL: Port mode must
be explicitly
specified.

When generating VHDL
code, HDL Coder specifies
‘IN’, ’OUT’, or ‘INOUT’
ports and does not use
buffer or linkage.

No action required.

2.A.C.4–5
Error

Verilog: In function
description, do not
assign global
signals, and return
value assignment
must be the last
statement.

HDL Coder generates
Verilog code that complies
with this rule.

No action required.

VHDL: Input port
must not be
described with
initial value.

In the generated VHDL
code, HDL Coder does not
specify an initial value to
the input port.

No action required.
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2.A.D Operators Conventions

Rule / Severity Message Problem Recommendations
2.A.D.5
Message

Verilog: Bit-wise
operators must be
used instead of
logical operators in
multi-bit
operations.

In the generated Verilog
code, HDL Coder
complies with this rule for
multibit operators.

No action required.

2.A.D.6
Message

Verilog: Reduction
of a single-bit or
large expression
should not be
performed.

By default, HDL Coder
does not reduce a single-
bit or a large expression.
If your design performs
bit-reduction operations,
the resulting HDL code
can perform reduction of
a large expression.

Update your design so
that there are no calls to
bit reduction operations.

2.A.E Conditional Statement Conventions

Rule / Severity Message Problem Recommendations
2.A.E.3
Message

Verilog: Ensure that
conditional
expressions evaluate
to a scalar.

HDL Coder complies with
this rule.

No action required.

2.A.F Array, Vector, Matrix Conventions

Rule / Severity Message Problem Recommendations
2.A.F.2
Warning

Verilog/VHDL: LSB of
vectors/memory
should be zero.

Your design contains
vectors whose LSB has a
nonzero value.

Update your design so
that the generated code
contains vectors or
memory whose LSB value
is zero.

2.A.F.4
Warning

Verilog/VHDL: Index
variable width
should not be too
short.

HDL Coder enforces type
matching and ensures
that the index variable
width is not too short.

No action required.

2.A.F.5
Error

Verilog/VHDL: Do not
use x and z for an
array index.

In the generated code,
HDL Coder does not use x
or z for an array index.

No action required.

2.A.G Assignment Conventions

Rule / Severity Message Problem Recommendations
2.A.G.1
Error

VHDL: Direct
assignment must be
used for aggregates.

HDL Coder directly
assigns aggregates in the
generated code without
performing any
intervening operations.

No action required.
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2.A.H Function Return Value Conventions

Rule / Severity Message Problem Recommendations
2.A.H.1
Reference

VHDL: Constrained
arrays should not be
used as sub-program
description.

In the generated code,
HDL Coder does not use
constrained arrays in
subprogram description.

No action required.

2.A.H.2
Reference

VHDL: Specify range
for return values in
function description
when return type is
array.

In function description,
when the return type is
array, HDL Coder
specifies the range for
return values in function
in the generated code.

No action required.

2.A.H.4–6
Error

VHDL: In a sub-
program description,
use only OTHERS
clause when
specifying
aggregates, not use
or call a nested
subprogram
description, and not
read Global signals.

HDL Coder complies with
this rule.

No action required.

2.A.H.9–10
Warning

VHDL: A function
must have a return
statement, return a
valid value in all
possible states, and
not have any other
statement following
the return
statement.

HDL Coder complies with
this rule.

No action required.

2.A.I Built-in Attribute Conventions

Rule / Severity Message Problem Recommendations
2.A.I.4–5
Error

VHDL: Do not use
user-defined
attributes, or
built-in attributes
except range,
length, left, right,
high, low,
reverse_range, and
event.

By default, HDL Coder
does not use user-defined
attributes in the
generated code. If you set
HDL block properties,
such as DSPStyle in your
design, the generated
code uses synthesis
directives.

To fix this error, in your
design, clear the HDL
block property that you
have set for using
synthesis directives in the
generated code.
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2.A.J VHDL Specific Conventions

Rule / Severity Message Problem Recommendations
2.A.J.1–6
Warning

VHDL: In a design,
do not use block
statements, objects
of type record,
shared variables,
while-loop
statements,
procedures, or
selected signal
assignments.

If your design uses loop
statements, HDL Coder
generates this warning.

To avoid this warning,
update your design so
that there are no looping
statements.

2.A.J.8–13
Error

VHDL: In a design,
do not use access
types, alias
declarations, bus
and register
signals, disconnect
specifications,
waveforms, and
attributes that are
defined in Synopsys
library.

HDL Coder complies with
this rule.

No action required.

2.B Guidelines for “Always” Constructs of Combinational Logic
2.B.A Latch Constraints

Rule / Severity Message Problem Recommendations
2.B.A.2
Reference

Verilog/VHDL: Check
latch creation from
RTL lint checker and
synthesis tools;
Design should not
have latches.

HDL Coder does not
create latches.

No action required.
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2.B.B Signal Constraints - I

Rule / Severity Message Problem Recommendations
2.B.B.2–3
Message

Verilog/VHDL: In the
senstivity list of a
process or always
block, do not define
constants, use wait
statements, or
include a signal
that is not read
inside that block.

HDL Coder generates
code that complies with
the use of these
constructs inside a
process block (VHDL) or
an always block
(Verilog).

No action required.

Verilog: Do not
describe multiple
event expressions
with always
constructs.

HDL Coder does not
describe more than one
event expression in an
always construct.

No action required.

2.B.C Signal Constraints - II

Rule / Severity Message Problem Recommendations
2.B.C.1–2
Error

Verilog: Do not use
nonblocking
assignments in
combinational always
blocks, or when
assigning initial
values in always
constructs of
sequential blocks.

Your design uses
constructs that generate
Verilog code with
nonblocking assignments
in combinational always
blocks or assigns initial
values in always
constructs of sequential
blocks.

Update your MATLAB
algorithm or Stateflow
design so that the
generated Verilog code
does not use these
constructs.

2.B.C.3
Message

Verilog/VHDL: Do not
assign a signal more
than once in an
always construct for
sequential circuits.

In an always construct
for sequential circuits,
HDL Coder does not
perform multiple
assignments to a signal.

No action required.
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2.C Guidelines for Flip-Flop Inference
2.C.A Assignment Constraints

Rule / Severity Message Problem Recommendations
2.C.A.1–2c
Error

Verilog/VHDL: In
flip-flop
description, do not
use quasi-continuous
assignments,
deassign statements,
blocking
assignments,
variable assignment
statements, or
stable attribute.

HDL Coder does not
introduce any additional
data or add these
constructs when
generating flip-flops in
process blocks (VHDL)
or always blocks.
(Verilog)

No action required.

2.C.A.4–5b
Warning

Verilog/VHDL: Only
flip-flop data paths
can have delays. The
delay values must be
integral and non-
negative.

HDL Coder does not
generate code that uses
DELAY attributes for the
DUT. The generated
testbench can contain
DELAY attributes.

No action required.

2.C.A.6
Error

Verilog/VHDL: Check
the logic level of
the reset signal as
specified in the
sensitivity list of
the always block.

HDL Coder uses posedge
or negedge to denote
transitions at clock edges
in the generated code.

No action required.

2.C.A.7
Message

Verilog/VHDL: A
flip-flop should not
have two
asynchronous resets.
Do not use functions
in the asynchronous
reset description.

HDL Coder does not
generate multiple
asynchronous resets. The
generated code can
contain multiple
synchronous resets.

No action required.

2.C.A.8
Error

VHDL: Do not use
wait constructs.

HDL Coder does not use
wait constructs.

No action required.

2.C.A.9
Error

VHDL: Functions
'rising_edge' or
'falling_edge'
should not be used
in the design.

By default, HDL Coder
uses the event syntax for
clock events.

By using the
UseRisingEdge
property, you can specify
whether to use the
rising_edge or
falling_edge to detect
clock transitions.

To fix this error, you can
control the
UseRisingEdge property
such that the generated
code uses the event
syntax.
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2.C.B Blocking Statement Constraints

Rule / Severity Message Problem Recommendations
2.C.B.1–2
Warning

Verilog/VHDL: Use
blocking assignment
in flip-flop
description. Do not
use blocking and
nonblocking
assignments together
in the same always
block.

HDL Coder complies with
this rule.

No action required.

2.C.B.4
Error

VHDL: Variables, if
used, must be
assigned to a signal
before the end of
the process.

The generated HDL code
does not contain dead
code, so HDL Coder
complies with this rule.

No action required.
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2.C.C Clock Constraints

Rule / Severity Message Problem Recommendations
2.C.C.1–2b
Error

Verilog/VHDL: Do not
use edges of
multiple clocks or
both edges of the
same clock in an
always block. Do not
describe multiple
clock edges in a
single process/
always block for
same edge of a
single clock.

HDL Coder uses the rising
edge or falling edge of the
clock, but does not use
both edges of the clock.

No action required.

2.C.C.4–5
Error

Verilog/VHDL:
Minimize, and if
possible, remove
clock enable signals
and reset signal on
networks.

If your design generates
code that uses clock
enables and reset signals
on networks, HDL Coder
generates an error.

To minimize clock enables
in the generated HDL
code, in the HDL coding
standard customization
properties, enable the
MinimizeClockEnableC
heck property.

To remove reset signals
on the networks, in the
HDL coding standard
customization properties,
enable the
RemoveResetCheck
setting.

2.C.C.6
Warning

Verilog/VHDL: Do not
use asynchronous
reset signals.

Your Simulink model
design or MATLAB code
uses asynchronous reset
signals.

To avoid this violation, use
synchronous reset signals
for your design. In the
Configuration Parameters
dialog box, set Reset
type to Synchronous.
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2.C.D Initial Value Constraints

Rule / Severity Message Problem Recommendations
2.C.D.1
Error

Verilog/VHDL: Do not
specify flip-flop or
RAM initial value
using initial
construct.

The generated HDL code
for your design contains
an unsynthesizable
initial statement.

Disable the Initialize
block RAM or Initialize
all RAM blocks option in
the HDL Workflow
Advisor.

You can disable this rule
checking by using the
InitialStatements
property of the HDL
coding standard
customization object.

2.C.F Mixed Timing Constraints

Rule / Severity Message Problem Recommendations
2.C.F.1–2a
Warning

Verilog/VHDL: Do not
use multiple resets
or mix descriptions
of flip-flops with
and without
asynchronous reset
in the same process/
always block.

HDL Coder complies with
this rule.

No action required.

2.D Guidelines for Latch Description
2.D.A Module Constraints

Rule / Severity Message Problem Recommendations
2.D.A.2–3
Warning

Verilog/VHDL: Latch
descriptions should
not have
asynchronous set or
asynchronous reset,
or be mixed with
other descriptions
in the same module.

HDL Coder does not
create latches in the
generated code.

No action required.

2.D.A.4–5
Error

Verilog/VHDL: Do not
use combinational
loops that contain
latches or level two
latches in the same
phase clock.

By default, HDL Coder
does not create
combinational loops. If
your MATLAB algorithm
contains combinational
loops, the generated HDL
code can use
combinational loops.

Update your MATLAB
code so that the
generated HDL code does
not contain any
combinational loops.
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2.E Guidelines for Tristate Buffer
2.E.A Module Constraints

Rule / Severity Message Problem Recommendations
2.E.A.1–2
Warning

Verilog/VHDL:
Tristate
descriptions must
not be mixed with
other descriptions
in the same module
and should not
contain logic in
tristate enable
conditions.

HDL Coder does not
create latches or tristate
buffers in the generated
code.

No action required.

2.E.A.4–5b
Reference

Verilog/VHDL:
Tristate bus must
not be driven by
more than specified
number of drivers. A
net that is not
tristated or a
signal without a
resolution function
must not have
multiple drivers.

HDL Coder does not
create latches or tristate
buffers in the generated
code.

No action required.

2.E.A.6–9
Error

Verilog/VHDL: Inout
port should not be
directly connected
to input/output. Do
not use tristate
output in an if
conditional
expression or in the
selection expression
of a case statement
that assigns a fixed
value in others
choice.

By default, HDL Coder
does not connect input or
output ports directly to
bidirectional ports.

In your Simulink model,
on the HDL block
properties for the input or
output port, if you set
BidirectionalPort to on,
the generated HDL code
can directly connect inout
to input or output ports.

In your Simulink model,
on the HDL block
properties for the input or
output port, set
BidirectionalPort to
off.

2.E.B Connectivity Constraints

Rule / Severity Message Problem Recommendations
2.E.B.1
Warning

Verilog/VHDL: Logic
directly driven by
tristate nets should
be in a separate
module.

HDL Coder does not have
tristate nets in the
generated HDL code.

No action required.
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2.F Guidelines for Always/Process Construct with Circuit Structure into
Account
2.F.B Constraints on Number of Conditional Statements

Rule / Severity Message Problem Recommendations
2.F.B.1
Error

Verilog/VHDL: Do not
describe more than
one statement (if/
case/while/for/loop)
separately within a
single always or
process block.

The generated HDL code
for your design contains
more than one conditional
statement (if-else, case,
and loops) that is
described separately
within a process block (for
VHDL code) or an always
block (for Verilog code).

Update your design so
that there is not more
than one conditional
statement that is
described separately in a
process block.

You can customize this
rule by using the
ConditionalRegionChe
ck property of the HDL
coding standard
customization object.

2.F.B.2
Error

Verilog/VHDL: A
variable in the
sensitivity list is
modified inside the
same process or
always block.

HDL Coder does not
modify the variables in
the sensitivity list,
including clock, reset, and
enable signals.

No action required.

2.G Guidelines for “IF” Statement Description
2.G.B Common Sub-Expression Constraints

Rule / Severity Message Problem Recommendations
2.G.B.2
Warning

Verilog/VHDL: Avoid
describing
conditions that will
not be executed.

The generated HDL code
does not contain dead
code, or result in
conditions that are not
executed.

No action required.
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2.G.C Nesting Depth Constraints

Rule / Severity Message Problem Recommendations
2.G.C.1a-b
Message

Verilog/VHDL:
Nesting in if-else
constructs should
not be deeper than N
levels. Where
feasible case
statements should be
used, rather than
if-else statements,
if performance is
important.

The MATLAB code
contains an if-elseif
statement with more than
N levels of nesting. By
default, N is 3.

Modify if-elseif
statements in your
MATLAB code so there
are N or fewer levels of
nesting.

For example, the following
if-elseif pseudocode
contains three levels of
nesting:

if ...
   if ...
      if ...
      else
   else
else

You can customize this
rule by using the
IfElseNesting property
of the HDL coding
standard customization
object.

2.G.C.1c
Message

Verilog/VHDL: Chain
of if...else if
constructs must not
be exceed default
number of levels.

The generated HDL code
contains an if-elseif
statement with more than
seven branches.

Modify if-elseif
statements in your
MATLAB code so that the
number of branches is
seven or fewer.

For example, the following
if-elseif pseudocode
contains three branches:

if ...
elseif ...
elseif ...
else

You can customize this
rule by using the
IfElseChain property of
the HDL coding standard
customization object.
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2.G.D Begin-End Decorator Constraints

Rule / Severity Message Problem Recommendations
2.G.D.2–3
Message

Verilog/VHDL: Attach
begin-end to "if"
statements.

The generated HDL code
complies with these code
constructs.

No action required.

Verilog: Do not use
fork-join
constructs.

2.H Guidelines for “CASE” Statement Description
2.H.A CASE Structure Constraints

Rule / Severity Message Problem Recommendations
2.H.A.3–5
Reference

Verilog/VHDL: case
constructs should
not have overlapping
clause conditions.
Do not use full_case
directive.

The generated HDL code
complies with these
constructs for case
statements and does not
use the full_case directive.

No action required.
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2.H.C Default Value Constraints

Rule / Severity Message Problem Recommendations
2.H.C.3
Warning

Verilog: Do not
use //synposys
full_case pragma
when all conditions
are not described as
case clause or the
default clause is
missing.

HDL Coder describes all
possible cases in a case
statement so that the
synthesis tool does not
infer a latch.

No action required.

2.H.C.4
Message

Verilog/VHDL: A
signal that is
assigned don't care
value in a case
default clause
should not be used
in if conditions,
ternary and case
constructs.

HDL Coder does not use a
signal that is assigned a
don’t care value in the
default clause.

No action required.

2.H.C.5
Warning

Verilog/VHDL:
Default clause in
case construct must
be the last clause.

To avoid latch inference,
HDL Coder describes all
possible cases, including
the default clause.

No action required.

2.H.C.6–7
Message

Verilog/VHDL: Do not
use a signal to
which don't care is
assigned for
selection expression
of casex statements
or case statements
that do not assign
'X' in default
clause.

HDL Coder does not use
don’t care values, and
explores the entire space
of an n-bit select signal.

No action required.
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2.H.D Don’t Care Constraints

Rule / Severity Message Problem Recommendations
2.H.D.1-4
Message

Verilog: Design
should not use casex
or casez constructs.
casex or casez
constructs must
contain a dont-care
condition, and not
have complex clause
conditions. The
don't care condition
in casex or casez
branches must follow
proper coding style.

HDL Coder does not
generate casex or casez
constructs, so that it
complies with this rule.

No action required.

2.H.E Additional CASE Constraints

Rule / Severity Message Problem Recommendations
2.H.E.1–4
Message

Verilog: Do not use
parallel_case
directive. In a case
clause condition, do
not use fixed
values, variables,
expressions, and
logical, arithmetic,
bitwise, or
reduction
operations.

HDL Coder does not use
the parallel_case
directive and generates
code that complies with
these constructs.

No action required.
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2.I Guidelines for “FOR” Statement Description
2.I.A Loop Body Constraints

Rule / Severity Message Problem Recommendations
2.I.A.2a-b
Message

Verilog: Loop
variable and
terminating
condition of "for"
construct must have
constant initial
value.

HDL Coder does not
generate casex or casez
constructs so that it
complies with this rule.

No action required.

2.I.A.2c-e
Message

Verilog: Loop
variable of "for"
construct must have
a constant value
inside the construct
and must not be used
outside the
construct.

HDL Coder generates the
right loop constructs and
complies with this rule.

No action required.

Verilog: The loop
termination
condition must not
be a constant.

2.I.B Non-Constant Operation Constraints

Rule / Severity Message Problem Recommendations
2.I.B.4
Error

Verilog/VHDL:
Separate for loops
must be used in
reset and logic
parts of flip-flop
descriptions.

HDL Coder uses separate
for loops in the reset and
logic parts of flip-flop
descriptions.

No action required.

2.I.C Exit Constraints

Rule / Severity Message Problem Recommendations
2.I.C.1
Error

VHDL: Exit or next
statement must not
be used in a for
loop.

The generated code
contains for loops only
when HDL Coder knows
the number of iterations.
When the loop is
executing, HDL Coder
does not exit from the for
loop,

No action required.
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2.J Guidelines for Operator Description
2.J.A Comparison and Precedence Constraints

Rule / Severity Message Problem Recommendations
2.J.A.4a-c
Message

Verilog: Signals
must not be compared
with X or Z, or
values containing X
or Z.

By default, HDL Coder
does not generate code
that contains these
constructs.

If your Simulink model
design uses Constant
blocks with Architecture
set to Logic Value and
uses these constructs, the
coder displays this
message.

Update your Simulink
model design so that the
Constant blocks do not
use these constructs when
Architecture is set to
Logic Value.
Alternatively, change the
Architecture to
Constant.

2.J.A.4v
Error

Verilog/VHDL: Do not
assign X except for
the others clause of
case statements.

By default, HDL Coder
does not use X in the
others clause of case
statements. In certain
cases, if the generated
code does not comply with
2.J.A.4a-c, HDL Coder
can assign X in the others
clause.

Update your Simulink
model design so that the
generated HDL code does
not use constructs that
rule 2.J.A.4a-c specifies.

2.J.A.5–6
Warning

Verilog: Do not use
values containing
'X' or 'Z'.

If your design uses
unknown or high-
impedance constants,
HDL Coder displays a
warning.

Update your Simulink
model or MATLAB
algorithm so that there
are no high-impedance
constants.

VHDL: Do not use
values including
'X','Z','U''-','W','
H','L', or constants
that contain the
values
'X','Z','U''-','W','
H','L'.

2.J.A.7–8
Message

Verilog: Do not use
RAM output signals
for a conditional
expression of if
statements, or
selection expression
of case statements
that assign 'x' in
the default clause.

By default, HDL Coder
complies with this rule. If
your Simulink model uses
RAM output signals with a
Switch or Multiport
switch block, the
generated HDL code can
use these constructs.

Update your Simulink
model so that there are no
RAM output signals to
Switch or Multiport
switch blocks.
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2.J.B Vector Operator Constraints

Rule / Severity Message Problem Recommendations
2.J.B.3
Message

Verilog/VHDL: Do not
perform logical
negation on vectors.

HDL Coder does not
perform logical negation
on vectors.

No action required.

2.J.C Relational Operator Constraints

Rule / Severity Message Problem Recommendations
2.J.C.1–6
Error

Verilog/VHDL:
Bitwidths of
operands of a
relational or
logical operator
must match.

HDL Coder ensures that
the data types of the
operands match in a
relational or logical
expression.

No action required.

Verilog/VHDL:
Bitwidths should be
specified for
conditional
expression.

2.J.D Signed Signal, Data Type Constraints

Rule / Severity Message Problem Recommendations
2.J.D.3–5
Warning

Verilog/VHDL: Take
care when assigning
integer to reg or
wire, and when
comparing negative
value reg and
integer variables.
Integer objects must
not be assigned
negative values.

HDL Coder complies with
this rule.

No action required.

2.J.D.6
Warning

VHDL: Signed data
type must be used in
signed operation and
std_logic_vector
calling
std_logic_unsigned
package must be used
in unsigned
operation.

HDL Coder complies with
this rule.

No action required.

2.J.D.8
Warning

VHDL: Function
To_stdlogicvector
should not be used
in the design.

HDL Coder does not use
the function
To_stdlogicvector in
the code.

No action required.
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2.J.E Number of Operator Repetition Constraints

Rule / Severity Message Problem Recommendations
2.J.E.5
Warning

Verilog: Do not
describe arithmetic
operators with
conditional
operators(?) in
assign statement.

HDL Coder complies with
this rule.

No action required.

2.J.F Precision Constraints

Rule / Severity Message Problem Recommendations
2.J.F.5
Warning

Verilog/VHDL: Large
multipliers must not
be described using
the multiplication
operator with RTL.

The generated HDL code
contains a multiplication
operator (*) where the
output of the
multiplication has a
bitwidth of 16 or greater.

In your design, implement
multiplications by using a
shift-and-add algorithm,
or ensure that the data
size of the output of a
multiplication does not
require a bitwidth of 16 or
greater.

You can customize this
rule by using the
MultiplierBitWidth
property of the HDL
coding standard
customization object.

2.J.G Common Sub-Expression Constraints

Rule / Severity Message Problem Recommendations
2.J.G.2
Warning

Verilog/VHDL: common
operational
expressions should
be described
separately.

HDL Coder identifies the
common operational
expressions and describes
them separately.

No action required.
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2.J.H Division Operator Constraints

Rule / Severity Message Problem Recommendations
2.J.H.1
Message

Verilog/VHDL: Do not
use arithmetic and
logical expressions
in the right and
left sides of the
division or modulus
operator.

HDL Coder homogenizes
the division operator into
a separate statement and
complies with this rule.

No action required.

2.J.H.2–3
Message

Verilog/VHDL: Keep
the left side of the
division or modulus
operator within 12
bits. If right side
of the division or
modulus operator is
not a power of two,
keep it within 8
bits.

In your design, the left
side of the modulus or
division operation is
greater than 12 bits, or
the right side is not a
power of two and greater
than eight bits.

Update your design so
that the number of bits in
the operands of the
division or modulus
operation are within the
bounds that the rule
specifies.

2.K Guidelines for Finite State Machine Description
2.K.A State Transition Constraints

Rule / Severity Message Problem Recommendations
2.K.A.4
Warning

Verilog/VHDL: Number
of states of an FSM
should be within 40.

Your model design
contains a Stateflow Chart
or State Transition Table
that uses more than 40
states.

Update your model design
so that there are not more
than 40 states.

2.K.C Logic Separation Constraints

Rule / Severity Message Problem Recommendations
2.K.C.1
Reference

Verilog/VHDL: Ensure
that sequential and
combinational parts
of an FSM are in
separate always
block.

By default, HDL Coder
puts the sequential and
combinational parts of a
Finite State Machine
(FSM) in separate always
blocks.

No action required.
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2.K.E Encoding Constraints

Rule / Severity Message Problem Recommendations
2.K.E.2
Warning

VHDL: Do not assign
state encoding by
attaching attributes
to the state
variable which is
declared as a type.

HDL Coder does not
attach attributes to state
variables in the generated
code.

No action required.

See Also
Properties
HDL Coding Standard Customization

Related Examples
• “Generate an HDL Coding Standard Report from MATLAB” on page 5-36
• “Generate an HDL Coding Standard Report from Simulink” on page 26-5

More About
• “HDL Coding Standard Report” on page 26-2
• “Basic Coding Practices” on page 26-9
• “RTL Design Methodology Guidelines” on page 26-41
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RTL Design Methodology Guidelines

In this section...
“3.A Guidelines for Creating Function Libraries” on page 26-41
“3.B Guidelines for Using Function Libraries” on page 26-42
“3.C Guidelines for Test Facilitation Design” on page 26-43

HDL Coder conforms to the following RTL design methodology guidelines, and checks for modeling
constructs that violate these rules. HDL Coder reports potential rule violations in the HDL coding
standard report. To avoid these violations, see the rule recommendations.

3.A Guidelines for Creating Function Libraries
3.A.C Signal, Port Constraints - I

Rule / Severity Message Problem Recommendations
3.A.C.1
Warning

Verilog: The order
of module port
decalarations and
instance port
connections lists
should be same as
the order in the
module port map.

HDL Coder preserves the
order of module port
declarations and instance
port connections as they
appear in the original
Simulink DUT.

No action required.

3.A.C.4a
Message

Verilog/VHDL: Define
only one port or
signal per line in
I/O, reg, and wire
declaration.

HDL Coder complies with
this rule.

No action required.

3.A.D Signal, Port Constraints - II

Rule / Severity Message Problem Recommendations
3.A.D.4–5
Warning

Verilog/VHDL:
Multiple assignments
should not be made
in one line.

The generated HDL code
contains multiple
assignments in one line or
lines greater than N
characters. You have a
name or identifier in your
original design that
contains more than N
characters.

Shorten names in your
design that are longer
than N characters.

You can also customize N
by using the LineLength
property of the HDL
coding standard
customization object.

HDL Coder folds the long
lines in the design only so
far as the HDL code
syntax is not broken.

Verilog/VHDL: The
maximum number of
characters in one
line should not be
more than N.
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3.A.F Generic Usage Constraints

Rule / Severity Message Problem Recommendations
3.A.F.1
Reference

Verilog: Generic
should be used in
conditional
expression of if
generate statement.

HDL Coder does not
generate if-generate
statements, but can
generate for-generate
statements in the
generated HDL code.

No action required.

3.B Guidelines for Using Function Libraries
3.B.B Parameters, Constant Constraints

Rule / Severity Message Problem Recommendations
3.B.B.2b-4
Message

Verilog: Define
macros should be
read using include
files. Include files
must be specified
with more than 1
level higher
relative path.

HDL Coder does not
generate macros in the
HDL code.

No action required.

3.B.B.5–7
Message

Verilog: Text macros
should not be
nested, and
constants should be
defined using
parameters only.

HDL Coder does not
generate macros in the
HDL code.

No action required.

3.B.C Port Constraints

Rule / Severity Message Problem Recommendations
3.B.C.1
Message

Verilog/VHDL: Port/
Generic connections
in instantiations
must be made by
named association
rather than position
association.

HDL Coder preserves the
association of ports, so
that it complies with this
rule.

No action required.

3.B.C.2
Message

Verilog: Bit-width
of the component
port and its
connected net must
match.

HDL Coder enforces type
and bit-width matching,
so that it complies with
this rule.

No action required.

3.B.C.3
Message

VHDL: Do not use
entity instantiation
in the design.

HDL Coder does not use
entity instantiation in the
design. The generated
HDL code is generic and
reusable.

No action required.
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3.B.D Generic Constraints

Rule / Severity Message Problem Recommendations
3.B.D.1
Error

Verilog/VHDL: Non-
integer type used in
the declaration of a
generic may be
unsynthesizable.

The generated HDL code
contains a noninteger
data type.

If you have floating-point
data types in your design,
you can map them to HDL
Coder native floating-
point libraries so that the
generated code does not
use floating-point data
types.

Alternatively, modify your
design so that it does not
use floating-point data
types.

You can disable this rule
checking by using the
NonIntegerTypes
property of the HDL
coding standard
customization object.

3.B.D.3
Error

Verilog: Do not use
defparam statements.

HDL Coder complies with
this rule.

No action required.

3.C Guidelines for Test Facilitation Design
3.C.A Clock Constraints - I

Rule / Severity Message Problem Recommendations
3.C.A.1–4
Error

Verilog/VHDL:
Internal clocks and
aynschronous sets/
resets must be
controllable from
external pins.

In the generated HDL
code, you can control
clocks from external pins.
If you have a triggered
subsystem and enable
TriggerAsClock, then
the trigger signal
becomes a clock signal
that you can control from
external pins.

For reset signals that you
model in Simulink, the
generated VHDL code can
have a load port, which is
a primary input in the
generated code.

To avoid this rule
violation, disable the
TriggerAsClock.
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3.C.B Black Box Constraints

Rule / Severity Message Problem Recommendations
3.C.B.3
Error

Verilog/VHDL: Do not
connect the outputs
of a black box to
clock, reset, or
tristate enable
pins.

HDL Coder connects the
clock bundle to the entity
or blackbox and does not
modify it, so the
generated code complies
with this rule.

No action required.

3.C.C Clock Constraints - II

Rule / Severity Message Problem Recommendations
3.C.C.1
Error

Verilog/VHDL: A
clock must not be
connected to the D
input of a flip-
flop.

HDL Coder does not use
clock as data.

No action required.

3.C.F Clock Constraints - III

Rule / Severity Message Problem Recommendations
3.C.F.2
Error

Verilog/VHDL: Do not
mix clock and reset
lines.

HDL Coder connects the
clock bundle to the entity
or blackbox and does not
modify it, so the
generated code complies
with this rule.

No action required.

See Also
Properties
HDL Coding Standard Customization

Related Examples
• “Generate an HDL Coding Standard Report from MATLAB” on page 5-36
• “Generate an HDL Coding Standard Report from Simulink” on page 26-5

More About
• “HDL Coding Standard Report” on page 26-2
• “Basic Coding Practices” on page 26-9
• “RTL Description Techniques” on page 26-18
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Generate an HDL Lint Tool Script
You can generate a lint tool script to use with a third-party lint tool to check your generated HDL
code.

HDL Coder can generate Tcl scripts for the following lint tools:

• Ascent Lint
• HDL Designer
• Leda
• SpyGlass
• Custom

If you specify one of the supported third-party lint tools, you can either generate a default tool-
specific script, or customize the script by specifying the initialization, command, and termination
names as a character vector. If you want to generate a script for a custom lint tool, you must specify
the initialization, command, and termination names.

HDL Coder writes the initialization, command, and termination names to a Tcl script that you can use
to run the third-party tool.

How to Generate an HDL Lint Tool Script
Using the Configuration Parameters Dialog Box

1 In the Configuration Parameters dialog box, select HDL Code Generation > EDA Tool Scripts.
2 Select the Lint script option.
3 For Choose lint tool, select Ascent Lint, HDL Designer, Leda, SpyGlass, or Custom.
4 Optionally, enter text to customize the Lint initialization, Lint command, and Lint

termination strings. For a custom tool, specify these fields.

After you generate code, the message window shows a link to the lint tool script.

Using the Command Line

To generate an HDL lint tool script from the command line, set the HDLLintTool parameter to
AscentLint, HDLDesigner, Leda, SpyGlass, or Custom using makehdl or hdlset_param.

To disable HDL lint tool script generation, set the HDLLintTool parameter to None.

For example, to generate HDL code and a default SpyGlass lint script for a DUT subsystem,
sfir_fixed\symmetric_fir, enter the following:

makehdl('sfir_fixed/symmetric_fir','HDLLintTool','SpyGlass')

After you generate code, the message window shows a link to the lint tool script.

To generate an HDL lint tool script with custom initialization, command, and termination names, use
the HDLLintTool, HDLLintInit, HDLLintTerm, and HDLLintCmd parameters.
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For example, you can use the following command to generate a custom Leda lint script for a DUT
subsystem, sfir_fixed\symmetric_fir, with custom initialization, command, and termination
names:

makehdl('sfir_fixed/symmetric_fir','HDLLintTool','Leda',...
        'HDLLintInit','myInitialization','HDLLintCmd','myCommand %s',...
        'HDLLintTerm','myTermination')

Custom Lint Tool Command Specification

If you want to generate a lint tool script for a custom lint tool, you must use %s as a placeholder for
the HDL file name in the generated Tcl script.

Specify the Lint command or HDLLintCmd using the following format:

hdlset_param ('HDLLintCmd', 'custom_lint_tool_command -option1 -option2 %s')

For example, to set HDLLintCmd, where the lint command is custom_lint_tool_command -
option1 -option2, at the command line, enter:

hdlset_param ('HDLLintCmd', 'custom_lint_tool_command -option1 -option2 %s')
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Interfacing Subsystems and Models to
HDL Code

• “Model Referencing for HDL Code Generation” on page 27-2
• “Generate Black Box Interface for Subsystem” on page 27-4
• “Generate Black Box Interface for Referenced Model” on page 27-8
• “Integrate Custom HDL Code Using DocBlock” on page 27-10
• “Customize Black Box or HDL Cosimulation Interface” on page 27-12
• “Specify Bidirectional Ports” on page 27-15
• “Generate Reusable Code for Atomic Subsystems” on page 27-17
• “Create a Xilinx System Generator Subsystem” on page 27-24
• “Create an Altera DSP Builder Subsystem” on page 27-26
• “Choose a Test Bench for Generated HDL Code” on page 27-28
• “Generate a Cosimulation Model” on page 27-30
• “Pass-Through and No-Op Implementations” on page 27-46
• “Synchronous Subsystem Behavior with the State Control Block” on page 27-47
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Model Referencing for HDL Code Generation
In this section...
“Benefits of Model Referencing for Code Generation” on page 27-2
“How To Generate Code for a Referenced Model” on page 27-2
“Generate Code for Model Arguments” on page 27-3
“Generate Comments” on page 27-3
“Limitations” on page 27-3

Benefits of Model Referencing for Code Generation
Model referencing in your DUT subsystem enables you to:

• Partition a large design into a hierarchy of smaller designs for reuse, modular development, and
accelerated simulation.

• Incrementally generate and test code.

HDL Coder incrementally generates code for referenced models according to the Configuration
Parameters dialog box > Model Referencing pane > Rebuild options.

However, HDL Coder treats If any changes detected and If any changes in known
dependencies detected as the same. For example, if you set Rebuild to either If any
changes detected or If any changes in known dependencies detected, HDL Coder
regenerates code for referenced models only when the referenced models have changed.

How To Generate Code for a Referenced Model
When generating code, if you encounter typing or naming conflicts between vector ports when
interfacing two or more generated VHDL code modules, consider using the ScalarizePorts
property to generate non-conflicting port definitions. For more information, see “Scalarize vector
ports” on page 16-57.

You can generate HDL code for the referenced model using the UI or the command line.

Using the UI

1 Right-click the Model block and select HDL Code > HDL Block Properties.
2 For Architecture, select ModelReference.
3 Generate HDL code from your DUT subsystem.

Using the Command Line

1 Set the Architecture property of the Model block to ModelReference. For example, for a
DUT subsystem, mydut, that includes a model reference, referenced_model, enter this
command:

hdlset_param ('mydut/referenced_model', ... 
              'Architecture', 'ModelReference');

2 Generate HDL code for your DUT subsystem.
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makehdl ('mydut');

Generate Code for Model Arguments
To generate a single Verilog module or VHDL entity for instances of a referenced model with
different model argument values, see “Generate Parameterized Code for Referenced Models” on page
10-20.

Generate Comments
If you enter text in the Model Block Properties dialog box Description field, HDL Coder generates a
comment in the HDL code.

Limitations
• Model block must have default values for the Block parameters.
• Model block cannot be a masked subsystem.
• Multiple model references that refer to the same model must have the same HDL block properties.
• Referenced models cannot be protected models.
• Hierarchical distributed pipelining must be disabled.

HDL Coder cannot move registers across a model reference. Therefore, referenced models can inhibit
these optimizations:

• Distributed pipelining
• Constrained output pipelining
• Streaming

When you have model references and generate HDL code, the generated model, validation model,
and cosimulation model can fail to compile or simulate. To fix compilation or simulation errors, make
sure that the referenced models are loaded or are on the search path.

The coder can apply the resource sharing optimization to share referenced model instances.
However, you can apply this optimization only when all model references that point to the same
referenced model have the same rate after optimizations and rate propagation. The model reference
final rate may differ from the original rate, but all model references that point to the same referenced
model must have the same final rate.
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Generate Black Box Interface for Subsystem

In this section...
“What Is a Black Box Interface?” on page 27-4
“Requirements” on page 27-4
“Generate a Black Box Interface for a Subsystem” on page 27-4
“Generate Code for a Black Box Subsystem Implementation” on page 27-6

What Is a Black Box Interface?
A black box interface for a subsystem is a generated VHDL component or Verilog module that
includes only the HDL input and output port definitions for the subsystem. By generating such a
component, you can use a subsystem in your model to generate an interface to existing manually
written HDL code, third-party IP, or other code generated by HDL Coder.

Requirements
• The black box implementation is available only for subsystem blocks below the level of the DUT.

Virtual and atomic subsystem blocks of custom libraries that are below the level of the DUT also
work with black box implementations.

• You can generate at most one clock port and one clock enable port for a black box subsystem.
Therefore, the black box subsystem must be single-rate even if it is in a multirate DUT.

Generate a Black Box Interface for a Subsystem
To generate the interface, select the BlackBox implementation for one or more Subsystem blocks.
Consider the following model that contains a subsystem top, which is the device under test.

The subsystem top contains two lower-level subsystems:
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Suppose that you want to generate HDL code from top, with a black box interface from the
Interface subsystem. To specify a black box interface:

1 Right-click the Interface subsystem and select HDL Code > HDL Block Properties.

The HDL Properties dialog box appears.
2 Set Architecture to BlackBox.

The following parameters are available for the black box implementation:
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The HDL block parameters available for the black box implementation enable you to customize
the generated interface. See “Customize Black Box or HDL Cosimulation Interface” on page 27-
12 for information about these parameters.

3 Change parameters as desired, and click Apply.
4 Click OK to close the HDL Properties dialog box.

Generate Code for a Black Box Subsystem Implementation
When you generate code for the DUT in the ex_blackbox_subsys model, the following messages
appear:
>> makehdl('ex_blackbox_subsys/top')
### Generating HDL for 'ex_blackbox_subsys/top'
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### Starting HDL Check.
### HDL Check Complete with 0 errors, 0 warnings and 0 messages.

### Begin VHDL Code Generation
### Working on ex_blackbox_subsys/top/gencode as hdlsrc\gencode.vhd
### Working on ex_blackbox_subsys/top as hdlsrc\top.vhd
### HDL Code Generation Complete.

In the progress messages, observe that the gencode subsystem generates a separate file,
gencode.vhd, for its VHDL entity definition. The Interface subsystem does not generate such a
file. The interface code for this subsystem is in top.vhd, generated from ex_blackbox_subsys/
top. The following code listing shows the component definition and instantiation generated for the
Interface subsystem.
  COMPONENT Interface
    PORT( clk            :   IN    std_logic;
          clk_enable     :   IN    std_logic;
          reset          :   IN    std_logic;
          In1            :   IN    std_logic_vector(7 DOWNTO 0);  -- uint8
          In2            :   IN    std_logic_vector(15 DOWNTO 0);  -- uint16
          In3            :   IN    std_logic_vector(31 DOWNTO 0);  -- uint32
          Out1           :   OUT   std_logic_vector(31 DOWNTO 0)  -- uint32
          );
  END COMPONENT;
...
  u_Interface : Interface
    PORT MAP( clk => clk,
              clk_enable => enb,
              reset => reset,
              In1 => gencode_out1,  -- uint8
              In2 => gencode_out2,  -- uint16
              In3 => gencode_out3,  -- uint32
              Out1 => Interface_out1  -- uint32
              );

  enb <= clk_enable;

  ce_out <= enb;

  Out1 <= Interface_out1;

By default, the black box interface generated for subsystems includes clock, clock enable, and reset
ports. “Customize Black Box or HDL Cosimulation Interface” on page 27-12 describes how you can
rename or suppress generation of these signals, and customize other aspects of the generated
interface.

See Also

More About
• “Customize Black Box or HDL Cosimulation Interface” on page 27-12
• “Generate Black Box Interface for Referenced Model” on page 27-8
• “Integrate Custom HDL Code Using DocBlock” on page 27-10
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Generate Black Box Interface for Referenced Model
In this section...
“When to Generate a Black Box Interface” on page 27-8
“How to Generate a Black Box Interface” on page 27-8
“Caveats and Limitations” on page 27-8

When to Generate a Black Box Interface
Specify a black box implementation for the Model block when you already have legacy or manually-
written HDL code. HDL Coder generates the HDL code that is required to interface to the referenced
HDL code.

Code is generated with the following assumptions:

• Every HDL entity or module requires clock, clock enable, and reset ports. Therefore, these ports
are defined for each generated entity or module.

• Use of Simulink data types is assumed. For VHDL code, port data types are assumed to be
STD_LOGIC or STD_LOGIC_VECTOR.

If you want to generate code for a multirate, multiclock DUT that includes a referenced model, see
“Model Referencing for HDL Code Generation” on page 27-2.

How to Generate a Black Box Interface
To instantiate an HDL wrapper, or black box interface, for a referenced model:

1 Right-click the Model block and select HDL Code > HDL Block Properties.

In the HDL Block Properties dialog box:

• For Architecture, select BlackBox.
• Customize the ports and other implementation parameters. To learn more about customizing

the ports, see “Customize Black Box or HDL Cosimulation Interface” on page 27-12.
2 Generate HDL code for your DUT subsystem.

Caveats and Limitations
• If you run the checkhdl function to check the compatibility of your model for HDL code

generation, the function does not check the port data types within the referenced model.
• If you encounter typing or naming conflicts between vector ports when interfacing two or more

generated VHDL code modules, use the ScalarizePorts property to generate nonconflicting
port definitions. For more information, see “Scalarize vector ports” on page 16-57.
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See Also

More About
• “Customize Black Box or HDL Cosimulation Interface” on page 27-12
• “Generate Black Box Interface for Subsystem” on page 27-4
• “Integrate Custom HDL Code Using DocBlock” on page 27-10
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Integrate Custom HDL Code Using DocBlock

In this section...
“When To Use DocBlock to Integrate Custom Code” on page 27-10
“How To Use DocBlock to Integrate Custom Code” on page 27-10
“Restrictions” on page 27-10
“Example” on page 27-11

You can use one or more DocBlock blocks to integrate custom HDL code into your design.

When To Use DocBlock to Integrate Custom Code
If you want to keep the HDL code with your model, instead of as a separate file, use a DocBlock to
integrate custom HDL code. The text in the DocBlock is your custom VHDL or Verilog code.

You include each DocBlock that contains custom HDL code by placing it in a black box subsystem,
and including the black box subsystem in your DUT. One HDL file is generated per black box
subsystem.

Alternatives for Custom Code Integration

If you want to keep your custom HDL code separate from your model, such as when the custom code
is IP or a library from a third party, use a black box subsystem on page 27-4 or black box model
reference on page 27-8.

How To Use DocBlock to Integrate Custom Code
1 In your DUT, at any level of hierarchy, add a Subsystem block.
2 For the Subsystem block, in the HDL Block Properties dialog box:

• Set Architecture to BlackBox.
• Customize the black box subsystem interface so that it matches your custom HDL code

interface. To learn more about customizing the black box interface, see “Customize Black Box
or HDL Cosimulation Interface” on page 27-12.

3 In the subsystem, add a DocBlock block.
4 For the DocBlock, in the HDL Block Properties dialog box:

• Set Architecture to HDLText.
• Set TargetLanguage to your target language, either Verilog or VHDL˙.

5 In the DocBlock, enter the HDL code for your custom Verilog module or VHDL entity.

The language must match the DocBlock TargetLanguage setting.

Restrictions
• The black box subsystem that contains the DocBlock cannot be the top-level DUT.
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• You can have a maximum of two DocBlock blocks in the black box subsystem. If you have two
DocBlock blocks, one must have TargetLanguage set to VHDL, and the other must have
TargetLanguage set to Verilog.

When generating code, HDL Coder only integrates the code from the DocBlock that matches the
target language for code generation.

Example
The hdlcoderIncludeCustomHdlUsingDocBlockExample model shows how to integrate custom VHDL
and Verilog code into your design with the DocBlock block.

See Also

More About
• “Customize Black Box or HDL Cosimulation Interface” on page 27-12
• “Generate Black Box Interface for Subsystem” on page 27-4
• “Generate Black Box Interface for Referenced Model” on page 27-8
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Customize Black Box or HDL Cosimulation Interface
You can customize port names and set attributes of the external component when you generate an
interface from the following blocks:

• Model with black box implementation
• Subsystem with black box implementation
• HDL Cosimulation

Interface Parameters
Open the HDL Block Properties dialog box to see the interface generation parameters.

The following table summarizes the names, value settings, and purpose of the interface generation
parameters.

Note You cannot specify clock, reset, and clock enable signals explicitly in your Simulink model by
using the AddClockEnablePort, AddClockPort, and AddResetPort parameters. Instead, use these
parameters to add a clock, reset, or clock enable port in the generated HDL code.

Parameter Name Values Description
AddClockEnablePort on | off

Default: on

If on, add a clock enable input port to the
interface generated for the block. The
name of the port is specified by
ClockEnableInputPort.

AddClockPort on | off

Default: on

If on, add a clock input port to the
interface generated for the block. The
name of the port is specified by
ClockInputPort.

AddResetPort on | off

Default: on

If on, add a reset input port to the
interface generated for the block. The
name of the port is specified by
ResetInputPort.

AllowDistributedPipelining on | off

Default: off

If on, allow HDL Coder to move registers
across the block, from input to output or
output to input.

ClockEnableInputPort Default: clk_enable Specifies HDL name for block's clock
enable input port.

ClockInputPort Default: clk Specifies HDL name for block's clock
input signal.

ConstrainedOutputPipeline Default: 0 Specifies the number of delays that you
want the code generator to insert at the
output of the interface by redistributing
existing delays in your design.
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Parameter Name Values Description
EntityName Default: Entity name string is

derived from the block name,
and modified when necessary to
generate a legal VHDL entity
name.

Specifies VHDL entity or Verilog
module name generated for the block.

GenericList Pass a cell array variable that
contains cell arrays each with
two or three strings, or enter a
cell array of cell arrays that
each contain two or three
strings. The strings represent
the name, value, and optional
data type of a VHDL generic
or Verilog parameter. The
default data type is integer.

Default: none

Specifies a list of VHDL generic or
Verilog parameter name-value pairs,
each with an optional data type
specification, to pass to a subsystem with
a BlackBox implementation.

For example, in the HDL Block Properties
dialog box, enter
{'name','value','type'}, or, if the
data type is integer, enter
{'name','value'}.

To set GenericList using
hdlset_param, at the command line,
enter:

hdlset_param
(blockname,'GenericList','{''na
me'',''value'',''type''}');

If the data type is integer, at the
command line, enter:

hdlset_param
(blockname,'GenericList','{''na
me '',''value''}');

ImplementationLatency -1 | 0 | positive integer

Default: -1

Specifies the additional latency of the
external component in time steps,
relative to the Simulink block.

If 0 or greater, this value is used for delay
balancing. Your inputs and outputs must
operate at the same rate.

If -1, latency is unknown. This disables
delay balancing.

InlineConfigurations
(VHDL only)

on | off

Default: If this parameter is
unspecified, defaults to the
value of the global
InlineConfigurations
property.

If off, suppress generation of a
configuration for the block, and require a
user-supplied external configuration.
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Parameter Name Values Description
InputPipeline Default: 0 Specifies the number of input pipeline

stages (pipeline depth) in the generated
code.

OutputPipeline Default: 0 Specifies the number of output pipeline
stages (pipeline depth) in the generated
code.

ResetInputPort Default: reset Specifies HDL name for block's reset
input.

VHDLArchitectureName
(VHDL only)

Default: rtl Specifies RTL architecture name
generated for the block. The architecture
name is generated only if
InlineConfigurations is on.

VHDLComponentLibrary
(VHDL only)

Default: work Specifies the library from which to load
the VHDL component.

See Also

More About
• “Generate Black Box Interface for Subsystem” on page 27-4
• “Generate Black Box Interface for Referenced Model” on page 27-8
• “Integrate Custom HDL Code Using DocBlock” on page 27-10
• “Specify Bidirectional Ports” on page 27-15
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Specify Bidirectional Ports
You can specify bidirectional ports for Subsystem blocks with black box implementation. In the
generated code, the bidirectional ports have the Verilog or VHDL inout keyword.

In the FPGA Turnkey workflow, you can use the bidirectional ports to connect to external RAM.

In this section...
“Requirements” on page 27-15
“How To Specify a Bidirectional Port” on page 27-15
“Limitations” on page 27-15

Requirements
• The bidirectional port must be a black box subsystem port.
• There must be no logic between the bidirectional port and the corresponding top-level DUT

subsystem port. Otherwise, the generated code does not compile.

How To Specify a Bidirectional Port
To specify a bidirectional port using the UI:

1 In the black box Subsystem, right-click the Inport or Outport block that represents the
bidirectional port. Select HDL Code > HDL Block Properties.

2 For BidirectionalPort, select on.

To specify a bidirectional port at the command line, set the BidirectionalPort property to 'on'
using hdlset_param or makehdl.

For example, suppose you have a model, my_model, that contains a DUT subsystem, dut_subsys,
and the DUT subsystem contains a black box subsystem, blackbox_subsys. If blackbox_subsys
has an Inport, input_A, specify input_A as bidirectional by entering:

hdlset_param('mymodel/dut_subsys/blackbox_subsys/input_A','BidirectionalPort','on');

Limitations
• In the FPGA Turnkey workflow, in the Target platform interfaces table, you must map a

bidirectional port to either Specify FPGA Pin {’LSB’,...,’MSB’} or one of the other
interfaces where the interface bitwidth exactly matches your bidirectional port bitwidth.

For example, you can map a 32-bit bidirectional port to the Expansion Headers J6 Pin
2-64[0:31] interface.

• You cannot generate a Verilog test bench if there is a bidirectional port within your DUT
subsystem.

• HDL Coder does not support bidirectional ports for masked subsystems that use BlackBox as the
HDL Architecture.

• Simulink does not support bidirectional ports, so you cannot simulate the bidirectional behavior in
Simulink.
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See Also

More About
• “Generate Black Box Interface for Subsystem” on page 27-4
• “Generate Black Box Interface for Referenced Model” on page 27-8
• “Integrate Custom HDL Code Using DocBlock” on page 27-10
• “Customize Black Box or HDL Cosimulation Interface” on page 27-12

27 Interfacing Subsystems and Models to HDL Code

27-16



Generate Reusable Code for Atomic Subsystems

In this section...
“Requirements for Generating Reusable Code for Atomic Subsystems” on page 27-17
“Generate Reusable Code for Atomic Subsystems” on page 27-17
“Generate Reusable Code for Atomic Subsystems with Tunable Mask Parameters” on page 27-19

HDL Coder can detect atomic subsystems that are identical, or identical except for their mask
parameter values, at any level of the model hierarchy, and generate a single reusable HDL module or
entity. The reusable HDL code is generated as a single file and instantiated multiple times.

Requirements for Generating Reusable Code for Atomic Subsystems
To generate reusable HDL code for atomic subsystems:

• The DefaultParameterBehavior Simulink Configuration Parameter must be Inlined. You can
set this parameter at the command line by using the set_param or hdlsetup function. To specify
this setting in the Configuration Parameters dialog box, you must have Simulink Coder.

Note Using hdlsetup sets the InlineParams property to on. Enabling this parameter is the
same as setting DefaultParameterBehavior to Inlined. Setting InlineParams to off
changes DefaultParameterBehavior value to Tunable.

• The atomic subsystems must be identical, or identical except for their mask parameter values.

• MaskParameterAsGeneric must be on. For more information, see “Generate parameterized
HDL code from masked subsystem” on page 16-59.

• Mask parameters must be nontunable. The code generator does not share atomic subsystems
with mask parameters that are tunable.

• Mask parameter data types cannot be double or single.
• The tunable parameter must be used in only Constant or Gain blocks.
• Port data types must match.

If you change the value of the tunable mask parameter, the output port data type can change.
If one of the atomic subsystems has a different port data type, the code generated for that
subsystem also differs.

Generate Reusable Code for Atomic Subsystems
If your design contains identical atomic subsystems, the coder generates one HDL module or entity
for the subsystem and instantiates it multiple times.

Example

The hdlcoder_reusable_code_identical_subsystem model shows an example of a DUT
subsystem containing three identical atomic subsystems.

 Generate Reusable Code for Atomic Subsystems
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HDL Coder generates a single VHDL file, vsum.vhd, for the three subsystems.
makehdl('hdlcoder_reusable_code_identical_subsystem/DUT')
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### Generating HDL for 'hdlcoder_reusable_code_identical_subsystem/DUT'.
### Starting HDL check.
### Generating new validation model: gm_hdlcoder_reusable_code_identical_subsystem_vnl.
### Validation model generation complete.
### Begin VHDL Code Generation for 'hdlcoder_reusable_code_identical_subsystem'.
### Working on hdlcoder_reusable_code_identical_subsystem/DUT/vsum/Sum of Elements as 
    hdl_prj\hdlsrc\hdlcoder_reusable_code_identical_subsystem\Sum_of_Elements.vhd.
### Working on hdlcoder_reusable_code_identical_subsystem/DUT/vsum as 
    hdl_prj\hdlsrc\hdlcoder_reusable_code_identical_subsystem\vsum.vhd.
### Working on hdlcoder_reusable_code_identical_subsystem/DUT as 
    hdl_prj\hdlsrc\hdlcoder_reusable_code_identical_subsystem\DUT.vhd.
### Generating package file hdl_prj\hdlsrc\hdlcoder_reusable_code_identical_subsystem\DUT_pkg.vhd.
### Creating HDL Code Generation Check Report DUT_report.html
### HDL check for 'hdlcoder_reusable_code_identical_subsystem' complete with 0 errors, 0 warnings, and 0 messages.
### HDL code generation complete.

The generated code for the DUT subsystem, DUT.vhd, contains three instantiations of the vsum
component.
ARCHITECTURE rtl OF DUT IS

  -- Component Declarations
  COMPONENT vsum
    PORT( In1                             :   IN    vector_of_std_logic_vector16(0 TO 9);  -- int16 [10]
          Out1                            :   OUT   std_logic_vector(19 DOWNTO 0)  -- sfix20
          );
  END COMPONENT;

  -- Component Configuration Statements
  FOR ALL : vsum
    USE ENTITY work.vsum(rtl);

  -- Signals
  SIGNAL vsum_out1                        : std_logic_vector(19 DOWNTO 0);  -- ufix20
  SIGNAL vsum1_out1                       : std_logic_vector(19 DOWNTO 0);  -- ufix20
  SIGNAL vsum2_out1                       : std_logic_vector(19 DOWNTO 0);  -- ufix20

BEGIN
  u_vsum : vsum
    PORT MAP( In1 => In1,  -- int16 [10]
              Out1 => vsum_out1  -- sfix20
              );

  u_vsum1 : vsum
    PORT MAP( In1 => In2,  -- int16 [10]
              Out1 => vsum1_out1  -- sfix20
              );

  u_vsum2 : vsum
    PORT MAP( In1 => In3,  -- int16 [10]
              Out1 => vsum2_out1  -- sfix20
              );

  Out1 <= vsum_out1;

  Out2 <= vsum1_out1;

  Out3 <= vsum2_out1;

END rtl;

Generate Reusable Code for Atomic Subsystems with Tunable Mask
Parameters
If your design contains atomic subsystems that are identical except for their tunable mask parameter
values, you can generate one HDL module or entity for the subsystem. In the generated code, the
module or entity is instantiated multiple times.

To generate reusable code for identical atomic subsystems, enable MaskParameterAsGeneric for
the model. By default, MaskParameterAsGeneric is disabled.

For example, to enable the generation of reusable code for the atomic subsystems with tunable
parameters in the hdlcoder_reusable_code_parameterized_subsystem model, enter:

 Generate Reusable Code for Atomic Subsystems
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hdlset_param('hdlcoder_reusable_code_parameterized_subsystem','MaskParameterAsGeneric','on')

Alternatively, in the Configuration Parameters dialog box, in the HDL Code Generation > Global
Settings > Coding Style tab, enable the Generate parameterized HDL code from masked
subsystem option.

Example

The hdlcoder_reusable_code_parameterized_subsystem model shows an example of a DUT
subsystem containing atomic subsystems that are identical except for their tunable mask parameter
values.
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In hdlcoder_reusable_code_parameterized_subsystem/DUT, the gain modules are
subsystems with gain values represented by tunable mask parameters. Gain values are: 4 for
gain_module, 5 for gain_module1, and 7 for gain_module2.

With MaskParameterAsGeneric enabled, HDL Coder generates a single source file,
gain_module.v, for the three gain module subsystems.
makehdl('hdlcoder_reusable_code_parameterized_subsystem/DUT','MaskParameterAsGeneric','on',...
        'TargetLanguage','Verilog')

### Generating HDL for 'hdlcoder_reusable_code_parameterized_subsystem/DUT'.
### Starting HDL check.
### Begin Verilog Code Generation for 'hdlcoder_reusable_code_parameterized_subsystem'.
### Working on hdlcoder_reusable_code_parameterized_subsystem/DUT/gain_module as 
    hdlsrc\hdlcoder_reusable_code_parameterized_subsystem\gain_module.v.
### Working on hdlcoder_reusable_code_parameterized_subsystem/DUT as 
    hdlsrc\hdlcoder_reusable_code_parameterized_subsystem\DUT.v.
### Creating HDL Code Generation Check Report DUT_report.html
### HDL check for 'hdlcoder_reusable_code_parameterized_subsystem' complete with 0 errors, 0 warnings, and 0 messages.
### HDL code generation complete.

The generated code for the DUT subsystem, DUT.v, contains three instantiations of the
gain_module component.
module DUT
          (
           In1,
           In2,
           In3,
           Out1,
           Out2,
           Out3
          );

  input   [7:0] In1;  // uint8
  input   [7:0] In2;  // uint8
  input   [7:0] In3;  // uint8
  output  [31:0] Out1;  // uint32
  output  [31:0] Out2;  // uint32
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  output  [31:0] Out3;  // uint32

  wire [31:0] gain_module_out1;  // uint32
  wire [31:0] gain_module1_out1;  // uint32
  wire [31:0] gain_module2_out1;  // uint32

  gain_module   #  (.myGain(4)
                    )
                u_gain_module   (.In1(In1),  // uint8
                                 .Out1(gain_module_out1)  // uint32
                                 );

  assign Out1 = gain_module_out1;

  gain_module   #  (.myGain(5)
                    )
                u_gain_module1   (.In1(In2),  // uint8
                                  .Out1(gain_module1_out1)  // uint32
                                  );

  assign Out2 = gain_module1_out1;

  gain_module   #  (.myGain(7)
                    )
                u_gain_module2   (.In1(In3),  // uint8
                                  .Out1(gain_module2_out1)  // uint32
                                  );

  assign Out3 = gain_module2_out1;

endmodule  // DUT

In gain_module.v, the myGain Verilog parameter is generated for the tunable mask parameter.
module gain_module
          (
           In1,
           Out1
          );

  input   [7:0] In1;  // uint8
  output  [31:0] Out1;  // uint32

  parameter [31:0] myGain = 4;  // ufix32

  wire [31:0] kconst;  // ufix32
  wire [39:0] Gain_mul_temp;  // ufix40
  wire [31:0] Gain_out1;  // uint32

  assign kconst = myGain;

  assign Gain_mul_temp = kconst * In1;
  assign Gain_out1 = Gain_mul_temp[31:0];

  assign Out1 = Gain_out1;

endmodule  // gain_module

See Also

More About
• “Generate parameterized HDL code from masked subsystem” on page 16-59
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• “Generate parameterized HDL code from masked subsystem” on page 16-59
• “Generate Parameterized Code for Referenced Models” on page 10-20
• “Create and Add Tunable Parameter That Maps to DUT Ports” on page 10-17
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Create a Xilinx System Generator Subsystem

In this section...
“Why Use Xilinx System Generator Subsystems?” on page 27-24
“Requirements for Xilinx System Generator Subsystems” on page 27-24
“How to Create a Xilinx System Generator Subsystem” on page 27-25
“Limitations for Code Generation from Xilinx System Generator Subsystems” on page 27-25

Why Use Xilinx System Generator Subsystems?
You can generate HDL code from a model with both Simulink and Xilinx blocks using Xilinx System
Generator (XSG) subsystems.

Using both Simulink and Xilinx blocks in your model provides the following benefits:

• A single platform for combined Simulink and Xilinx System Generator simulation, code generation,
and synthesis.

• Targeted code generation: Xilinx System Generator for DSP generates code from Xilinx blocks;
HDL Coder generates code from Simulink blocks.

• HDL Coder area and speed optimizations for Simulink components.

Requirements for Xilinx System Generator Subsystems
You must group your Xilinx blocks into one or more Xilinx System Generator (XSG) subsystems for
code generation. An XSG subsystem can contain a hierarchy of subsystems.

To generate code from a Xilinx System Generator subsystem:

• Use Vivado or ISE Design Suite 13.4 or later.
• If your design uses boolean data types, select the Use STD_LOGIC type for Boolean or 1 bit

wide gateways setting on the Xilinx System Generator window. By default, Xilinx System
Generator uses std_logic_vector to represent boolean types whereas HDL Coder uses
std_logic, which can result in a mismatch.

An XSG subsystem is a Subsystem block with:

• Architecture set to Module.
• One System Generator token, placed at the top level of the XSG subsystem hierarchy.
• Xilinx blocks.
• Simulink blocks not requiring code generation.
• Input and output ports connected directly to Gateway In or Gateway Out blocks.
• Propagate data type to output option enabled on Gateway Out blocks.
• Matching input and output data types on Gateway In blocks. See “Limitations for Code Generation

from Xilinx System Generator Subsystems” on page 27-25.
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How to Create a Xilinx System Generator Subsystem
1 Create a subsystem containing the Xilinx blocks and set its architecture to Module.
2 Add a System Generator token at the top level of the subsystem.

You can have subsystem hierarchy in a Xilinx System Generator subsystem, but there must be a
System Generator token at the top level of the hierarchy.

3 Connect each subsystem input or output port directly to a Gateway In or Gateway Out block.
4 On each Gateway Out block, select the Propagate data type to output option.

Limitations for Code Generation from Xilinx System Generator
Subsystems
Code generation from Xilinx System Generator (XSG) subsystems has the following limitations:

• ConstrainedOutputPipeline, InputPipeline, and OutputPipeline are the only valid
block properties for an XSG subsystem.

• HDL Coder does not generate code for blocks within an XSG subsystem, including Simulink
blocks.

• Gateway In blocks must not do nontrivial data type conversion. For example, a Gateway In block
can convert between the sfix8_en6 and Fix_8_6 data types, but changing data sign, word
length, or fraction length is not allowed.

• For Verilog code generation, Simulink block names in your design cannot be the same as Xilinx
names. Similarly, Xilinx blocks in your design cannot have the same name as other Xilinx blocks.
HDL Coder cannot resolve these name conflicts, and generates an error late in the code
generation process.

See Also
makehdl | makehdltb

Related Examples
• “Using Xilinx® System Generator for DSP with HDL Coder™”
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Create an Altera DSP Builder Subsystem

In this section...
“Why Use Altera DSP Builder Subsystems?” on page 27-26
“Requirements for Altera DSP Builder Subsystems” on page 27-26
“How to Create an Altera DSP Builder Subsystem” on page 27-26
“Determine Clocking Requirements for Altera DSP Builder Subsystems” on page 27-27
“Limitations for Code Generation from Altera DSP Builder Subsystems” on page 27-27

Why Use Altera DSP Builder Subsystems?
You can generate HDL code from a model with both Simulink and Altera DSP Builder Advanced
blocks using Altera DSP Builder (DSPB) subsystems.

Using both Simulink and Altera blocks in your model provides the following benefits:

• A single platform for combined Simulink and Altera DSP Builder simulation, code generation, and
synthesis.

• Targeted code generation: Altera DSP Builder generates code from Altera blocks; HDL Coder
generates code from Simulink blocks.

• HDL Coder area and speed optimizations for Simulink components.

Requirements for Altera DSP Builder Subsystems
You must group your Altera blocks into one or more Altera DSP Builder (DSPB) subsystems for code
generation. A DSPB subsystem can contain a hierarchy of subsystems.

To generate code from a Altera DSP Builder subsystem, you must use Quartus II 13.0 or later.

A DSPB subsystem is a Subsystem block with:

• Architecture set to Module.
• A valid DSP Builder Advanced Blockset design, including a top-level Device block and DSP Builder

Advanced blocks, as defined in the Altera DSP Builder documentation.

How to Create an Altera DSP Builder Subsystem
1 Create an Altera DSP Builder Advanced Blockset design as defined in the Altera DSP Builder

documentation.
2 Create a subsystem containing the Altera DSP Builder Advanced Blockset design, and set its

Architecture to Module.

To see an example that shows HDL code generation for an Altera DSP Builder subsystem, see Using
Altera DSP Builder Advanced Blockset with HDL Coder.
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Determine Clocking Requirements for Altera DSP Builder Subsystems
DSPB subsystems must either run at the DUT subsystem base rate, or you can provide a custom
clock.

Determining the DUT subsystem base rate can be an iterative process. Area optimizations, such as
RAM mapping or resource sharing, may cause HDL Coder to oversample area-optimized parts of the
design. Therefore, the DUT subsystem initial base rate may differ from the final base rate, and you
may not know the model base rate until you generate code.

To determine the model base rate, iteratively generate code until your model converges on a base
rate:

1 Generate code for the DUT subsystem that contains your DSPB subsystem.
2 If HDL Coder displays an error message that says that your DSPB subsystem rate is slower than

the base rate, modify the DSPB subsystem inputs so that the DSPB subsystem runs at the base
rate in the message.

For example, you can insert an Upsample block.
3 Repeat these steps until your DSPB subsystem rate matches the base rate.

To provide a custom clock for your DSPB subsystem:

1 In the HDL Workflow Advisor, for HDL Code Generation > Set Code Generation Options >
Set Advanced Options > Clock inputs, select Multiple.

2 In the generated HDL code, connect your custom clocks to the DUT clock input ports that
corresponds to your DSPB subsystems clock.

Limitations for Code Generation from Altera DSP Builder Subsystems
Code generation for Altera DSP Builder (DSPB) subsystems has the following limitations:

• The DUT subsystem cannot be a DSPB subsystem.
• DSPB subsystems must run at the Simulink model base rate. You may need to iteratively generate

code to determine the base rate, because area optimizations can cause local multirate. See
“Determine Clocking Requirements for Altera DSP Builder Subsystems” on page 27-27 for a
workflow.

• Altera blocks with bus interfaces are not supported.
• Altera DSP Builder does not generate Verilog code.
• Test bench simulation mismatches can occur because the Simulink data comparison does not take

Altera valid signals into account. For an example and workaround, see Using Altera DSP Builder
Advanced Blockset with HDL Coder.
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Choose a Test Bench for Generated HDL Code
When you generate HDL code with HDL Coder, you can optionally generate a test bench as well. The
coder also generates build-and-run scripts for the HDL simulator you specify. The test bench options
are:

• HDL test bench — An HDL test bench that includes the generated HDL DUT and files containing
input and output data vectors. This test bench verifies the generated HDL DUT against test
vectors generated from your Simulink model. See “Test Bench Generation” on page 35-2.

• Cosimulation model — A Simulink model that includes an HDL Cosimulation block that runs your
generated HDL code in an HDL simulator. The model also includes your original Simulink stimulus
generation, your behavioral model, and any blocks for display or analysis of the output data. The
model compares the output of the HDL Cosimulation block against the output of the source
subsystem. See “Generate a Cosimulation Model” on page 27-30.

• SystemVerilog DPI test bench — An HDL test bench that includes the generated HDL DUT and a
generated C-language component. The C component creates input stimuli and runs a behavioral
model of the DUT subsystem. The test bench uses a direct programming interface (DPI) to run the
C component inside an HDL simulation. This test bench verifies the generated HDL DUT against a
C representation of the source Simulink model. See “Verify HDL Design With Large Data Set
Using SystemVerilog DPI Test Bench”.

• FPGA-in-the-loop — A Simulink model that includes an FPGA-in-the-Loop block that communicates
with your HDL design while it runs on the FPGA board. The model also includes your original
Simulink stimulus generation, your behavioral model, and any blocks for display or analysis of the
output data. The model compares the output of the FPGA-in-the-Loop block against the output of
the source subsystem. See “FIL Simulation with HDL Workflow Advisor for Simulink” (HDL
Verifier).

Select test bench options in HDL Workflow Advisor under HDL Code Generation > Set Testbench
Options, or in the Model Configuration Parameters dialog box, under HDL Code Generation > Test
Bench. Alternatively, for command-line access, select your test bench using the properties of
makehdltb.

For FPGA-in-the-loop, select the target workflow in HDL Workflow Advisor under Set Target > Set
Target Device and Synthesis Tool. Then select your FPGA and synthesis tool. You can also generate
an FPGA-in-the-loop model for existing HDL code by using FPGA-in-the-Loop Wizard.

Test Bench License
Requirement
s

Pros Cons

HDL test bench  • Fast compile time in HDL
simulator

• Runs simulation to generate
data files, which can take a
long time for large data sets

• File I/O can slow down
simulation for large data sets

• Run test in HDL simulator
• Fixed input stimulus
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Test Bench License
Requirement
s

Pros Cons

Cosimulation
model

• HDL
Verifier

• Fast compile time in HDL
simulator

• Run tests from Simulink,
including changing
parameters to affect input
stimulus

• Automatic test bench
execution from HDL
Workflow Advisor

 

SystemVerilog
DPI test bench

• HDL
Verifier

• Simulink
Coder

• Fast generation time because
the coder does not run a
simulation

• Fast simulation time for
large data sets, because the
stimulus comes from
generated code rather than
files

• Run test in HDL simulator
• No tunable parameters in

stimulus generation

FPGA-in-the-
loop

• HDL
Verifier

• HDL
Verifier
Support
Package for
Xilinx FPGA
Boards or
HDL
Verifier
Support
Package for
Intel FPGA
Boards

• Run tests from Simulink,
including changing
parameters to affect input
stimulus

• Prototype hardware
implementation of your DUT

• Long generation time due to
synthesis into FPGA

• Hardware setup

See Also

More About
• “Set HDL Code Generation Options” on page 11-2

 Choose a Test Bench for Generated HDL Code

27-29



Generate a Cosimulation Model

In this section...
“Requirements” on page 27-30
“What Is A Cosimulation Model?” on page 27-30
“Generating a Cosimulation Model from the GUI” on page 27-31
“Structure of the Generated Model” on page 27-34
“Launching a Cosimulation” on page 27-39
“The Cosimulation Script File” on page 27-41
“Complex and Vector Signals in the Generated Cosimulation Model” on page 27-43
“Generating a Cosimulation Model from the Command Line” on page 27-44
“Naming Conventions for Generated Cosimulation Models and Scripts” on page 27-44
“Limitations for Cosimulation Model Generation” on page 27-45

Requirements
• To use this feature, your installation must include an HDL Verifier license.
• Make sure the DUT subsystem has no unconnected output ports. See “Terminate Unconnected

Block Outputs and Usage of Commenting Blocks” on page 20-25.

What Is A Cosimulation Model?
A cosimulation model is an automatically generated Simulink model configured for both Simulink
simulation and cosimulation of your design with an HDL simulator. HDL Coder supports automatic
generation of a cosimulation model as a part of the test bench generation process.

The cosimulation model includes:

• A behavioral model of your design, realized in a Simulink subsystem.
• A corresponding HDL Cosimulation block, configured to cosimulate the design using HDL Verifier.

HDL Coder configures the HDL Cosimulation block for use with either Mentor Graphics ModelSim
or Cadence Incisive.

• Test input data, calculated from the test bench stimulus that you specify.
• Scope blocks, which let you observe and compare the DUT and HDL cosimulation outputs, and any

error between these signals.
• Goto and From blocks that capture the stimulus and response signals from the DUT and use these

signals to drive the cosimulation.
• A comparison/assertion mechanism that reports discrepancies between the original DUT output

and the cosimulation output .

In addition to the generated model, HDL Coder generates a TCL script that launches and configures
your cosimulation tool. Comments in the script file document clock, reset, and other timing signal
information defined by the coder for the cosimulation tool.
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Generating a Cosimulation Model from the GUI
This example demonstrates the process for generating a cosimulation model. The example model,
hdl_cosim_demo1, implements a simple multiply and accumulate (MAC) algorithm. Open the model
by entering the name at the MATLAB command line:

hdl_cosim_demo1

The following figure shows the top-level model.

The DUT is the MAC subsystem.

Cosimulation model generation takes place during generation of the test bench. As a best practice,
generate HDL code before generating a test bench, as follows:

1 In the HDL Code Generation pane of the Configuration Parameters dialog box, select the DUT
for code generation. In this case, it is hdl_cosim_demo1/MAC.
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2 Click Apply.
3 Click Generate. HDL Coder displays progress messages, as shown in the following listing:

### Applying HDL Code Generation Control Statements
### Starting HDL Check.
### HDL Check Complete with 0 error, 0 warning and 0 message.

### Begin VHDL Code Generation
### Working on hdl_cosim_demo1/MAC as hdlsrc\MAC.vhd
### HDL Code Generation Complete.

Next, configure the test bench options to include generation of a cosimulation model:

1 Select the HDL Code Generation > Test Bench pane of the Configuration Parameters dialog
box.

2 Select the Cosimulation model check box. Then select your Simulation tool in the pull-down
menu.
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3 Configure required test bench options. HDL Coder records option settings in a generated script
file (see “The Cosimulation Script File” on page 27-41).

4 Click Apply.

Next, generate test bench code and the cosimulation model:

1 At the bottom of the Test Bench pane, click Generate Test Bench. HDL Coder displays
progress messages as shown in the following listing:
### Begin TestBench Generation
### Generating new cosimulation model: gm_hdl_cosim_demo1_mq0.mdl
### Generating new cosimulation tcl script: hdlsrc/gm_hdl_cosim_demo1_mq0_tcl.m
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### Cosimulation Model Generation Complete.

### Generating Test bench: hdlsrc\MAC_tb.vhd
### Please wait ...
### HDL TestBench Generation Complete.

When test bench generation completes, HDL Coder opens the generated cosimulated model. The
following figure shows the generated model.

2 Save the generated model. The generated model exists only in memory unless you save it.

As indicated by the code generation messages, HDL Coder generates the following files in addition to
the usual HDL test bench file:

• A cosimulation model (gm_hdl_cosim_demo1_mq)
• A file that contains a TCL cosimulation script and information about settings of the cosimulation

model (gm_hdl_cosim_demo1_mq_tcl.m)

Generated file names derive from the model name, as described in “Naming Conventions for
Generated Cosimulation Models and Scripts” on page 27-44.

The next section, “Structure of the Generated Model” on page 27-34, describes the features of the
model. Before running a cosimulation, become familiar with these features.

Structure of the Generated Model
You can set up and launch a cosimulation using controls located in the generated model. This section
examines the model generated from the example MAC subsystem.

Simulation Path

The model comprises two parallel signal paths. The simulation path, located in the upper half of the
model window, is nearly identical to the original DUT. The purpose of the simulation path is to
execute a normal Simulink simulation and provide a reference signal for comparison to the
cosimulation results. The following figure shows the simulation path.
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The two subsystems labelled ToCosimSrc and ToCosimSink do not change the performance of the
simulation path. Their purpose is to capture stimulus and response signals of the DUT and route them
to and from the HDL cosimulation block (see “Signal Routing Between Simulation and Cosimulation
Paths” on page 27-37).

Cosimulation Path

The cosimulation path, located in the lower half of the model window, contains the generated HDL
Cosimulation block. The following figure shows the cosimulation path.

The FromCosimSrc subsystem receives the same input signals that drive the DUT. In the
gm_hdl_cosim_demo1_mq0 model, the subsystem simply passes the inputs on to the HDL
Cosimulation block. Signals of some other data types require further processing at this stage (see
“Signal Routing Between Simulation and Cosimulation Paths” on page 27-37).

The Compare subsystem at the end of the cosimulation path compares the cosimulation output to the
reference output produced by the simulation path. If the comparison detects a discrepancy, an
Assertion block in the Compare subsystem displays a warning message. If desired, you can disable
assertions and control other operations of the Compare subsystem. See “Controlling Assertions and
Scope Displays” on page 27-38 for details.

HDL Coder populates the HDL Cosimulation block with the compiled I/O interface of the DUT. The
following figure shows the Ports pane of the Mac_mq HDL Cosimulation block.
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HDL Coder sets the Full HDL Name, Sample Time, Data Type, and other fields as required by the
model. HDL Coder also configures other HDL Cosimulation block parameters under the Timescales
and Tcl panes.

Tip HDL Coder configures the generated HDL Cosimulation block for the Shared Memory
connection method.

Start Simulator Control

When you double-click the Start Simulator control, it launches the selected cosimulation tool and
passes in a startup command to the tool. The Start Simulator icon displays the startup command, as
shown in the following figure.
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The commands executed when you double-click the Start Simulator icon launch and set up the
cosimulation tool, but they do not start the actual cosimulation. “Launching a Cosimulation” on page
27-39 describes how to run a cosimulation with the generated model.

Signal Routing Between Simulation and Cosimulation Paths

The generated model routes signals between the simulation and cosimulation paths using Goto and
From blocks. For example, the Goto blocks in the ToCosimSrc subsystem route each DUT input
signal to a corresponding From block in the FromCosimSrc subsystem. The following figures show
the Goto and From blocks in each subsystem.
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The preceding figures show simple scalar inputs. Signals of complex and vector data types require
further processing. See “Complex and Vector Signals in the Generated Cosimulation Model” on page
27-43 for further information.

Controlling Assertions and Scope Displays

The Compare subsystem lets you control the display of signals on scopes, and warning messages from
assertions. The following figure shows the Compare subsystem for the gm_hdl_cosim_demo1_mq0
model.

For each output of the DUT, HDL Coder generates an assertion checking subsystem
(Assert_OutN ). The subsystem computes the difference (err) between the original DUT output
(dut ref) and the corresponding cosimulation output (cosim). The subsystem routes the
comparison result to an Assertion block. If the comparison result is not zero, the Assertion block
reports the discrepancy.

The following figure shows the Assert_Out1 subsystem for the gm_hdl_cosim_demo1_mq0 model.
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This subsystem also routes the dut ref, cosim, and err signals to a Scope for display at the top
level of the model.

By default, the generated cosimulation model enables all assertions and displays all Scopes. Use the
buttons on the Compare subsystem to disable assertions or hide Scopes.

Tip Assertion messages are warnings and do not stop simulation.

Launching a Cosimulation
To run a cosimulation with the generated model:

1 Double-click the Compare subsystem to configure Scopes and assertion settings.

If you want to disable Scope displays or assertion warnings before starting your cosimulation,
use the buttons on the Compare subsystem (shown in the following figure).

2 Double-click the Start Simulator control.

The Start Simulator control launches your HDL simulator (in this case, HDL Verifier for use with
Mentor Graphics ModelSim).
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The HDL simulator in turn executes a startup script. In this case the startup script consists of the
TCL commands located in gm_hdl_cosim_demo1_mq0_tcl.m. When the HDL simulator finishes
executing the startup script, it displays a message like the following.

# Ready for cosimulation...
3 In the Simulink Editor for the generated model, start simulation.

As the cosimulation runs, the HDL simulator displays messages like the following.
# Running Simulink Cosimulation block.
# Chip Name: --> hdl_cosim_demo1/MAC
# Target language: --> vhdl
# Target directory: --> hdlsrc
# Fri Jun 05 4:26:34 PM Eastern Daylight Time 2009
# Simulation halt requested by foreign interface.
# done

At the end of the cosimulation, if you have enabled Scope displays, the compare scope displays
the following signals:

• cosim: The result signal output by the HDL Cosimulation block.
• dut ref: The reference output signal from the DUT.
• err: The difference (error) between these two outputs.

The following figure shows these signals.
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The Cosimulation Script File
The generated script file has two sections:

• A comment section that documents model settings that are relevant to cosimulation.
• A function that stores several lines of TCL code into a variable, tclCmds. The cosimulation tools

execute these commands when you launch a cosimulation.

Header Comments Section

The following listing shows the comment section of a script file generated for the hdl_cosim_demo1
model:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Auto generated cosimulation 'tclstart' script 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%  Source Model         : hdl_cosim_demo1.mdl
%  Generated Model      : gm_hdl_cosim_demo1.mdl
%  Cosimulation Model   : gm_hdl_cosim_demo1_mq.mdl
%
%  Source DUT           : gm_hdl_cosim_demo1_mq/MAC
%  Cosimulation DUT     : gm_hdl_cosim_demo1_mq/MAC_mq
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%
%  File Location        : hdlsrc/gm_hdl_cosim_demo1_mq_tcl.m
%  Created              : 2009-06-16 10:51:01
%
%  Generated by MATLAB 7.9 and HDL Coder 1.6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%  ClockName           : clk
%  ResetName           : reset
%  ClockEnableName     : clk_enable
%
%  ClockLowTime        : 5ns
%  ClockHighTime       : 5ns
%  ClockPeriod         : 10ns
%
%  ResetLength         : 20ns
%  ClockEnableDelay    : 10ns
%  HoldTime            : 2ns
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%  ModelBaseSampleTime   : 1
%  OverClockFactor     : 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%  Mapping of DutBaseSampleTime to ClockPeriod
%
%  N = (ClockPeriod / DutBaseSampleTime) * OverClockFactor
%  1 sec in Simulink corresponds to 10ns in the HDL 
%  Simulator(N = 10)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%  ResetHighAt          : (ClockLowTime + ResetLength + HoldTime)
%  ResetRiseEdge        : 27ns
%  ResetType            : async
%  ResetAssertedLevel   : 1
%
%  ClockEnableHighAt    : (ClockLowTime + ResetLength + ClockEnableDelay + HoldTime)
%  ClockEnableRiseEdge  : 37ns
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The comments section comprises the following subsections:

• Header comments: This section documents the files names for the source and generated models
and the source and generated DUT.

• Test bench settings: This section documents the makehdltb property values that affect
cosimulation model generation. The generated TCL script uses these values to initialize the
cosimulation tool.

• Sample time information: The next two sections document the base sample time and oversampling
factor of the model. HDL Coder uses ModelBaseSampleTime and OverClockFactor to map the
clock period of the model to the HDL cosimulation clock period.

• Clock, clock enable, and reset waveforms: This section documents the computations of the duty
cycle of the clk, clk_enable, and reset signals.

TCL Commands Section

The following listing shows the TCL commands section of a script file generated for the
hdl_cosim_demo1 model:
function tclCmds = gm_hdl_cosim_demo1_mq_tcl
tclCmds = {
    'do MAC_compile.do',...% Compile the generated code
    'vsimulink work.MAC',...% Initiate cosimulation
    'add wave  /MAC/clk',...% Add wave commands for chip input signals
    'add wave  /MAC/reset',...
    'add wave  /MAC/clk_enable',...
    'add wave  /MAC/In1',...
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    'add wave  /MAC/In2',...
    'add wave  /MAC/ce_out',...% Add wave commands for chip output signals
    'add wave  /MAC/Out1',...
    'set UserTimeUnit ns',...% Set simulation time unit
    'puts ""',...
    'puts "Ready for cosimulation..."',...
};
end

Complex and Vector Signals in the Generated Cosimulation Model
Input signals of complex or vector data types require insertion of additional elements into the
cosimulation path. this section describes these elements.

Complex Signals

The generated cosimulation model automatically breaks complex inputs into real and imaginary
parts. The following figure shows a FromCosimSrc subsystem that receives two complex input
signals. The subsystem breaks the inputs into real and imaginary parts before passing them to the
subsystem outputs.

The model maintains the separation of real and imaginary components throughout the cosimulation
path. The Compare subsystem performs separate comparisons and separate scope displays for the
real and imaginary signal components.

Vector Signals

The generated cosimulation model flattens vector inputs. The following figure shows a
FromCosimSrc subsystem that receives two vector input signals of dimension 2. The subsystem
flattens the inputs into scalars before passing them to the subsystem outputs.

 Generate a Cosimulation Model

27-43



Generating a Cosimulation Model from the Command Line
To generate a cosimulation model from the command line, pass the GenerateCosimModel property
to the makehdltb function. GenerateCosimModel takes one of the following property values:

• 'ModelSim' : generate a cosimulation model configured for HDL Verifier for use with Mentor
Graphics ModelSim.

• 'Incisive': generate a cosimulation model configured for HDL Verifier for use with Cadence
Incisive.

In the following command, makehdltb generates a cosimulation model configured for HDL Verifier
for use with Mentor Graphics ModelSim.
makehdltb('hdl_cosim_demo1/MAC','GenerateCosimModel','ModelSim');

Naming Conventions for Generated Cosimulation Models and Scripts
The naming convention for generated cosimulation models is

prefix_modelname_toolid_suffix, where:

• prefix is the string gm.
• modelname is the name of the generating model.
• toolid is an identifier indicating the HDL simulator chosen by the Cosimulation model for use

with: option. Valid toolid strings are 'mq' and 'in'.
• suffix is an integer that provides each generated model with a unique name. The suffix increments

with each successive test bench generation for a given model. For example, if the original model
name is test, then the sequence of generated cosimulation model names is gm_test_toolid_0,
gm_test_toolid_1, and so on.

The naming convention for generated cosimulation scripts is the same as that for models, except that
the file name extension is .m.
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Limitations for Cosimulation Model Generation
When you configure a model for cosimulation model generation, observe the following limitations:

• Explicitly specify the sample times of source blocks to the DUT in the simulation path. Use of the
default sample time (-1) in the source blocks may cause sample time propagation problems in the
cosimulation path of the generated model.

• The HDL Coder software does not support continuous sample times for cosimulation model
generation. Do not use sample times 0 or Inf in source blocks in the simulation path.

• If you set Clock Inputs to Multiple, HDL Coder does not support generation of a cosimulation
model.

• Combinatorial output paths (caused by absence of registers in the generated code) have a latency
of one extra cycle in cosimulation. To avoid discrepancy in the comparison between the simulation
and cosimulation outputs, the Allow direct feedthrough option on the Ports pane of the HDL
Cosimulation block is automatically selected.

Alternatively, you can avoid the latency by specifying output pipelining (see “OutputPipeline” on
page 21-17). This will fully register outputs during code generation.

• Double data types are not supported for the HDL Cosimulation block. Avoid use of double data
types in the simulation path when generating HDL code and a cosimulation model.
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Pass-Through and No-Op Implementations
HDL Coder provides a pass-through or no-op implementation for some blocks. A pass-through
implementation generates a wire in the HDL; a no-op implementation omits code generation for the
block or subsystem. These implementations are useful in cases where you need a block for
simulation, but do not need the block or subsystem in your generated HDL code.

The pass-through and no-op implementations are summarized in the following table.

Implementation Description
Pass-through implementations Provides a pass-through implementation in which the block's

inputs are passed directly to its outputs. HDL Coder
supports the following blocks with a pass-through
implementation:

• Convert 1-D to 2-D
• Reshape
• Signal Conversion
• Signal Specification

No HDL This implementation completely removes the block from the
generated code. This enables you to use the block in
simulation but treat it as a “no-op” in the HDL code. This
implementation is used for many blocks (such as Scopes and
Assertions) that are significant in simulation but are
meaningless in HDL code.
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Synchronous Subsystem Behavior with the State Control Block

In this section...
“What Is a State Control Block?” on page 27-47
“State Control Block Modes” on page 27-47
“Synchronous Badge for Subsystems by Using Synchronous Mode” on page 27-48
“Generate HDL Code with the State Control Block” on page 27-49
“Enable and Reset Hardware Simulation Behavior” on page 27-51

What Is a State Control Block?
When you have blocks with state, and have enable or reset ports inside a subsystem, use the
Synchronous mode of the State Control block to:

• Provide efficient enable and reset simulation behavior on hardware.
• Generate cleaner HDL code and use fewer resources on hardware.

You can add the State Control block to your Simulink model at any level in the model hierarchy. How
you set the State Control block affects the simulation behavior of other blocks inside the subsystem
that have state.

• For synchronous hardware simulation behavior, set State control to Synchronous.
• For default Simulink simulation behavior, set State control to Classic.

State Control Block Modes
Functionality Synchronous mode Classic mode
State Control block setting Default block setting when you

add the block from the HDL
Subsystems block library.

The simulation behavior is the
same as a subsystem that does not
use the State Control block.

Simulink simulation
behavior

• Initialize method:
Initializes states.

• Update method: Updates
states.

• Output method:
Computes output values.

The update method only updates
states. The output method
computes the output values at
each time step.

For example, when you have
enabled subsystems, the output
value changes when the enable
signal is low as it processes new
input values. The output value
matches the output from Classic
mode when enable signal becomes
high.

The update method updates states
and computes the output values.

For example, when you have
enabled subsystems, the output
value is held steady when the
enable signal is low and changes
only when the enable signal
becomes high.

HDL simulation behavior More efficient on hardware. Less efficient on hardware.
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Functionality Synchronous mode Classic mode
HDL code generation
behavior

Generated HDL code is cleaner
and uses fewer resources on
hardware.

For example, when you have
enabled subsystems, HDL Coder
does not generate bypass
registers for each state update
and uses fewer hardware
resources.

Generated HDL code is not as
clean and uses more hardware
resources.

For example, when you have
enabled subsystems, HDL Coder
generates bypass registers for
each state update and uses more
resources.

To learn more about when you can use the State Control block, see State Control.

Synchronous Badge for Subsystems by Using Synchronous Mode
To see if a subsystem in your Simulink model uses synchronous semantics:

• A symbol S is displayed on the subsystem to indicate synchronous behavior.

• If you double-click the SynchronousStateControl subsystem, a badge S is displayed in the
Simulink editor to indicate that blocks inside the subsystem are using synchronous hardware
semantics.
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The SynchronousStateControl and ClassicStateControl subsystems use a Delay block with an
external reset and an enable port in Synchronous and Classic modes respectively.

Generate HDL Code with the State Control Block
The following table shows a comparison of the HDL code generated from the Delay block for
Classic and Synchronous modes of the State Control block.
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Functionality Synchronous mode Classic mode
HDL code
generation. Settings
applied:

• Language:
Verilog

• Reset type:
Synchronous

`timescale 1 ns / 1 ns

module SynchronousStateControl
          (
           clk,
           reset,
           enb,
           DataIn,
           EnableIn,
           ResetIn,
           DataOut
          );

  input   clk;
  input   reset;
  input   enb;
  input   signed [7:0] DataIn;  // int8
  input   EnableIn;
  input   ResetIn;
  output  signed [7:0] DataOut;  // int8

  reg signed [7:0] Delay_Synchronous_reg [0:1];  // sfix8 [2]
  wire signed [7:0] Delay_Synchronous_reg_next [0:1];  // sfix8 [2]
  wire signed [7:0] Delay_Synchronous_out1;  // int8

  always @(posedge clk)
    begin : Delay_Synchronous_process
      if (reset == 1'b1 || ResetIn == 1'b1) begin
        Delay_Synchronous_reg[0] <= 8'sb00000000;
        Delay_Synchronous_reg[1] <= 8'sb00000000;
      end
      else begin
        if (enb && EnableIn) begin
          Delay_Synchronous_reg[0] <= Delay_Synchronous_reg_next[0];
          Delay_Synchronous_reg[1] <= Delay_Synchronous_reg_next[1];
        end
      end
    end

  assign Delay_Synchronous_out1 = Delay_Synchronous_reg[1];
  assign Delay_Synchronous_reg_next[0] = DataIn;
  assign Delay_Synchronous_reg_next[1] = Delay_Synchronous_reg[0];

  assign DataOut = Delay_Synchronous_out1;

endmodule  // SynchronousStateControl

`timescale 1 ns / 1 ns

module ClassicStateControl
          (
           clk,
           reset,
           enb,
           DataIn,
           EnableIn,
           ResetIn,
           DataOut
          );

  input   clk;
  input   reset;
  input   enb;
  input   signed [7:0] DataIn;  // int8
  input   EnableIn;
  input   ResetIn;
  output  signed [7:0] DataOut;  // int8

  reg signed [7:0] Delay_Synchronous_bypass;  // sfix8
  reg signed [7:0] Delay_Synchronous_reg [0:1];  // sfix8 [2]
  wire signed [7:0] Delay_Synchronous_bypass_next;  // sfix8
  wire signed [7:0] Delay_Synchronous_reg_next [0:1];  // sfix8 [2]
  wire signed [7:0] Delay_Synchronous_delay_out;  // sfix8
  wire signed [7:0] Delay_Synchronous_out1;  // int8

  always @(posedge clk)
    begin : Delay_Synchronous_process
      if (reset == 1'b1 || ResetIn == 1'b1) begin
        Delay_Synchronous_bypass <= 8'sb00000000;
        Delay_Synchronous_reg[0] <= 8'sb00000000;
        Delay_Synchronous_reg[1] <= 8'sb00000000;
      end
      else begin
        if (enb && EnableIn) begin
          Delay_Synchronous_bypass <= Delay_Synchronous_bypass_next;
          Delay_Synchronous_reg[0] <= Delay_Synchronous_reg_next[0];
          Delay_Synchronous_reg[1] <= Delay_Synchronous_reg_next[1];
        end
      end
    end

  assign Delay_Synchronous_delay_out = (ResetIn == 1'b1 ? 8'sb00000000 :
              Delay_Synchronous_reg[1]);
  assign Delay_Synchronous_out1 = (EnableIn == 1'b1 ? Delay_Synchronous_delay_out :
              Delay_Synchronous_bypass);
  assign Delay_Synchronous_bypass_next = Delay_Synchronous_delay_out;
  assign Delay_Synchronous_reg_next[0] = DataIn;
  assign Delay_Synchronous_reg_next[1] = Delay_Synchronous_reg[0];
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Functionality Synchronous mode Classic mode

• Generated HDL code is cleaner
and requires fewer hardware
resources as HDL Coder does not
generate bypass registers.

• The update method only updates
the states.

  assign DataOut = Delay_Synchronous_out1;

endmodule  // ClassicStateControl

• Generated HDL code is less cleaner
and requires more hardware
resources as HDL Coder generates
bypass registers.

• The update method updates states
and computes the output values.

Enable and Reset Hardware Simulation Behavior
Refer to the above Simulink model that shows a Delay block that uses Classic and Synchronous
modes of the State Control block. The following diagram shows the ModelSim simulation behavior for
the Delay block.

• When ResetIn signal is high, the DataClassic and DataSynchronous signals produce the same
output.

• When both ResetIn and EnableIn signals are low, the DataSynchronous signal holds its value
and changes only when the EnableIn signal becomes high at the next active clock edge. The
DataClassic signal values change when the EnableIn signal is low as it processes new input
values. The DataClassic signal values match the DataSynchronous signal values when the
EnableIn becomes high.

For information about how to generate HDL code and simulate your design in ModelSim, see
“Generate HDL Code from Simulink Model”.
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See Also
State Control
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Stateflow HDL Code Generation Support

• “Introduction to Stateflow HDL Code Generation” on page 28-2
• “Hardware Realization of Stateflow Semantics” on page 28-6
• “Generate HDL for Mealy and Moore Finite State Machines” on page 28-7
• “Design Patterns Using Advanced Chart Features” on page 28-14
• “Initialize Persistent Variables in MATLAB Functions” on page 28-22
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Introduction to Stateflow HDL Code Generation
In this section...
“Overview” on page 28-2
“Comments” on page 28-2
“Tunable Parameters” on page 28-2
“Example” on page 28-2
“Restrictions” on page 28-3

Overview
Stateflow charts provide concise descriptions of complex system behavior using hierarchical finite
state machine (FSM) theory, flow diagram notation, and state-transition diagrams.

You use a chart to model a finite state machine or a complex control algorithm intended for
realization as an ASIC or FPGA. When the model meets design requirements, you then generate HDL
code (VHDL or Verilog) that implements the design embodied in the model. You can simulate and
synthesize generated HDL code using industry standard tools, and then map your system designs into
FPGAs and ASICs.

In general, generation of VHDL or Verilog code from a model containing a chart does not differ
greatly from HDL code generation from other models. The HDL code generator is designed to

• Support the largest possible subset of chart semantics that is consistent with HDL. This broad
subset lets you generate HDL code from existing models without significant remodeling effort.

• Generate bit-true, cycle-accurate HDL code that is fully compatible with Stateflow simulation
semantics.

Comments
When your Simulink model contains a Stateflow Chart that uses comments, HDL Coder generates the
comments in the HDL code.

When you generate Verilog code from the model, HDL Coder displays the comments in the Stateflow
Chart inline beside the corresponding Stateflow object.

Tunable Parameters
You can use a tunable parameter in a Stateflow Chart intended for HDL code generation.

For more information, see “Generate DUT Ports for Tunable Parameters” on page 10-17.

Example
The hdlcodercfir model shows how to generate HDL code for a subsystem that includes Stateflow
charts.

To open the model, at the command line, enter:
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hdlcodercfir

Restrictions
HDL Coder does not support Stateflow blocks that contain messages for HDL code generation.

Location of Charts in the Model

A chart intended for HDL code generation must be part of a Simulink subsystem. If the chart for
which you want to generate code is at the root level of your model, embed the chart in a subsystem.
Connect the relevant signals to the subsystem inputs and outputs.

Data Types

The code generator supports a subset of MATLAB data types in charts that include:

• Signed and unsigned integer
• Fixed point
• Boolean
• Enumeration

Note Except for data types assigned to ports, multidimensional arrays of these types are supported.
Port data types must be either scalar or vector.

If you use single and double data types, HDL Coder generates real data types in the HDL code. You
can simulate and verify the code by using third-party simulators such as ModelSim.

However, real types are not synthesizable on the target FPGA device. The code generator does not
support generation of HDL code for the Stateflow Chart in Native Floating Point mode. To
generate synthesizable HDL code when you use floating-point data types, develop the algorithm by
using MATLAB Function on page 10-73 blocks or other “Simulink Blocks Supported with Native
Floating-Point” on page 10-80.

Chart Initialization

You must enable the chart property Execute (enter) Chart at Initialization. This option executes
the update chart function immediately following chart initialization. The option is required for HDL
because outputs must be available at time 0 (hardware reset). “Execution of a Chart at Initialization”
(Stateflow) describes existing restrictions under this property.

The reset action must not entail the delay of combinatorial logic. Therefore, do not perform
arithmetic in initialization actions.

To generate HDL code that is more readable and has better synthesis results, enable the Initialize
Outputs Every Time Chart Wakes Up chart property. If you use a Moore state machine, HDL Coder
generates an error if you disable the chart property.

If you disable Initialize Outputs Every Time Chart Wakes Up, the chart output is persistent, so
the generated HDL code must internally register the output values.
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Imported Code

A chart intended for HDL code generation must be entirely self-contained. The following restrictions
apply:

• Do not call MATLAB functions other than min or max.
• Do not use MATLAB System Objects in a Chart block.
• Do not use MATLAB workspace data.
• Do not call C math functions. HDL does not have a counterpart to the C math library.
• If the Enable C-bit operations property is disabled, do not use the exponentiation operator (^).

The exponentiation operator is implemented with the C Math Library function pow.
• Do not include custom code. Information entered on the Simulation Target > Custom Code

pane in the Configuration Parameters dialog box is ignored.
• Do not share data (via Data Store Memory blocks) between charts. HDL Coder does not map such

global data to HDL because HDL does not support global data.

Vector of Tunable Parameters

Vector of Tunable Parameters as data types for Chart blocks are not supported.

Input and Output Events

HDL Coder supports the use of input and output events with Stateflow charts, subject to the following
constraints:

• You can define and use only one input event per Stateflow chart. (There is no restriction on the
number of output events that you can use.)

• The coder does not support HDL code generation for charts that have a single input event, and
which also have nonzero initial values on the chart's output ports.

• All input and output events must be edge-triggered.

For detailed information on input and output events, see “Activate a Stateflow Chart by Sending Input
Events” (Stateflow) and “Activate a Simulink Block by Sending Output Events” (Stateflow).

Messages

Stateflow messages are not supported for HDL code generation.

Loops

Other than for loops, do not explicitly use loops in a chart intended for HDL code generation.
Observe the following restrictions on for loops:

• The data type of the loop counter variable must be int32.
• HDL Coder supports only constant-bounded loops.

The for loop example, sf_for, shows a design pattern for a for loop using a graphical function.

Other Restrictions

HDL Coder imposes additional restrictions on the use of classic chart features. These limitations exist
because HDL does not support some features of general-purpose sequential programming languages.
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• Do not define local events in a chart from which HDL code is generated.

Do not use the following implicit events:

• enter
• exit
• change

You can use the following implicit events:

• wakeup
• tick

You can use temporal logic if the base events are limited to these types of implicit events.

Note Absolute-time temporal logic is not supported for HDL code generation.
• Do not use recursion through graphical functions. HDL Coder does not currently support

recursion.
• Avoid unstructured code. Although charts allow unstructured code (through transition flow

diagrams and graphical functions), this usage results in goto statements and multiple function
return statements. HDL does not support either goto statements or multiple function return
statements. Therefore, do not use unstructured flow diagrams.

• If you have not selected the Initialize Outputs Every Time Chart Wakes Up chart option, do
not read from output ports.

• Do not use Data Store Memory objects.
• Do not use pointer (&) or indirection (*) operators. See “Pointer and Address Operations”
(Stateflow).

• If a chart gets a run-time overflow error during simulation, it is possible to disable data range
error checking and generate HDL code for the chart. However, in such cases, some results
obtained from the generated HDL code might not be bit-true to results from the simulation. The
recommended practice is to enable overflow checking and eliminate overflow conditions from the
model during simulation.

See Also
Sequence Viewer | State Transition Table | Truth Table

Related Examples
• “Generate HDL for Mealy and Moore Finite State Machines” on page 28-7
• “Design Patterns Using Advanced Chart Features” on page 28-14

More About
• “Hardware Realization of Stateflow Semantics” on page 28-6
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Hardware Realization of Stateflow Semantics
A mapping from Stateflow semantics to an HDL implementation has the following requirements:

• Requirement 1: Hardware designs require separability of output and state update functions.
• Requirement 2: HDL is a concurrent language. To achieve the goal of bit-true simulation,

execution must be in order.

To meet Requirement 1, an FSM is coded in HDL as two concurrent blocks that execute under
different conditions. One block evaluates the transition conditions, computes outputs and computes
the next state variables. The other block updates the current state variables from the available next
state and performs the actual state transitions. This second block is activated only on the trigger
edge of the clock signal, or an asynchronous reset signal.

Stateflow sequential semantics map to HDL sequential statements, and local chart variables in
function scope map to VHDL variables in process scope. In VHDL, variable assignment is sequential.
Therefore, statements in a Stateflow function that uses local variables can map to statements in a
VHDL process that uses corresponding variables. The VHDL assignments execute in the same order
as the assignments in the Stateflow function.

See Also
Sequence Viewer | State Transition Table | Truth Table

Related Examples
• “Generate HDL for Mealy and Moore Finite State Machines” on page 28-7
• “Design Patterns Using Advanced Chart Features” on page 28-14

More About
• “Introduction to Stateflow HDL Code Generation” on page 28-2
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Generate HDL for Mealy and Moore Finite State Machines
In this section...
“Overview” on page 28-7
“Generating HDL Code for a Moore Finite State Machine” on page 28-7
“Generating HDL for a Mealy Finite State Machine” on page 28-10

Overview
Stateflow charts support modeling of three types of state machines:

• Classic (default)
• Mealy
• Moore

Mealy and Moore state machines differ in the following ways:

• The outputs of a Mealy state machine are a function of the current state and inputs.
• The outputs of a Moore state machine are a function of the current state only.

The principal advantages of using Mealy or Moore charts as an alternative to Classic charts are:

• Moore charts generate more efficient code than Classic charts.
• At compile time, Mealy and Moore charts are validated for conformance to their formal definitions

and semantic rules, and violations are reported.

To learn more about HDL code generation guidelines for charts, see Chart.

Open the hdlcoder_fsm_mealy_moore model for an example that shows how to model Mealy and
Moore charts.

Generating HDL Code for a Moore Finite State Machine
When generating HDL code for a chart that models a Moore state machine:

• The chart must meet the general code generation requirements as described in Chart.
• Actions must occur in states only. These actions must be unlabeled.

Moore actions must be associated with states, because output computation must be dependent
only on states, not input. The configuration of active states at time step t determines output. If
state S is active when a chart wakes up at time t, it contributes to the output whether or not it
remains active into time t+1.

• Do not call Simulink functions.

This prevents output from depending on input in ways that would be difficult for the HDL code
generator to verify.

• Make sure that you enable the chart property Initialize Outputs Every Time Chart Wakes Up
as shown in the figure.
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The following figure shows a Stateflow chart of a Moore state machine that uses MATLAB as the
action language.
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The Verilog code generated for the Moore chart:
  always @(posedge clk or posedge reset)
    begin : Moore_Chart_1_process
      if (reset == 1'b1) begin
        is_Moore_Chart <= is_Moore_Chart_IN_S0;
      end
      else begin
        if (enb) begin
          case ( is_Moore_Chart)
            is_Moore_Chart_IN_S0 :
              begin
                if (u == 8'sb00000001) begin
                  is_Moore_Chart <= is_Moore_Chart_IN_S1;
                end
              end
            is_Moore_Chart_IN_S1 :
              begin
                if (u == 8'sb00000001) begin
                  is_Moore_Chart <= is_Moore_Chart_IN_S2;
                end
              end
            is_Moore_Chart_IN_S2 :
              begin
                if (u == 8'sb00000001) begin
                  is_Moore_Chart <= is_Moore_Chart_IN_S3;
                end
              end
            default :
              begin
                if (u == 8'sb00000001) begin
                  is_Moore_Chart <= is_Moore_Chart_IN_S0;
                end
              end
          endcase
        end
      end
    end

  always @(is_Moore_Chart) begin
    y_1 = 2'b00;
    case ( is_Moore_Chart)
      is_Moore_Chart_IN_S0 :
        begin
          y_1 = 2'b00;
        end
      is_Moore_Chart_IN_S1 :
        begin
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          y_1 = 2'b01;
        end
      is_Moore_Chart_IN_S2 :
        begin
          y_1 = 2'b10;
        end
      default :
        begin
          y_1 = 2'b11;
        end
    endcase
  end

  assign y = y_1;

For an example that shows Mealy and Moore state machines that are appropriate for HDL code
generation, open the hdlcoder_fsm_mealy_moore model.

Generating HDL for a Mealy Finite State Machine
When generating HDL code for a chart that models a Mealy state machine:

• The chart must meet the general code generation requirements as described in Chart.
• Actions must be associated with inner and outer transitions only.
• For better synthesis results and more readable HDL code, we recommend enabling the chart

property Initialize Outputs Every Time Chart Wakes Up, as shown in the following figure. If
you disable Initialize Outputs Every Time Chart Wakes Up, the chart output is persistent, so
the generated HDL code must internally register the output values.
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Mealy actions are associated with transitions. In Mealy machines, output computation is expected to
be driven by the change on inputs. In fact, the dependence of output on input is the fundamental
distinguishing factor between the formal definitions of Mealy and Moore machines. The requirement
that actions be given on transitions is to some degree stylistic, rather than required, to enforce Mealy
semantics. However, it is natural that output computation follows input conditions on input, because
transition conditions are primarily input conditions in any machine type.

The following figure shows an example of a chart that models a Mealy state machine using MATLAB
as the action language.
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The Verilog code generated for the Mealy chart:

  always @(posedge clk or posedge reset)
    begin : Mealy_Chart_1_process
      if (reset == 1'b1) begin
        is_Mealy_Chart <= is_Mealy_Chart_IN_S0;
      end
      else begin
        if (enb) begin
          is_Mealy_Chart <= is_Mealy_Chart_next;
        end
      end
    end

  always @(is_Mealy_Chart, u) begin
    is_Mealy_Chart_next = is_Mealy_Chart;
    y_1 = 2'b00;
    case ( is_Mealy_Chart)
      is_Mealy_Chart_IN_S0 :
        begin
          if (u == 8'sb00000001) begin
            y_1 = 2'b00;
            is_Mealy_Chart_next = is_Mealy_Chart_IN_S1;
          end
        end
      is_Mealy_Chart_IN_S1 :
        begin
          if (u == 8'sb00000001) begin
            y_1 = 2'b01;
            is_Mealy_Chart_next = is_Mealy_Chart_IN_S2;
          end
        end
      is_Mealy_Chart_IN_S2 :
        begin
          if (u == 8'sb00000001) begin
            y_1 = 2'b10;
            is_Mealy_Chart_next = is_Mealy_Chart_IN_S3;
          end
        end
      default :
        begin
          if (u == 8'sb00000001) begin
            y_1 = 2'b11;
            is_Mealy_Chart_next = is_Mealy_Chart_IN_S0;
          end
        end
    endcase
  end

  assign y = y_1;
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For an example that shows Mealy and Moore state machines that are appropriate for HDL code
generation, open the hdlcoder_fsm_mealy_moore model.

See Also
Chart

More About
• “Design Patterns Using Advanced Chart Features” on page 28-14
• “Introduction to Stateflow HDL Code Generation” on page 28-2
• “Hardware Realization of Stateflow Semantics” on page 28-6
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Design Patterns Using Advanced Chart Features
In this section...
“Temporal Logic” on page 28-14
“Graphical Function” on page 28-16
“Hierarchy and Parallelism” on page 28-17
“Stateless Charts” on page 28-17
“Truth Tables” on page 28-18

Temporal Logic
Stateflow temporal logic operators (such as after, before, or every) are Boolean operators that
operate on recurrence counts of Stateflow events. Temporal logic operators can appear only in
conditions on transitions that originate from states, and in state actions. Although temporal logic
does not introduce new events into a Stateflow model, it is useful to think of the change of value of a
temporal logic condition as an event. You can use temporal logic operators in many cases where a
counter is required. A common use case would be to use temporal logic to implement a time-out
counter.

Note Absolute-time temporal logic is not supported for HDL code generation.

For detailed information about temporal logic, see “Control Chart Execution by Using Temporal
Logic” (Stateflow).

The chart shown in the following figure uses temporal logic in a design for a debouncer. Instead of
instantaneously switching between on and off states, the chart uses two intermediate states and
temporal logic to ignore transients. The transition is committed based on a time-out.
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By default, states in a Stateflow Chart are ordered alphabetically. The ordering of states in the HDL
code can potentially vary if you enable active state output port generation in the HDL code. To enable
this setting, open the Chart properties and select the Create output port for monitoring check
box. See also “Simplify Stateflow Charts by Incorporating Active State Output” (Stateflow).

When you generate VHDL code, the recently added state is selected as the OTHERS state in the HDL
code. The following code excerpt shows VHDL code generated from this Chart.
Chart_1_output : PROCESS (is_Chart, u, temporalCounter_i1, y_reg)
    VARIABLE temporalCounter_i1_temp : unsigned(7 DOWNTO 0);
  BEGIN
    temporalCounter_i1_temp := temporalCounter_i1;
    is_Chart_next <= is_Chart;
    y_reg_next <= y_reg;
    IF temporalCounter_i1 < 7 THEN 
      temporalCounter_i1_temp := temporalCounter_i1 + 1;
    END IF;

    CASE is_Chart IS
      WHEN IN_tran1 =>
        IF u = 1.0 THEN 
          is_Chart_next <= IN_on;
          y_reg_next <= 1.0;
        ELSIF temporalCounter_i1_temp >= 3 THEN 
          is_Chart_next <= IN_off;
          y_reg_next <= 0.0;
        END IF;
      WHEN IN_tran2 =>
        IF temporalCounter_i1_temp >= 5 THEN 
          is_Chart_next <= IN_on;
          y_reg_next <= 1.0;
        ELSIF u = 0.0 THEN 
          is_Chart_next <= IN_off;
          y_reg_next <= 0.0;
        END IF;
      WHEN IN_off =>
        IF u = 1.0 THEN 
          is_Chart_next <= IN_tran2;
          temporalCounter_i1_temp := to_unsigned(0, 8);
        END IF;
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      WHEN OTHERS => 
        IF u = 0.0 THEN 
          is_Chart_next <= IN_tran1;
          temporalCounter_i1_temp := to_unsigned(0, 8);
        END IF;
    END CASE;

    temporalCounter_i1_next <= temporalCounter_i1_temp;
  END PROCESS Chart_1_output;

Graphical Function
A graphical function is a function defined graphically by a flow diagram. Graphical functions reside in
a chart along with the diagrams that invoke them. Like MATLAB functions and C functions, graphical
functions can accept arguments and return results. Graphical functions can be invoked in transition
and state actions.

The following figure shows a graphical function that implements a 64–by–64 counter.

The following code excerpt shows VHDL code generated for this graphical function.

     x64_counter_sf : PROCESS (x, y, outx_reg, outy_reg)
        -- local variables
        VARIABLE x_temp : unsigned(7 DOWNTO 0);
        VARIABLE y_temp : unsigned(7 DOWNTO 0);
    BEGIN
        outx_reg_next <= outx_reg;
        outy_reg_next <= outy_reg;
        x_temp := x;
        y_temp := y;
        x_temp := tmw_to_unsigned(tmw_to_unsigned(tmw_to_unsigned(x_temp, 9), 10) 
                + tmw_to_unsigned(to_unsigned(1, 9), 10), 8);

        IF x_temp < to_unsigned(64, 8) THEN 
            NULL;
        ELSE 
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            x_temp := to_unsigned(0, 8);
            y_temp := tmw_to_unsigned(tmw_to_unsigned(tmw_to_unsigned(y_temp, 9), 10)
                  + tmw_to_unsigned(to_unsigned(1, 9), 10), 8);

            IF y_temp < to_unsigned(64, 8) THEN 
                NULL;
            ELSE 
                y_temp := to_unsigned(0, 8);
            END IF;

        END IF;

        outx_reg_next <= x_temp;
        outy_reg_next <= y_temp;
        x_next <= x_temp;
        y_next <= y_temp;
    END PROCESS x64_counter_sf;

Hierarchy and Parallelism
Stateflow charts support both hierarchy (states containing other states) and parallelism (multiple
states that can be active simultaneously).

In Stateflow semantics, parallelism is not synonymous with concurrency. Parallel states can be active
simultaneously, but they are executed sequentially according to their execution order. (Execution
order is displayed on the upper right corner of a parallel state).

For detailed information on hierarchy and parallelism, see “Hierarchy of Stateflow Objects”
(Stateflow) and “Execution Order for Parallel States” (Stateflow).

For HDL code generation, an entire chart maps to a single output computation process. Within the
output computation process:

• The execution of parallel states proceeds sequentially.
• Nested hierarchical states map to nested CASE statements in the generated HDL code.

Stateless Charts
Charts consisting of pure flow diagrams (i.e., charts without states ) are useful in capturing if-
then-else constructs used in procedural languages like C.

As an example, consider the following logic, expressed in C-like pseudocode.

if(U1==1) {
    if(U2==1) {
       Y = 1;
    }else{
      Y = 2;
    }
}else{
   if(U2<2) {
      Y = 3;
   }else{
      Y = 4;
       }
      }

The following figure shows the flow diagram that implements the if-then-else logic.
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The following generated VHDL code excerpt shows the nested IF-ELSE statements obtained from the
flow diagram.

Chart : PROCESS (Y1_reg, Y2_reg, U1, U2)
        -- local variables
    BEGIN
        Y1_reg_next <= Y1_reg;
        Y2_reg_next <= Y2_reg;

        IF unsigned(U1) = to_unsigned(1, 8) THEN 

            IF unsigned(U2) = to_unsigned(1, 8) THEN 
                Y1_reg_next <= to_unsigned(1, 8);
            ELSE 
                Y1_reg_next <= to_unsigned(2, 8);
            END IF;

        ELSIF unsigned(U2) < to_unsigned(2, 8) THEN 
            Y1_reg_next <= to_unsigned(3, 8);
        ELSE 
            Y1_reg_next <= to_unsigned(4, 8);
        END IF;

        Y2_reg_next <= tmw_to_unsigned(tmw_to_unsigned(tmw_to_unsigned(unsigned(U1), 9),10)
        + tmw_to_unsigned(tmw_to_unsigned(unsigned(U2), 9), 10), 8);
    END PROCESS Chart;

Truth Tables
HDL Coder supports HDL code generation for:

• Truth Table functions within a Stateflow chart
• Truth Table blocks in Simulink models

This section examines a Truth Table function in a chart, and the VHDL code generated for the chart.

Truth Tables are well-suited for implementing compact combinatorial logic. A typical application for
Truth Tables is to implement nonlinear quantization or threshold logic. Consider the following logic:
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Y = 1 when 0  <= U <= 10
Y = 2 when 10 <  U <= 17
Y = 3 when 17 <  U <= 45
Y = 4 when 45 <  U <= 52
Y = 5 when 52 <  U

A stateless chart with a single call to a Truth Table function can represent this logic succinctly.

The following figure shows the quantizer chart, containing the Truth Table.

The following figure shows the threshold logic, as displayed in the Truth Table Editor.
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The following code excerpt shows VHDL code generated for the quantizer chart.
    quantizer : PROCESS (Y_reg, U)
        -- local variables
        VARIABLE aVarTruthTableCondition_1 : std_logic;
        VARIABLE aVarTruthTableCondition_2 : std_logic;
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        VARIABLE aVarTruthTableCondition_3 : std_logic;
        VARIABLE aVarTruthTableCondition_4 : std_logic;
    BEGIN
        Y_reg_next <= Y_reg;
        -- Condition #1 
        aVarTruthTableCondition_1 := tmw_to_stdlogic(unsigned(U) <= to_unsigned(10, 8));
        -- Condition #2 
        aVarTruthTableCondition_2 := tmw_to_stdlogic(unsigned(U) <= to_unsigned(17, 8));
        -- Condition #3 
        aVarTruthTableCondition_3 := tmw_to_stdlogic(unsigned(U) <= to_unsigned(45, 8));
        -- Condition #4 
        aVarTruthTableCondition_4 := tmw_to_stdlogic(unsigned(U) <= to_unsigned(52, 8));

        IF tmw_to_boolean(aVarTruthTableCondition_1) THEN 
            -- D1 
            -- Action 1 
            Y_reg_next <= to_unsigned(1, 8);
        ELSIF tmw_to_boolean(aVarTruthTableCondition_2) THEN 
            -- D2 
            -- Action 2 
            Y_reg_next <= to_unsigned(2, 8);
        ELSIF tmw_to_boolean(aVarTruthTableCondition_3) THEN 
            -- D3 
            -- Action 3 
            Y_reg_next <= to_unsigned(3, 8);
        ELSIF tmw_to_boolean(aVarTruthTableCondition_4) THEN 
            -- D4 
            -- Action 4 
            Y_reg_next <= to_unsigned(4, 8);
        ELSE 
            -- Default 
            -- Action 5 
            Y_reg_next <= to_unsigned(5, 8);
        END IF;

    END PROCESS quantizer;

Note When generating code for a Truth Table block in a Simulink model, HDL Coder writes a
separate entity/architecture file for the Truth Table code. The file is named Truth_Table.vhd (for
VHDL) or Truth_Table.v (for Verilog).

See Also
Sequence Viewer | State Transition Table | Truth Table

Related Examples
• “Generate HDL for Mealy and Moore Finite State Machines” on page 28-7

More About
• “Hardware Realization of Stateflow Semantics” on page 28-6
• “Introduction to Stateflow HDL Code Generation” on page 28-2
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Initialize Persistent Variables in MATLAB Functions
A persistent variable is a local variable in a MATLAB function that retains its value in memory
between calls to the function. For code generation, functions must initialize a persistent variable if it
is empty. For more information, see persistent.

When programming MATLAB functions in these situations:

• MATLAB Function blocks with no direct feedthrough
• MATLAB Function blocks in models that contain State Control blocks in Synchronous mode
• MATLAB functions in Stateflow charts that implement Moore machine semantics

The specialized semantics impact how a function initializes its persistent data. Because the
initialization must be independent of the input to the function, follow these guidelines:

• The function initializes its persistent variables only by accessing constants.
• The control flow of the function does not depend on whether the initialization occurs.

For example, this function has a persistent variable n.

function y = fcn(u)
    persistent n
        
    if isempty(n)
        n = u;
        y = 1;
        return
    end
    
    y = n;
    n = n + u; 
end

This type of initialization results in an error because the initial value of n depends on the input u and
the return statement interrupts the normal control flow of the function.

To correct the error, initialize the persistent variable by setting it to a constant value and remove the
return statement. For example, this function initializes the persistent variable without producing an
error.

function y = fcn(u)
    persistent n
        
    if isempty(n)
        n = 1;
    end
    
    y = n;
    n = n + u; 
end

MATLAB Function Block With No Direct Feedthrough
This model contains a MATLAB function block that defines the function fcn, described previously.
The input u is a square wave with values of 1 and -1.
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In the MATLAB function block:

• The initial value of the persistent variable n depends on the input u.
• The return statement interrupts the normal control flow of the function.

Because the Allow direct feedthrough check box is cleared, the initialization results in an error.

If you modify the function so it initializes n independently of the input, then you can simulate an
error-free model.
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State Control Block in Synchronous Mode
This model contains a MATLAB function block that defines the function fcn, described previously.
The input u is a square wave with values of 1 and -1.

In the MATLAB function block:

28 Stateflow HDL Code Generation Support

28-24



• The initial value of the persistent variable n depends on the input u.
• The return statement interrupts the normal control flow of the function.

Because the model contains a State Control block in Synchronous mode, the initialization results in
an error.

If you modify the function so it initializes n independently of the input, then you can simulate an
error-free model.

Stateflow Chart Implementing Moore Semantics
This model contains a Stateflow chart that implements Moore machine semantics. The chart contains
a MATLAB function that defines the function fcn, described previously. The input u has values of 1
and -1 that depend on the state of the chart.
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In the MATLAB function:

• The initial value of the persistent variable n depends on the input u.
• The return statement interrupts the normal control flow of the function.

Because the chart implements Moore semantics, the initialization results in an error.

If you modify the function so it initializes n independently of the input, then you can simulate an
error-free model.
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See Also
Chart | MATLAB Function | State Control | persistent

More About
• “Use Nondirect Feedthrough in a MATLAB Function Block” (Simulink)
• “Synchronous Subsystem Behavior with the State Control Block” on page 27-47
• “Design Considerations for Moore Charts” (Stateflow)
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Function Block

• “HDL Applications for the MATLAB Function Block” on page 29-2
• “Viterbi Decoder with the MATLAB Function Block” on page 29-4
• “Code Generation from a MATLAB Function Block” on page 29-5
• “Generate Instantiable Code for Functions” on page 29-17
• “MATLAB Function Block Design Patterns for HDL” on page 29-19
• “Design Guidelines for the MATLAB Function Block” on page 29-28
• “Distributed Pipeline Insertion for MATLAB Function Blocks” on page 29-31
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HDL Applications for the MATLAB Function Block
In this section...
“Structure of Generated HDL Code” on page 29-2
“HDL Applications” on page 29-2

Structure of Generated HDL Code
The MATLAB Function block contains a MATLAB function in a model. The inputs and outputs of the
function are represented by the ports on the block, which allow you to interface your model to the
function code. When you generate HDL code for a MATLAB Function block, HDL Coder generates
two HDL files:

• A file containing entity and architecture code that implement the actual algorithm or
computations generated for the MATLAB Function block.

• A file containing an entity definition and RTL architecture that provide a black box interface to the
algorithmic code generated for the MATLAB Function block.

The structure of these code files is analogous to the structure of the model, in which a subsystem
provides an interface between the root model and the function in the MATLAB Function block.

HDL Applications
The MATLAB Function block supports a subset of the MATLAB language that is well-suited to HDL
implementation of various DSP and telecommunications algorithms, such as:

• Sequence and pattern generators
• Encoders and decoders
• Interleavers and de-interleavers
• Modulators and demodulators
• Multipath channel models; impairment models
• Timing recovery algorithms
• Viterbi algorithm; Maximum Likelihood Sequence Estimation (MLSE)
• Adaptive equalizer algorithms

You can also use the MATLAB Function block in a wide variety of floating-point applications. Both
single and double types are supported. To learn more, see “HDL Optimizations Across MATLAB
Function Block Boundary Using MATLAB Datapath Architecture” on page 24-72.

See Also
“Check for MATLAB Function block settings” on page 38-19

More About
• “Design Guidelines for the MATLAB Function Block” on page 29-28
• “Code Generation from a MATLAB Function Block” on page 29-5
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• “MATLAB Function Block Design Patterns for HDL” on page 29-19
• “Generate DUT Ports for Tunable Parameters” on page 10-17
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Viterbi Decoder with the MATLAB Function Block
hdlcoderviterbi2 models a Viterbi decoder, incorporating a MATLAB Function block for use in
simulation and HDL code generation. To open the model, type the following at the MATLAB command
prompt:

hdlcoderviterbi2

See Also
“Check for MATLAB Function block settings” on page 38-19

More About
• “Design Guidelines for the MATLAB Function Block” on page 29-28
• “Code Generation from a MATLAB Function Block” on page 29-5
• “MATLAB Function Block Design Patterns for HDL” on page 29-19
• “Generate DUT Ports for Tunable Parameters” on page 10-17
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Code Generation from a MATLAB Function Block
In this section...
“Counter Model Using the MATLAB Function block” on page 29-5
“Setting Up” on page 29-7
“Creating the Model and Configuring General Model Settings” on page 29-7
“Adding a MATLAB Function Block to the Model” on page 29-8
“Set Fixed-Point Options for the MATLAB Function Block” on page 29-8
“Programming the MATLAB Function Block” on page 29-10
“Constructing and Connecting the DUT_eML_Block Subsystem” on page 29-11
“Compiling the Model and Displaying Port Data Types” on page 29-13
“Simulating the eml_hdl_incrementer_tut Model” on page 29-13
“Generating HDL Code” on page 29-14

Counter Model Using the MATLAB Function block
In this tutorial, you construct and configure a simple model, eml_hdl_incrementer_tut, and then
generate VHDL code from the model. eml_hdl_incrementer_tut includes a MATLAB Function
block that implements a simple fixed-point counter function, incrementer. The incrementer
function is invoked once during each sample period of the model. The function maintains a persistent
variable count, which is either incremented or reinitialized to a preset value (ctr_preset_val),
depending on the value passed in to the ctr_preset input of the MATLAB Function block. The
function returns the counter value (counter) at the output of the MATLAB Function block.

The MATLAB Function block resides in a subsystem, DUT_eML_Block. The subsystem functions as
the device under test (DUT) from which you generate HDL code.

The root-level model drives the subsystem and includes Display and To Workspace blocks for use in
simulation. (The Display and To Workspace blocks do not generate HDL code.)
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Tip If you do not want to construct the model step by step, or do not have time, you can open the
completed model by entering the name at the command prompt:

eml_hdl_incrementer

After you open the model, save a copy of it to your local folder as eml_hdl_incrementer_tut.

The Incrementer Function Code

The following code listing gives the complete incrementer function definition:
function counter = incrementer(ctr_preset, ctr_preset_val)
% The function incrementer implements a preset counter that counts
% how many times this block is called. 
%
% This example function shows how to model memory with persistent variables,
% using fimath settings suitable for HDL. It also demonstrates MATLAB
% operators and other language features that HDL Coder supports
% for code generation from Embedded MATLAB Function block.
%
% On the first call, the result 'counter' is initialized to zero.
% The result 'counter' saturates if called more than 2^14-1 times.
% If the input ctr_preset receives a nonzero value, the counter is 
% set to a preset value passed in to the ctr_preset_val input.

persistent current_count;
if isempty(current_count)
    % zero the counter on first call only
    current_count = uint32(0); 
end
           

counter = getfi(current_count);

if ctr_preset
    % set counter to preset value if input preset signal is nonzero
    counter = ctr_preset_val; 
else
    % otherwise count up
    inc = counter + getfi(1); 
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    counter = getfi(inc);    
end

% store counter value for next iteration
current_count = uint32(counter);

function hdl_fi = getfi(val)

nt = numerictype(0,14,0);
fm = hdlfimath;
hdl_fi = fi(val, nt, fm);

Setting Up
Before you begin building the example model, set up a working folder for your model and generated
code.

Setting Up a folder

1 Start MATLAB.
2 Create a folder named eml_tut, for example:

mkdir D:\work\eml_tut

The eml_tut folder stores the model you create, and also contains sub-folders and generated
code. The location of the folder does not matter, except that it should not be within the MATLAB
tree.

3 Make the eml_tut folder your working folder, for example:

cd D:\work\eml_tut

Creating the Model and Configuring General Model Settings
In this section, you create a model and set some parameters to values recommended for HDL code
generation hdlsetup command. The hdlsetup command uses the set_param function to set up
models for HDL code generation quickly and consistently. See “Customize hdlsetup Function Based
on Target Application” on page 20-18 for further information about hdlsetup.

To set the model parameters:

1 Create a new model.
2 Save the model as eml_hdl_incrementer_tut.
3 At the MATLAB command prompt, type:

hdlsetup('eml_hdl_incrementer_tut');
4 Open the Configuration Parameters dialog box.
5 Set the following Solver options, which are useful in simulating this model:

• Fixed step size: 1
• Stop time: 5

6 Click OK to save your changes and close the Configuration Parameters dialog box.
7 Save your model.

 Code Generation from a MATLAB Function Block

29-7



Adding a MATLAB Function Block to the Model
1 Open the Simulink Library Browser. Then, select the Simulink/User-Defined Functions library.
2 Select the MATLAB Function block from the library window and add it to the model.

3 Change the block label from MATLAB Function to eml_inc_block.

4 Save the model.
5 Close the Simulink Library Browser.

Set Fixed-Point Options for the MATLAB Function Block
This section describes how to set up the fimath specification and other fixed-point options that are
recommended for efficient HDL code generation from the MATLAB Function block. The
recommended settings are:

• ProductMode property of the fimath specification: 'FullPrecision'
• SumMode property of the fimath specification: 'FullPrecision'
• Treat these inherited signal types as fi objects option: Fixed-point (This is the default

setting.)

Configure the options as follows:

1 Open the eml_hdl_incrementer_tut model that you created in “Adding a MATLAB Function
Block to the Model” on page 29-8.

2 Double-click the MATLAB Function block to open it for editing. The MATLAB Function Block
Editor appears.

3 Click Edit Data. The Ports and Data Manager dialog box opens, displaying the default fimath
specification and other properties for the MATLAB Function block.
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4 Select Specify Other. Selecting this option enables the MATLAB Function block fimath text
entry field.

5 The hdlfimath function is a utility that defines a FIMATH specification that is optimized for
HDL code generation. Replace the default MATLAB Function block fimath specification with a
call to hdlfimath as follows:

hdlfimath;
6 Click Apply. The MATLAB Function block properties should now appear as shown in the

following figure.
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7 Close the Ports and Data Manager.
8 Save the model.

Programming the MATLAB Function Block
The next step is add code to the MATLAB Function block to define the incrementer function, and
then use diagnostics to check for errors.

1 Open the eml_hdl_incrementer_tut model that you created in “Adding a MATLAB Function
Block to the Model” on page 29-8.

2 Double-click the MATLAB Function block to open it for editing.
3 In the MATLAB Function Block Editor, delete the default code.
4 Copy the complete incrementer function definition from the listing given in “The Incrementer

Function Code” on page 29-6, and paste it into the editor.
5 Save the model. Doing so updates the model window, redrawing the MATLAB Function block.

Changing the function header of the MATLAB Function block makes the following changes to the
block icon:
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• The function name in the middle of the block changes to incrementer.
• The arguments ctr_preset and ctr_preset_val appear as input ports to the block.
• The return value counter appears as an output port from the block.

6 Resize the block to make the port labels more legible.

7 Save the model again.

Constructing and Connecting the DUT_eML_Block Subsystem
This section assumes that you have completed “Programming the MATLAB Function Block” on page
29-10 without encountering an error. In this section, you construct a subsystem containing the
incrementer function block, to be used as the device under test (DUT) from which to generate HDL
code. You then set the port data types and connect the subsystem ports to the model.

Constructing the DUT_eML_Block Subsystem

Construct a subsystem containing the incrementer function block as follows:

1 Click the incrementer function block.
2 On the Modeling tab of the Simulink Toolstrip, select Create Subsystem.

A subsystem, labeled Subsystem, is created in the model window.
3 Change the Subsystem label to DUT_eML_Block.

Setting Port Data Types for the MATLAB Function Block
1 Double-click the subsystem to view its interior. As shown in the following figure, the subsystem

contains the incrementer function block, with input and output ports connected.
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2 Double-click the incrementer function block to open the MATLAB Function Block Editor.
3 In the editor, click Edit Data to open the Ports and Data Manager.
4 Select the ctr_preset entry in the port list on the left. Click the button labeled >> to display

the Data Type Assistant. Set Mode for this port to Built in. Set Data type to boolean. Click
the button labeled << to close the Data Type Assistant. Click Apply.

5 Select the ctr_preset_val entry in the port list on the left. Click the button labeled >> to
display the Data Type Assistant. Set Mode for this port to Fixed point. Set Signedness to
Unsigned. Set Word length to 14. Click the button labeled << to close the Data Type Assistant.
Click Apply.

6 Select the counter entry in the port list on the left. Click the button labeled >> to display the
Data Type Assistant. Verify that Mode for this port is set to Inherit: Same as Simulink.
Click the button labeled << to close the Data Type Assistant. Click Apply.

7 Close the Ports and Data Manager dialog box and the MATLAB Function Block Editor.
8 Save the model and close the DUT_eML_Block subsystem.

Connecting Subsystem Ports to the Model

Next, connect the ports of the DUT_eML_Block subsystem to the model as follows:

1 From the Sources library, add a Constant block to the model. Set the value of the Constant block
to 1, and the Output data type to boolean. Change the block label to Preset.

2 Make a copy of the Preset Constant block. Set its value to 0, and change its block label to
Increment.

3 From the Signal Routing library, add a Manual Switch block to the model. Change its label to
Control. Connect its output to the In1 port of the DUT_eML_Block subsystem.

4 Connect the Preset Constant block to the upper input of the Control switch block. Connect the
Increment Constant block to the lower input of the Control switch block.

5 Add a third Constant block to the model. Set the value of the Constant to 15, and the Output
data type to Inherit via back propagation. Change the block label to Preset Value.

6 Connect the Preset Value Constant block to the In2 port of the DUT_eML_Block subsystem.
7 From the Sinks library, add a Display block to the model. Connect it to the Out1 port of the

DUT_eML_Block subsystem.
8 From the Sinks library, add a To Workspace block to the model. Route the output signal from the

DUT_eML_Block subsystem to the To Workspace block.
9 Save the model.

Checking the Function for Errors

Use the built-in diagnostics of MATLAB Function blocks to test for syntax errors:

1 Open the eml_hdl_incrementer_tut model.
2 Double-click the MATLAB Function block incrementer to open it for editing.
3 In the MATLAB Function Block Editor, select Build Model > Build to compile and build the

MATLAB Function block code.

The build process displays some progress messages. These messages include some warnings,
because the ports of the MATLAB Function block are not yet connected to signals. You can ignore
these warnings.
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The build process builds an S-function for use in simulation. The build process includes generation of
C code for the S-function. The code generation messages you see during the build process refer to
generation of C code, not HDL code generation.

When the build concludes without encountering an error, a message window appears indicating that
parsing was successful. If errors are found, the Diagnostics Manager lists them. See the MATLAB
Function block documentation for information on debugging MATLAB Function block build errors.

Compiling the Model and Displaying Port Data Types
In this section you enable the display of port data types and then compile the model. Model
compilation verifies the model structure and settings, and updates the model display.

1 In the Debug tab of the Simulink Toolstrip, on the Information Overlays > Ports section, select
Base data types.

2 Press Ctrl+D to compile and update the model. This triggers a rebuild of the code. After the
model compiles, the block diagram updates to show the port data types.

3 Save the model.

Simulating the eml_hdl_incrementer_tut Model
Start simulation. If required, the code rebuilds before the simulation starts.

After the simulation completes, the Display block shows the final output value returned by the
incrementer function block. For example, given a Start time of 0, a Stop time of 5, and a zero
value at the ctr_preset port, the simulation returns a value of 6:
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You might want to experiment with the results of toggling the Control switch, changing the Preset
Value constant, and changing the total simulation time. You might also want to examine the
workspace variable simout, which is bound to the To Workspace block.

Generating HDL Code
In this section, you select the DUT_eML_Block subsystem for HDL code generation, set basic code
generation options, and then generate VHDL code for the subsystem.

Selecting the Subsystem for Code Generation

Select the DUT_eML_Block subsystem for code generation:

1 Open the Configuration Parameters dialog box and click the HDL Code Generation pane.
2 Select eml_hdl_incrementer_tut/DUT_eML_Block from the Generate HDL for list.
3 Click Apply.

Generating VHDL Code

In the Configuration Parameters dialog box, the top-level HDL Code Generation options should now
be set as follows:

• The Generate HDL for field specifies the eml_hdl_incrementer_tut/DUT_eML_Block
subsystem for code generation.

• The Language field specifies (by default) generation of VHDL code.
• The Folder field specifies (by default) that the code generation target folder is a subfolder of your

working folder, named hdlsrc.
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Before generating code, select Current Folder from the Layout menu in the MATLAB Command
Window. This displays the Current Folder browser, which lets you easily access your working folder
and the files that are generated within it.

To generate code:

1 Click the Generate button.

HDL Coder compiles the model before generating code. Depending on model display options
(such as port data types), the appearance of the model might change after code generation.

2 As code generation proceeds, the coder displays progress messages. The process should
complete with a message like the following:

### HDL Code Generation Complete.

The names of generated VHDL files in the progress messages are hyperlinked. After code
generation completes, you can click these hyperlinks to view the files in the MATLAB Editor.

3 A folder icon for the hdlsrc folder is now visible in the Current Folder browser. To view
generated code and script files, double-click the hdlsrc folder icon.

4 Observe that two VHDL files were generated. The structure of HDL code generated for MATLAB
Function blocks is similar to the structure of code generated for Stateflow charts and Digital
Filter blocks. The VHDL files that were generated in the hdlsrc folder are:

• eml_inc_blk.vhd: VHDL code. This file contains entity and architecture code implementing
the actual computations generated for the MATLAB Function block.

• DUT_eML_Block.vhd: VHDL code. This file contains an entity definition and RTL
architecture that provide a black box interface to the code generated in eml_inc_blk.vhd.

The structure of these code files is analogous to the structure of the model, in which the
DUT_eML_Block subsystem provides an interface between the root model and the incrementer
function in the MATLAB Function block.

The other files generated in the hdlsrc folder are:

• DUT_eML_Block_compile.do: Mentor Graphics ModelSim compilation script (vcom
command) to compile the VHDL code in the two .vhd files.

• DUT_eML_Block_synplify.tcl: Synplify® synthesis script.
• DUT_eML_Block_map.txt: Mapping file. This report file maps generated entities (or

modules) to the subsystems that generated them (see “Trace Code Using the Mapping File”
on page 25-22).

5 To view the generated VHDL code in the MATLAB Editor, double-click the DUT_eML_Block.vhd
or eml_inc_blk.vhd file icons in the Current Folder browser.

See Also
“Check for MATLAB Function block settings” on page 38-19

More About
• “Design Guidelines for the MATLAB Function Block” on page 29-28
• “HDL Applications for the MATLAB Function Block” on page 29-2

 Code Generation from a MATLAB Function Block

29-15



• “MATLAB Function Block Design Patterns for HDL” on page 29-19
• “Generate DUT Ports for Tunable Parameters” on page 10-17
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Generate Instantiable Code for Functions
In this section...
“How To Generate Instantiable Code for Functions” on page 29-17
“Generate Code Inline for Specific Functions” on page 29-17
“Limitations for Instantiable Code Generation for Functions” on page 29-17

For the MATLAB Function block, you can use the InstantiateFunctions parameter to generate a
VHDL entity or Verilog module for each function. HDL Coder generates code for each entity or
module in a separate file.

The InstantiateFunctions options for the MATLAB Function block are listed in the following table.

InstantiateFunctions Setting Description
'off' (default) Generate code for functions inline.
'on' Generate a VHDL entity or Verilog module for

each function, and save each module or entity
in a separate file.

How To Generate Instantiable Code for Functions
To set the InstantiateFunctions parameter using the HDL Block Properties dialog box:

1 Right-click the MATLAB Function block.
2 Select HDL Code > HDL Block Properties.
3 For InstantiateFunctions, select on.

To set the InstantiateFunctions parameter from the command line, use hdlset_param. For
example, to generate instantiable code for functions in a MATLAB Function block, myMatlabFcn, in
your DUT subsystem, myDUT, enter:

hdlset_param('my_DUT/my_MATLABFcnBlk', 'InstantiateFunctions', 'on')

Generate Code Inline for Specific Functions
If you want to generate instantiable code for some functions but not others, enable the option to
generate instantiable code for functions, and use coder.inline. See coder.inline for details.

Limitations for Instantiable Code Generation for Functions
The software generates code inline when:

• Function calls are within conditional code or for loops.
• Any function is called with a nonconstant struct input.
• The function has state, such as a persistent variable, and is called multiple times.
• There is an enumeration anywhere in the design function.

If you enable InstantiateFunctions, UseMatrixTypesInHDL has no effect.
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See Also
“Check for MATLAB Function block settings” on page 38-19

More About
• “Design Guidelines for the MATLAB Function Block” on page 29-28
• “Code Generation from a MATLAB Function Block” on page 29-5
• “MATLAB Function Block Design Patterns for HDL” on page 29-19
• “Generate DUT Ports for Tunable Parameters” on page 10-17
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MATLAB Function Block Design Patterns for HDL
In this section...
“The eml_hdl_design_patterns Library” on page 29-19
“Efficient Fixed-Point Algorithms” on page 29-21
“Model State Using Persistent Variables” on page 29-23
“Creating Intellectual Property with the MATLAB Function Block” on page 29-24
“Nontunable Parameter Arguments” on page 29-24
“Modeling Control Logic and Simple Finite State Machines” on page 29-24
“Modeling Counters” on page 29-26
“Modeling Hardware Elements” on page 29-26

The eml_hdl_design_patterns Library
The eml_hdl_design_patterns library is an extensive collection of examples demonstrating useful
applications of the MATLAB Function block in HDL code generation.
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To open the library, type the following command at the MATLAB prompt:

eml_hdl_design_patterns

You can use many blocks in the library as cookbook examples of various hardware elements, as
follows:

• Copy a block from the library to your model and use it as a computational unit.
• Copy the code from the block and use it as a local function in an existing MATLAB Function block.

When you create custom blocks, you can control whether to inline or instantiate the HDL code
generated from MATLAB Function blocks. Use the Inline MATLAB Function block code check box
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in the HDL Code Generation > Global Settings > Coding style section of the Configuration
Parameters dialog box. For more information, see “Inline MATLAB Function block code” on page 16-
50.

Note Do not use the Inline MATLAB Function block code setting with the MATLAB Datapath
architecture of the MATLAB Function block. Use FlattenHierarchy instead. For more information,
see “HDL Optimizations Across MATLAB Function Block Boundary Using MATLAB Datapath
Architecture” on page 24-72.

Efficient Fixed-Point Algorithms
The MATLAB Function block supports floating-point arithmetic and also fixed point arithmetic by
using the Fixed-Point Designer fi function. This function supports rounding and saturation modes
that are useful for coding algorithms that manipulate arbitrary word and fraction lengths. HDL Coder
supports all fi rounding and overflow modes. HDL code generated from the MATLAB Function block
is bit-true to MATLAB semantics. Generated code uses bit manipulation and bit access operators (for
example, Slice, Extend, Reduce, Concat, etc.) that are native to VHDL and Verilog.

The following discussion shows how HDL code generated from the MATLAB Function block follows
cast-before-sum semantics, in which addition and subtraction operands are cast to the result type
before the addition or subtraction is performed.

Open the eml_hdl_design_patterns library and select the Combinatorics/eml_expr block.
eml_expr implements a simple expression containing addition, subtraction, and multiplication
operators with differing fixed point data types. The generated HDL code shows the conversion of this
expression with fixed point operands. The MATLAB Function block uses the following code:

% fixpt arithmetic expression
expr = (a*b) - (a+b);
 
% cast the result to (sfix7_En4) output type
y = fi(expr, 1, 7, 4);

The default fimath specification for the block determines the behavior of arithmetic expressions
using fixed point operands inside the MATLAB Function block:

fimath(...
   'RoundMode', 'ceil',...
   'OverflowMode', 'saturate',...
   'ProductMode', 'FullPrecision', 'ProductWordLength', 32,...
   'SumMode', 'FullPrecision', 'SumWordLength', 32,...
   'CastBeforeSum', true)

The data types of operands and output are as follows:

• a: (sfix5_En2)
• b: (sfix5_En3)
• y: (sfix7_En4)

Before HDL code generation, this expression is broken down internally into many steps.

expr = (a*b) - (a+b);

The steps include:
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1 tmul = a * b;
2 tadd = a + b;
3 tsub = tmul - tadd;
4 y = tsub;

Based on the fimath settings as described in “Design Guidelines for the MATLAB Function Block” on
page 29-28, this expression is further broken down internally as follows:

• Based on the specified ProductMode, 'FullPrecision', the output type of tmul is computed
as (sfix10_En5).

• Since the CastBeforeSum property is set to 'true', step 2 is broken down as follows:

t1 = (sfix7_En3) a;
t2 = (sfix7_En3) b;
tadd = t1 + t2;

sfix7_En3 is the result sum type after aligning binary points and accounting for an extra bit to
account for possible overflow.

• Based on intermediate types of tmul (sfix10_En5) and tadd (sfix7_En3) the result type of
the subtraction in step 3 is computed as sfix11_En5. Accordingly, step 3 is broken down as
follows:

t3 = (sfix11_En5) tmul;
t4 = (sfix11_En5) tadd;
tsub = t3 - t4;

• Finally, the result is cast to a smaller type (sfix7_En4) leading to the following final expression
statements:

tmul = a * b;
t1 = (sfix7_En3) a;
t2 = (sfix7_En3) b;    
tadd = t1 + t2;
t3 = (sfix11_En5) tmul;
t4 = (sfix11_En5) tadd;
tsub = t3 -  t4;
y = (sfix7_En4) tsub;

The following listings show the generated VHDL and Verilog code from the eml_expr block.

This is the VHDL code:
 BEGIN
    --MATLAB Function 'Subsystem/eml_expr': '<S2>:1'
    -- fixpt arithmetic expression
    --'<S2>:1:4'
    mul_temp <= signed(a) * signed(b);
    sub_cast <= resize(mul_temp, 11);
    add_cast <= resize(signed(a & '0'), 7);
    add_cast_0 <= resize(signed(b), 7);
    add_temp <= add_cast + add_cast_0;
    sub_cast_0 <= resize(add_temp & '0' & '0', 11);
    expr <= sub_cast - sub_cast_0;
    -- cast the result to correct output type
    --'<S2>:1:7'
    
    y <= "0111111" WHEN ((expr(10) = '0') AND (expr(9 DOWNTO 7) /= "000"))
            OR ((expr(10) = '0') AND (expr(7 DOWNTO 1) = "0111111"))
           ELSE
          "1000000" WHEN (expr(10) = '1') AND (expr(9 DOWNTO 7) /= "111")
           ELSE
           std_logic_vector(expr(7 DOWNTO 1) + ("0" & expr(0)));
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END fsm_SFHDL;

This is the Verilog code:
//MATLAB Function 'Subsystem/eml_expr': '<S2>:1'
    // fixpt arithmetic expression
    //'<S2>:1:4'
    assign mul_temp = a * b;
    assign sub_cast = mul_temp;
    assign add_cast = {a[4], {a, 1'b0}};
    assign add_cast_0 = b;
    assign add_temp = add_cast + add_cast_0;
    assign sub_cast_0 = {{2{add_temp[6]}}, {add_temp, 2'b00}};
    assign expr = sub_cast - sub_cast_0;
    // cast the result to correct output type
    //'<S2>:1:7'
    assign y = (((expr[10] == 0) && (expr[9:7] != 0)) 
                || ((expr[10] == 0) && (expr[7:1] == 63)) ? 7'sb0111111 :
                ((expr[10] == 1) && (expr[9:7] != 7) ? 7'sb1000000 :
                expr[7:1] + $signed({1'b0, expr[0]})));

These code excerpts show that the generated HDL code from the MATLAB Function block represents
the bit-true behavior of fixed point arithmetic expressions using high-level HDL operators. The HDL
code is generated using HDL coding rules like high level bitselect and partselect replication
operators and explicit sign extension and resize operators.

Model State Using Persistent Variables
In the MATLAB Function block programming model, state-holding elements are represented as
persistent variables. A variable that is declared persistent retains its value across function calls in
software, and across sample time steps during simulation.

Please note that your MATLAB code must read the persistent variable before it is written if you want
HDL Coder to infer a register in the HDL code. The code generator displays a warning message if
your code does not follow this rule.

The following example shows the unit delay block, which delays the input sample, u, by one
simulation time step. u is a fixed-point operand of type sfix6. u_d is a persistent variable that holds
the input sample.
function y = fcn(u)
 
persistent u_d;
if isempty(u_d)
    u_d = fi(-1, numerictype(u), fimath(u));
end
 
% return delayed input from last sample time hit
y = u_d;
 
% store the current input to be used later
u_d = u;

Because this code intends for u_d to infer a register during HDL code generation, u_d is read in the
assignment statement, y = u_d, before it is written in u_d = u.

HDL Coder generates the following HDL code for the unit delay block.
ENTITY Unit_Delay IS
    PORT (
        clk : IN std_logic; 
        clk_enable : IN std_logic; 
        reset : IN std_logic;
        u : IN std_logic_vector(15 DOWNTO 0);
        y : OUT std_logic_vector(15 DOWNTO 0));
END Unit_Delay;
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ARCHITECTURE fsm_SFHDL OF Unit_Delay IS

BEGIN
    initialize_Unit_Delay : PROCESS (clk, reset)
    BEGIN
        IF reset = '1' THEN
            y <= std_logic_vector(to_signed(0, 16));
        ELSIF clk'EVENT AND clk = '1' THEN
            IF clk_enable = '1' THEN
                y <= u;
            END IF;
        END IF;
    END PROCESS initialize_Unit_Delay;

Initialization of persistent variables is moved into the master reset region in the initialization process.

Refer to the Delays subsystem in the eml_hdl_design_patterns library to see how vectors of
persistent variables can be used to model integer delay, tap delay, and tap delay vector blocks. These
design patterns are useful in implementing sequential algorithms that carry state between executions
of the MATLAB Function block in a model.

Creating Intellectual Property with the MATLAB Function Block
The MATLAB Function block helps you author intellectual property and create alternate
implementations of part of an algorithm. By using MATLAB Function blocks in this way, you can guide
the detailed operation of the HDL code generator even while writing high-level algorithms.

For example, the subsystem Comparators in the eml_hdl_design_patterns library includes
several alternate algorithms for finding the minimum value of a vector. The Comparators/
eml_linear_min block finds the minimum of the vector in a linear mode serially. The
Comparators/eml_tree_min block compares the elements in a tree structure. The tree
implementation can achieve a higher clock frequency by adding pipeline registers between the
log2(N) stages. (See eml_hdl_design_patterns/Filters for an example.)

Now consider replacing the simple comparison operation in the Comparators blocks with an
arithmetic operation (for example, addition, subtraction, or multiplication) where intermediate results
must be quantized. Using fimath rounding settings, you can fine tune intermediate value
computations before intermediate values feed into the next stage. You can use this technique for
tuning the generated hardware or customizing your algorithm.

Nontunable Parameter Arguments
You can declare a nontunable parameter for a MATLAB Function block by setting its Scope to
Parameter in the Ports and Data Manager GUI, and clearing the Tunable option.

A nontunable parameter does not appear as a signal port on the block. Parameter arguments for
MATLAB Function blocks take their values from parameters defined in a parent Simulink masked
subsystem or from variables defined in the MATLAB base workspace, not from signals in the Simulink
model.

Modeling Control Logic and Simple Finite State Machines
MATLAB Function block control constructs such as switch/case and if-elseif-else, coupled
with fixed point arithmetic operations let you model control logic quickly.
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The FSMs/mealy_fsm_blk andFSMs/moore_fsm_blk blocks in the eml_hdl_design_patterns
library provide example implementations of Mealy and Moore finite state machines in the MATLAB
Function block.

The following listing implements a Moore state machine.

function Z = moore_fsm(A)
 
persistent moore_state_reg;
if isempty(moore_state_reg)
    moore_state_reg = fi(0, 0, 2, 0);   
end
 
S1 = 0;
S2 = 1;
S3 = 2;
S4 = 3;
  
switch uint8(moore_state_reg)
    
    case S1,        
        Z = true;
        if (~A)
            moore_state_reg(1) = S1;
        else
            moore_state_reg(1) = S2;
        end        
    case S2,        
        Z = false;
        if (~A)
            moore_state_reg(1) = S1;
        else
            moore_state_reg(1) = S2;
        end        
    case S3,        
        Z = false;
        if (~A)
            moore_state_reg(1) = S2;
        else
            moore_state_reg(1) = S3;
        end        
    case S4,        
        Z = true;
        if (~A)
            moore_state_reg(1) = S1;
        else
            moore_state_reg(1) = S3;
        end
    otherwise,
        Z = false;
end

In this example, a persistent variable (moore_state_reg) models state variables. The output
depends only on the state variables, thus modeling a Moore machine.

The FSMs/mealy_fsm_blk block in the eml_hdl_design_patterns library implements a Mealy
state machine. A Mealy state machine differs from a Moore state machine in that the outputs depend
on inputs as well as state variables.

The MATLAB Function block can quickly model simple state machines and other control-based
hardware algorithms (such as pattern matchers or synchronization-related controllers) using control
statements and persistent variables.

For modeling more complex and hierarchical state machines with complicated temporal logic, use a
Stateflow chart to model the state machine.
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Modeling Counters
To implement arithmetic and control logic algorithms in MATLAB Function blocks intended for HDL
code generation, there are some simple HDL related coding requirements:

• The top level MATLAB Function block must be called once per time step.
• It must be possible to fully unroll program loops.
• Persistent variables with reset values and update logic must be used to hold values across

simulation time steps.
• Quantized data variables must be used inside loops.

The following script shows how to model a synchronous up/down counter with preset values and
control inputs. The example provides both master reset control of persistent state variables and local
reset control using block inputs (e.g. presetClear). The isempty condition enters the initialization
process under the control of a synchronous reset. The presetClear section is implemented in the
output section in the generated HDL code.

Both the up and down case statements implementing the count loop require that the values of the
counter are quantized after addition or subtraction. By default, the MATLAB Function block
automatically propagates fixed-point settings specified for the block. In this script, however, fixed-
point settings for intermediate quantities and constants are explicitly specified.

function [Q, QN]  = up_down_ctr(upDown, presetClear, loadData, presetData)
 
% up down result
% 'result' syntheses into sequential element
 
result_nt = numerictype(0,4,0);
result_fm = fimath('OverflowMode', 'saturate', 'RoundMode', 'floor');
 
initVal = fi(0, result_nt, result_fm);
 
persistent count;
if isempty(count)
    count = initVal;
end
 
if presetClear
    count = initVal;
elseif loadData
    count = presetData;
elseif upDown
    inc = count + fi(1, result_nt, result_fm);
    -- quantization of output
    count = fi(inc, result_nt, result_fm);
else
    dec = count - fi(1, result_nt, result_fm);
    -- quantization of output
    count = fi(dec, result_nt, result_fm);
end
 
Q = count;
QN = bitcmp(count);

Modeling Hardware Elements
The following code example shows how to model shift registers in MATLAB Function block code by
using the bitsliceget and bitconcat functions. This function implements a serial input and
output shifters with a 32–bit fixed-point operand input. See the Shift Registers/
shift_reg_1by32 block in the eml_hdl_design_patterns library for more details.

function sr_out = fcn(shift, sr_in)
%shift register 1 by 32
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persistent sr;
if isempty(sr)
    sr = fi(0, 0, 32, 0, 'fimath', fimath(sr_in));
end

% return sr[31]
sr_out = getmsb(sr);

if (shift)
    % sr_new[32:1] = sr[31:1] & sr_in
    sr = bitconcat(bitsliceget(sr, 31, 1), sr_in);
end

The following code example shows VHDL process code generated for the shift_reg_1by32 block.

shift_reg_1by32 : PROCESS (shift, sr_in, sr)
    BEGIN
      sr_next <= sr;
      -- MATLAB Function Function 'Subsystem/shift_reg_1by32': '<S2>:1'
      --shift register 1 by 32
      --'<S2>:1:1
      -- return sr[31]
      --'<S2>:1:10'
      sr_out <= sr(31);

      IF shift /= '0' THEN 
          --'<S2>:1:12'
          -- sr_new[32:1] = sr[31:1] & sr_in
          --'<S2>:1:14'
          sr_next <= sr(30 DOWNTO 0) & sr_in;
      END IF;

    END PROCESS shift_reg_1by32;

The Shift Registers/shift_reg_1by64 block shows a 64 bit shifter. In this case, the shifter
uses two fixed point words, to represent the operand, overcoming the 32–bit word length limitation
for fixed-point integers.

Browse the eml_hdl_design_patterns model for other useful hardware elements that can be
easily implemented using the MATLAB Function block.

See Also
“Check for MATLAB Function block settings” on page 38-19

More About
• “Design Guidelines for the MATLAB Function Block” on page 29-28
• “Code Generation from a MATLAB Function Block” on page 29-5
• “Distributed Pipeline Insertion for MATLAB Function Blocks” on page 29-31
• “Generate DUT Ports for Tunable Parameters” on page 10-17
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Design Guidelines for the MATLAB Function Block
In this section...
“Use Compiled External Functions With MATLAB Function Blocks” on page 29-28
“Build the MATLAB Function Block Code First” on page 29-28
“Use the hdlfimath Utility for Optimized FIMATH Settings” on page 29-28
“Use Optimal Fixed-Point Option Settings” on page 29-29
“Set the Output Data Type of MATLAB Function Blocks Explicitly” on page 29-29
“Using Tunable Parameters” on page 29-29
“Run HDL Model Check for MATLAB Function Blocks” on page 29-29
“Use MATLAB Datapath Architecture for Enhanced HDL Optimizations” on page 29-29

Use Compiled External Functions With MATLAB Function Blocks
The HDL Coder software supports HDL code generation from MATLAB Function blocks that include
compiled external functions. This feature enables you to write reusable MATLAB code and call it from
multiple MATLAB Function blocks.

Such functions must be defined in files that are on the MATLAB Function block path. Use the
%#codegen compilation directive to indicate that the MATLAB code is suitable for code generation.
See “Function Definition” (MATLAB Coder) for information on how to create, compile, and invoke
external functions.

Build the MATLAB Function Block Code First
Before generating HDL code for a subsystem containing a MATLAB Function block, build the
MATLAB Function block code to check for errors. To build the code, select Build from the Tools
menu in the MATLAB Function Block Editor (or press CTRL+B).

Use the hdlfimath Utility for Optimized FIMATH Settings
The hdlfimath function is a utility that defines a FIMATH specification that is optimized for HDL
code generation.

The following listing shows the fimath setting defined by hdlfimath.
hdlfm = fimath(...
    'RoundMode', 'floor',...
    'OverflowMode', 'wrap',...
    'ProductMode', 'FullPrecision', 'ProductWordLength', 32,...
    'SumMode', 'FullPrecision', 'SumWordLength', 32,...
    'CastBeforeSum', true);

The HDL division operator does not support 'floor' rounding mode. Use 'round' mode or change
the signed integer division operations to unsigned integer division.

When the fimath OverflowMode property of the fimath specification is set to 'Saturate', HDL
code generation is disallowed for the following cases:

• SumMode is set to 'SpecifyPrecision'
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• ProductMode is set to 'SpecifyPrecision'

Use Optimal Fixed-Point Option Settings
Use the default (Fixed-point) setting for the Treat these inherited signal types as fi objects
option.

Clear the Saturate on integer overflow setting for the MATLAB Function block.

Set the Output Data Type of MATLAB Function Blocks Explicitly
By setting the output data type of a MATLAB Function block explicitly, you enable optimizations for
RAM mapping and pipelining. Avoid inheriting the output data type for a MATLAB Function block for
which you want to enable optimizations.

Using Tunable Parameters
HDL Coder supports both tunable and non-tunable parameters with the following data types:

• Scalar
• Vector
• Complex
• Structure
• Enumeration

When using tunable parameters with the MATLAB Function block:

• The tunable parameter should be a Simulink.Parameter object with the StorageClass set to
ExportedGlobal.

x = Simulink.Parameter 
x.Value = 1 
x.CoderInfo.StorageClass = 'ExportedGlobal' 

• In the Ports and Data Manager dialog box, select the tunable check box.

For details, see “Generate DUT Ports for Tunable Parameters” on page 10-17.

Run HDL Model Check for MATLAB Function Blocks
When your design contains MATLAB Function blocks, before you generate HDL code, you can run the
check “Check for MATLAB Function block settings” on page 38-19 in the HDL Code Advisor. This
check verifies whether you use the recommended MATLAB Function blocks for HDL code generation.
The settings include whether fimath settings are defined as per hdlfimath and Saturate on
integer overflow check box is cleared.

See also “Getting Started with the HDL Code Advisor” on page 39-2.

Use MATLAB Datapath Architecture for Enhanced HDL Optimizations
In the HDL Block Properties dialog box for the MATLAB Function blocks, you can specify whether to
use MATLAB Function or MATLAB Datapath as the HDL architecture. Floating-point models use
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the MATLAB Datapath architecture even if you specify the HDL architecture as MATLAB Function
on the block. Fixed-point models use the MATLAB Function architecture by default.

To perform various speed and area optimizations such as sharing and distributed pipelining inside the
MATLAB Function block and across the MATLAB Function block boundary with other Simulink
blocks, use the MATLAB Datapath architecture. When you use this architecture, the code generator
treats the MATLAB Function block like a regular Subsystem block. This capability enables you to
optimize the algorithm inside the MATLAB Function block and across the MATLAB Function block
with other blocks in your model.

See “HDL Optimizations Across MATLAB Function Block Boundary Using MATLAB Datapath
Architecture” on page 24-72.

See Also
“Check for MATLAB Function block settings” on page 38-19

More About
• “Code Generation from a MATLAB Function Block” on page 29-5
• “MATLAB Function Block Design Patterns for HDL” on page 29-19
• “Distributed Pipeline Insertion for MATLAB Function Blocks” on page 29-31
• “Generate DUT Ports for Tunable Parameters” on page 10-17
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Distributed Pipeline Insertion for MATLAB Function Blocks
This example shows how to optimize the generated HDL code for MATLAB Function blocks by using
the distributed pipelining optimization. Distributed pipelining is an HDL Coder™ optimization that
improves the generated HDL code from MATLAB Function blocks, Simulink® models, or Stateflow®
charts. By using distributed pipelining, your design achieves higher clock rates on the FPGA device.

Multiplier Chain Model

This example shows how to distribute pipeline registers in a simple model that chains five
multiplications.

open_system('hdlcoder_distpipe_multiplier_chain')
set_param('hdlcoder_distpipe_multiplier_chain','SimulationCommand','Update')

The HDL_DUT Subsystem is the DUT for which you want to generate HDL code. The subsystem drives
a MATLAB Function block mult_chain.

open_system('hdlcoder_distpipe_multiplier_chain/HDL_DUT')

 Distributed Pipeline Insertion for MATLAB Function Blocks

29-31



To see the chain of multiplications, open the MATLAB Function block.

open_system('hdlcoder_distpipe_multiplier_chain/HDL_DUT/mult_chain')

Apply Distributed Pipelining Optimization

1. Specify generation of two pipeline stages for the MATLAB Function block.

ml_subsys = 'hdlcoder_distpipe_multiplier_chain/HDL_DUT/mult_chain';
hdlset_param(ml_subsys, 'OutputPipeline', 2)
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2. Specify the MATLAB Datapath architecture. This architecture treats the MATLAB Function block
like a regular Subsystem. You can then apply various optimizations across the MATLAB Function
blocks with other blocks in your Simulink® model.

hdlset_param(ml_subsys, 'architecture', 'MATLAB Datapath');

3. Enable the distributed pipelining optimization on the block. To see the results of the optimization,
enable generation of the Optimization Report. To apply the optimization across hierarchies in your
model, enable hierarchical distributed pipelining on the model and distributed pipelining on all
subsystems.

hdlset_param('hdlcoder_distpipe_multiplier_chain', ...
                'HierarchicalDistPipe', 'on', 'OptimizationReport', 'on')
hdlset_param('hdlcoder_distpipe_multiplier_chain/HDL_DUT', 'DistributedPipelining', 'on');
hdlset_param(ml_subsys, 'DistributedPipelining', 'on');

4. Generate HDL Code for the HDL_DUT subsystem.

makehdl('hdlcoder_distpipe_multiplier_chain/HDL_DUT/mult_chain')

By default, HDL Coder generates VHDL code in the hdlsrc folder.

Analyze Results of Optimization

In the Distributed Pipelining report, you see that the code generator moved the pipeline registers. To
see the effects of the optimization, open the generated model
gm_hdlcoder_distpipe_multiplier_chain and navigate to the HDL_DUT Subsystem.
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The MATLAB Datapath architecture creates a Subsystem in place of the MATLAB Function block.
The optimization can then distribute the pipeline registers and the unit delay that you added inside
the Subsystem to optimize the multiplier chain and improve timing. Open the mult_chain
Subsystem.

See Also
“Check for MATLAB Function block settings” on page 38-19

More About
• “Design Guidelines for the MATLAB Function Block” on page 29-28
• “Code Generation from a MATLAB Function Block” on page 29-5
• “MATLAB Function Block Design Patterns for HDL” on page 29-19
• “Generate DUT Ports for Tunable Parameters” on page 10-17
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Generating Scripts for HDL Simulators
and Synthesis Tools

• “Generate Scripts for Compilation, Simulation, and Synthesis” on page 30-2
• “Structure of Generated Script Files” on page 30-3
• “Properties for Controlling Script Generation” on page 30-4
• “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-7
• “Add Synthesis Attributes” on page 30-14
• “Configure Synthesis Project Using Tcl Script” on page 30-15
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Generate Scripts for Compilation, Simulation, and Synthesis
You can enable or disable script generation and customize the names and content of generated script
files using either of the following methods:

• Use the makehdl or makehdltb functions, and pass in property name/property value arguments,
as described in “Properties for Controlling Script Generation” on page 30-4.

• Set script generation options in the HDL Code Generation > EDA Tool Scripts pane of the
Configuration Parameters dialog box, as described in “Configure Compilation, Simulation,
Synthesis, and Lint Scripts” on page 30-7.
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Structure of Generated Script Files
A generated EDA script consists of three sections, generated and executed in the following order:

1 An initialization (Init) phase. The Init phase performs the required setup actions, such as
creating a design library or a project file. Some arguments to the Init phase are implicit, for
example, the top-level entity or module name.

2 A command-per-file phase (Cmd). This phase of the script is called iteratively, once per generated
HDL file or once per signal. On each call, a different file or signal name is passed in.

3 A termination phase (Term). This is the final execution phase of the script. One application of this
phase is to execute a simulation of HDL code that was compiled in the Cmd phase. The Term
phase does not take arguments.

The HDL Coder software generates scripts by passing format strings to the fprintf function. Using
the GUI options (or makehdl and makehdltb properties) summarized in the following sections, you
can pass in customized format names to the script generator. Some of these format names take
arguments, such as the top-level entity or module name, or the names of the VHDL or Verilog files in
the design.

You can use valid fprintf formatting characters. For example, '\n' inserts a newline into the
script file.
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Properties for Controlling Script Generation
This section describes how to set properties in the makehdl or makehdltb functions to enable or
disable script generation and customize the names and content of generated script files.

Enabling and Disabling Script Generation
The EDAScriptGeneration property controls the generation of script files. By default,
EDAScriptGeneration is set on. To disable script generation, set EDAScriptGeneration to off,
as in the following example.

makehdl('sfir_fixed/symmetric_fir,'EDAScriptGeneration','off') 

Customizing Script Names
When you generate HDL code, HDL Coder appends a postfix string to the model or subsystem name
system in the generated script name.

When you generate test bench code, HDL Coder appends a postfix string to the test bench name
testbench_tb.

The postfix string depends on the type of script (compilation, simulation, or synthesis) being
generated. The default postfix strings are shown in the following table. For each type of script, you
can define your own postfix using the associated property.

Script Type Property Default Value
Compilation HDLCompileFilePostfix _compile.do
Simulation HDLSimFilePostfix _sim.do
Synthesis HDLSynthFilePostfix Depends on the selected synthesis

tool. See HDLSynthTool.

The following command generates VHDL code for the subsystem system, specifying a custom postfix
for the compilation script. The name of the generated compilation script will be
system_test_compilation.do.
makehdl('mymodel/system', 'HDLCompileFilePostfix', '_test_compilation.do')

Customizing Script Code
Using the property name/property value pairs summarized in the following table, you can pass in
customized format names as character vectors to makehdl or makehdltb. The properties are named
according to the following conventions:

• Properties that apply to the initialization (Init) phase are identified by the Init character vector
in the property name.

• Properties that apply to the command-per-file phase (Cmd) are identified by the Cmd character
vector in the property name.

• Properties that apply to the termination (Term) phase are identified by the Term character vector
in the property name.
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Property Name and Default Description
Name: HDLCompileInit

Default:'vlib %s\n'

Format name passed to fprintf to write the Init section
of the compilation script. The implicit argument is the
contents of the VHDLLibraryName property, which
defaults to'work'. You can override the default Init
string ('vlib work\n') by changing the value of
VHDLLibraryName.

Name: HDLCompileVHDLCmd

Default: 'vcom %s %s\n'

Format name passed to fprintf to write the Cmd section
of the compilation script for VHDL files. The two implicit
arguments are the contents of the SimulatorFlags
property and the file name of the current entity or module.
To omit the flags, set SimulatorFlags to '' (the default).

Name: HDLCompileVerilogCmd

Default: 'vlog %s %s\n'

Format name passed to fprintf to write the Cmd section
of the compilation script for Verilog files. The two implicit
arguments are the contents of the SimulatorFlags
property and the file name of the current entity or module.
To omit the flags, set SimulatorFlags to '' (the default).

Name:HDLCompileTerm

Default:''

Format name passed to fprintf to write the termination
portion of the compilation script.

Name: HDLSimInit

Default:

 ['onbreak resume\n',...
 'onerror resume\n'] 

Format name passed to fprintf to write the initialization
section of the simulation script.

Name: HDLSimCmd

Default: 'vsim -novopt %s.%s\n'

Format name passed to fprintf to write the simulation
command.

If your target language is VHDL, the first implicit argument
is the value of the VHDLLibraryName property. If your
target language is Verilog, the first implicit argument is
'work'.

The second implicit argument is the top-level module or
entity name.

Name: HDLSimViewWaveCmd

Default: 'add wave sim:%s\n'

Format name passed to fprintf to write the simulation
script waveform viewing command. The implicit argument
adds the signal paths for the DUT top-level input, output,
and output reference signals.

Name: HDLSimTerm

Default: 'run -all\n'

Format name passed to fprintf to write the Term portion
of the simulation script. The string is a synthesis project
creation command.

The content of the string is specific to the selected
synthesis tool. See HDLSynthTool.
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Property Name and Default Description
Name: HDLSynthInit Format name passed to fprintf to write the Init section

of the synthesis script.

The content of the format name is specific to the selected
synthesis tool. See HDLSynthTool.

Name: HDLSynthCmd Format name passed to fprintf to write the Cmd section
of the synthesis script.

The content of the string is specific to the selected
synthesis tool. See HDLSynthTool.

Name: HDLSynthTerm Format name passed to fprintf to write the Term section
of the synthesis script.

The content of the string is specific to the selected
synthesis tool. See HDLSynthTool.

Examples
The following example specifies a custom VHDL library name for the Mentor Graphics ModelSim
compilation script for code generated from the subsystem, system.

makehdl(system, 'VHDLLibraryName', 'mydesignlib')

The resultant script, system_compile.do, is:

vlib mydesignlib
vcom  system.vhd

The following example specifies that HDL Coder generate a Xilinx ISE synthesis file for the subsystem
sfir_fixed/symmetric_fir.

 makehdl('sfir_fixed/symmetric_fir','HDLSynthTool', 'ISE')

The following listing shows the resultant script, symmetric_fir_ise.tcl.

set src_dir "./hdlsrc"
set prj_dir "synprj"
file mkdir ../$prj_dir
cd ../$prj_dir
project new symmetric_fir.ise
xfile add ../$src_dir/symmetric_fir.vhd
project set family Virtex4
project set device xc4vsx35
project set package ff668
project set speed -10
process run "Synthesize - XST"
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Configure Compilation, Simulation, Synthesis, and Lint Scripts
You set options that configure script file generation on the EDA Tool Scripts pane. These options
correspond to the properties described in “Properties for Controlling Script Generation” on page 30-
4.

To view and set EDA Tool Scripts options:

1 Open the Configuration Parameters dialog box.
2 Select the HDL Code Generation > EDA Tool Scripts pane.

3 The Generate EDA scripts option controls the generation of script files. By default, this option
is selected.

If you want to disable script generation, clear this check box and click Apply.
4 The list on the left of the EDA Tool Scripts pane lets you select from several categories of

options. Select a category and set the options as desired. The categories are:

• Compilation script: Options related to customizing scripts for compilation of generated
VHDL or Verilog code. See “Compilation Script Options” on page 30-8 for further
information.
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• Simulation script: Options related to customizing scripts for HDL simulators. See
“Simulation Script Options” on page 30-9 for further information.

• Synthesis script: Options related to customizing scripts for synthesis tools. See “Synthesis
Script Options” on page 30-11 for further information.

Compilation Script Options
The following figure shows the Compilation script pane, with options set to their default values.

The following table summarizes the Compilation script options.

Option and Default Description
Compile file postfix'

'_compile.do'

Postfix appended to the DUT name or test bench name to form
the script file name.
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Option and Default Description
Name: Compile initialization

Default:'vlib %s\n'

Format name passed to fprintf to write the Init section of
the compilation script. The argument is the contents of the
VHDLLibraryName property, which defaults to'work'. You can
override the default Init 'vlib work\n' by changing the
value of VHDLLibraryName.

Name: Compile command for VHDL

Default: 'vcom %s %s\n'

Format name passed to fprintf to write the Cmd section of the
compilation script for VHDL files. The two arguments are the
contents of the SimulatorFlags property option and the
filename of the current entity or module. To omit the flags, set
SimulatorFlags to '' (the default).

Name: Compile command for Verilog

Default: 'vlog %s %s\n'

Format name passed to fprintf to write the Cmd section of the
compilation script for Verilog files. The two arguments are the
contents of the SimulatorFlags property and the filename of
the current entity or module. To omit the flags, set
SimulatorFlags to '' (the default).

Name: Compile termination

Default:''

Format name passed to fprintf to write the termination
portion of the compilation script.

Simulation Script Options
The following figure shows the Simulation script pane, with options set to their default values.
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The following table summarizes the Simulation script options.

Option and Default Description
Simulation file postfix

'_sim.do'

Postfix appended to the model name or test bench name to form
the simulation script file name.

Simulation initialization

Default:
 ['onbreak resume\nonerror resume\n'] 

Format name passed to fprintf to write the initialization
section of the simulation script.

Simulation command

Default: 'vsim -novopt %s.%s\n'

Format name passed to fprintf to write the simulation
command.

If your TargetLanguage is 'VHDL', the first implicit argument
is the value of VHDLLibraryName. If your TargetLanguage is
'Verilog', the first implicit argument is 'work'.

The second implicit argument is the top-level module or entity
name.

Simulation waveform viewing command

Default: 'add wave sim:%s\n'

Format name passed to fprintf to write the simulation script
waveform viewing command. The top-level module or entity
signal names are implicit arguments.

30 Generating Scripts for HDL Simulators and Synthesis Tools

30-10



Option and Default Description
Simulation termination

Default: 'run -all\n'

Format name passed to fprintf to write the Term portion of
the simulation script.

Synthesis Script Options
The following figure shows the Synthesis script pane, with options set to their default values. The
Choose synthesis tool property defaults to None, which disables generation of a synthesis script.

To enable synthesis script generation, select a synthesis tool from the Choose synthesis tool menu.

When you select a synthesis tool, HDL Coder:

• Enables synthesis script generation.
• Enters a file name postfix (specific to the chosen synthesis tool) into the Synthesis file postfix
field.

• Enters strings (specific to the chosen synthesis tool) into the initialization, command, and
termination fields.
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The following figure shows the default option values entered for the Mentor Graphics Precision tool.

The following table summarizes the Synthesis script options.

Option Name Description
Choose synthesis tool None (default): do not generate a synthesis script

Xilinx ISE: generate a synthesis script for Xilinx ISE
Microsemi Libero: generate a synthesis script for Microsemi Libero
Mentor Graphics Precision: generate a synthesis script for
Mentor Graphics Precision
Altera Quartus II: generate a synthesis script for Altera Quartus
II
Synopsys Synplify Pro: generate a synthesis script for Synopsys
Synplify Pro
Xilinx Vivado: generate a synthesis script for Xilinx Vivado
Custom: generate a custom synthesis script
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Option Name Description
Synthesis file postfix Your choice of synthesis tool sets the postfix for generated synthesis

file names to one of the following:
_ise.tcl
_libero.tcl
_precision.tcl
_quartus.tcl
_synplify.tcl
_vivado.tcl
_custom.tcl

Synthesis initialization Format name passed to fprintf to write the Init section of the
synthesis script. The default string is a synthesis project creation
command. The implicit argument is the top-level module or entity
name.

The content of the string is specific to the selected synthesis tool.
Synthesis command Format name passed to fprintf to write the Cmd section of the

synthesis script. The implicit argument is the file name of the entity or
module.

The content of the string is specific to the selected synthesis tool.
Synthesis termination Format name passed to fprintf to write the Term section of the

synthesis script.

The content of the string is specific to the selected synthesis tool.
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Add Synthesis Attributes
To learn how to add synthesis attributes in the generated HDL code for multiplier mapping, see
“DSPStyle” on page 21-9.
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Configure Synthesis Project Using Tcl Script
You can add a Tcl script that configures your synthesis project.

To configure your synthesis project using a Tcl script:

1 Create a Tcl script that contains commands to customize your synthesis project.

For example, to specify the finite state machine style:

• For Xilinx ISE, create a Tcl script that contains the following line:

project set "FSM Encoding Algorithm" "Gray" -process "Synthesize - XST" 
• For Xilinx Vivado, create a Tcl script that contains the following line:

set_property STEPS.SYNTH_DESIGN.ARGS.FSM_EXTRACTION gray [get_runs synth_1]
2 In the HDL Workflow Advisor, in the FPGA Synthesis and Analysis > Create Project task, in

the Additional source files field, enter the full path to the Tcl file manually, or by using the Add
button.

When HDL Coder creates the project, the Tcl script is executed to apply the synthesis project
settings.
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Using the HDL Workflow Advisor

• “Getting Started with the HDL Workflow Advisor” on page 31-2
• “Generate Test Bench and Enable Code Coverage Using the HDL Workflow Advisor”

on page 31-8
• “Generate HDL Code for FPGA Floating-Point Target Libraries” on page 31-11
• “Customize Floating-Point IP Configuration” on page 31-18
• “HDL Coder Support for FPGA Floating-Point Library Mapping” on page 31-26
• “Synthesis Objective to Tcl Command Mapping” on page 31-30
• “Run HDL Workflow with a Script” on page 31-32
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Getting Started with the HDL Workflow Advisor
In this section...
“Open the HDL Workflow Advisor” on page 31-2
“Run Tasks in the HDL Workflow Advisor” on page 31-3
“Fix HDL Workflow Advisor Warnings or Failures” on page 31-4
“Save and Restore the HDL Workflow Advisor State” on page 31-4
“View and Save HDL Workflow Advisor Reports” on page 31-5

The HDL Workflow Advisor guides you through the stages of generating HDL code for a Simulink
subsystem and the FPGA design process, such as:

• Checking the model for HDL code generation compatibility and automatically fixing incompatible
settings.

• Generation of HDL code, a test bench, and scripts to build and run the code and test bench.
• Generation of cosimulation or SystemVerilog DPI test benches and code coverage (requires HDL
Verifier).

• Synthesis and timing analysis through integration with third-party synthesis tools.
• Back-annotation of the model with critical path information and other information obtained during

synthesis.
• Complete automated workflows for selected FPGA development target devices, including FPGA-in-

the-loop simulation (requires HDL Verifier), and the Simulink Real-Time™ FPGA I/O workflow.

Open the HDL Workflow Advisor
To start the HDL Workflow Advisor from a Simulink model:

1 In the Apps tab, select HDL Coder. The HDL Code tab appears.
2 Select the DUT Subsystem in your model, and make sure that this Subsystem name appears in

the Code for option. To remember the selection, you can pin this option. Click Workflow
Advisor.

To start the HDL Workflow Advisor for a model from the command line, enter hdladvisor(system).
system is a handle or name of the model or subsystem that you want to check. For more information,
see the hdladvisor function reference page.

For how to use the HDL Workflow Advisor to generate HDL code from a MATLAB script, see “Basic
HDL Code Generation and FPGA Synthesis from MATLAB by Using the Workflow Advisor” on page 5-
7.

In the HDL Workflow Advisor, the left pane lists the folders in the hierarchy. Each folder represents a
group or category of related tasks. Expanding the folders shows available tasks in each folder. From
the left pane, you can select a folder or an individual task. The HDL Workflow Advisor displays
information about the selected folder or task in the right pane. The contents of the right pane
depends on the selected folder or task. For some tasks, the right pane contains simple controls for
running the task and a display area for status messages and other task results. For other tasks that
involve setting code or test bench generation parameters, the right pane displays several parameter
and option settings.
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Run Tasks in the HDL Workflow Advisor
In the HDL Workflow Advisor window, you can run individual tasks, a group of tasks, or all the tasks
in the workflow. For example, before you generate HDL code, prepare the Simulink model for HDL
code generation. In the Set Target folder, for each individual task, you can specify the target device
settings and the target frequency. Then, select the task that you want to run and click Run This
Task. To run a task, all tasks before it must have run successfully.

To learn more about each individual task, right-click that task, and select What's This?.

To generate HDL code, run the workflow to the Generate RTL Code and Testbench task. To run the
workflow to a specific task inside a subfolder, expand that folder, and then right-click the task and
select Run To Selected Task.

To rerun a task that you have already run, click Reset This Task. HDL Coder then resets the task
and all tasks that follow it. For example, to customize the basic options for generating HDL code after
running the Generate RTL Code and Testbench task, right-click the Set Basic Options task and
select Reset This Task. You can then set the basic options on the model and click Run This Task to
rerun the task.

To run all the tasks in the HDL Workflow Advisor with the default settings, in the HDL Workflow
Advisor window, select Run > Run All. To run a group of tasks in a specific folder, select that folder
and click Run All.
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Fix HDL Workflow Advisor Warnings or Failures
In the HDL Workflow Advisor, if a task terminates due to a warning or failure condition, the right
pane shows the warning or failure information in a Result subpane. The Result subpane displays
model settings that you can use to fix the warnings. For some tasks, use the Action subpane to apply
those recommended actions.

For example, to apply the model configuration settings that the code generator reported in the
Result subpane, click the Modify All button. After you click Modify All, the Result subpane reports
the changes that were applied. and resets the task. You can now run this task.

Save and Restore the HDL Workflow Advisor State
By default, the HDL Coder software saves the state of the most recent HDL Workflow Advisor session.
The next time that you activate the HDL Workflow Advisor, it returns to that state. You can also save
the current settings of the HDL Workflow Advisor to a named restore point. Later, you can restore the
same settings by loading the restore point data into the HDL Workflow Advisor.

The save and restore process does not:

• Include operations that you perform outside the HDL Workflow Advisor.
• Save or restore the state of HDL Workflow Advisor tasks involving third-party tools.

To save the Workflow Advisor state, in the HDL Workflow Advisor Window, select File > Save
Restore Point As. Enter a Name and Description, and then click Save. You can save more than one
restore point.
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To restore a Workflow Advisor state, in the HDL Workflow Advisor, select File > Load Restore Point.
Select the restore point that you want to load and click Load. When you load a restore point, the HDL
Workflow Advisor warns that the restoration overwrites the current settings.

View and Save HDL Workflow Advisor Reports
When you run tasks in the HDL Workflow Advisor, HDL Coder generates an HTML report of the task
results. Each folder in the HDL Workflow Advisor contains a report for the checks within that folder
and its subfolders. To access reports, select a folder, such as Prepare Model for HDL Code
Generation, and in the Report subpane, click Save As. If you rerun the HDL Workflow Advisor, the
report is updated in the working folder.
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This report shows typical results after running the Prepare Model For HDL Code Generation
tasks.
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As you run checks, the HDL Workflow Advisor updates the reports with the latest information for
each check in the folder. When you run the checks at different times, timestamps appear at the top
right of the report to indicate when checks have been run. Checks that occurred during previous runs
have a timestamp following the check name. You can filter checks in the report. For example, you can
filter out tasks that are Not Run from the report, or you can filter the report to show tasks that
Passed, and so on. To view the report for a folder each time the tasks in a folder are run, select Show
report after run.

See Also
Functions
clearAllTasks | hdlcoder.runWorkflow | setAllTasks

Classes
hdlcoder.WorkflowConfig

Related Examples
• “HDL Workflow Advisor Tasks” on page 37-2
• “HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow Advisor”
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Generate Test Bench and Enable Code Coverage Using the HDL
Workflow Advisor

The HDL Workflow Advisor guides you through the stages of generating HDL code for a Simulink
subsystem and the FPGA design process, such as:

• Checking the model for HDL code generation compatibility and automatically fixing incompatible
settings.

• Generation of HDL code, a test bench, and scripts to build and run the code and test bench.
• Generation of cosimulation or SystemVerilog DPI test benches and code coverage (requires HDL
Verifier).

• Synthesis and timing analysis through integration with third-party synthesis tools.
• Back-annotation of the model with critical path information and other information obtained during

synthesis.
• Complete automated workflows for selected FPGA development target devices, including FPGA-in-

the-loop simulation (requires HDL Verifier), and the Simulink Real-Time FPGA I/O workflow.

To select test bench and code coverage options for generating HDL code from a Simulink model using
the HDL Workflow Advisor:

1 Perform the setup steps in “HDL Code Generation and FPGA Synthesis Using Simulink HDL
Workflow Advisor”.

2 In Step 3.1.4 of the HDL Workflow Advisor, Set Testbench Options, select test bench and code
coverage options from the Test Bench Generation Output section. The coder generates a
build-and-run script for your test bench and the Simulation tool you specify. If you select
multiple test bench options, the coder generates one test bench and script for each type of test
bench selected. If you select HDL code coverage, the test bench scripts turn on code coverage
for your generated HDL code. For more information about the different kinds of test benches, see
“Choose a Test Bench for Generated HDL Code” on page 27-28. After you select your test bench
options, click Apply.
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3 In Step 3.2, Generate RTL Code and Testbench, select Generate test bench. Click Apply,
and then click Run This Task. The coder generates HDL code for your subsystem, and the test
benches and scripts you selected in step 3.1.3.

• If you selected Cosimulation model, then step 3.3, Verify with HDL Cosimulation,
appears in the HDL Workflow Advisor. This step automatically runs the generated
cosimulation model. The model compares the result of the HDL code running in your HDL
simulator with the output of your Simulink subsystem.

• If you selected HDL test bench, the coder generates a compile script,
subsystemname_tb_compile, and a run script, subsystemname_tb_sim. The script file
extension depends on your selected simulator. For example, at the command line in the
Mentor Graphics ModelSim simulator, change to the hdl_prj/hdlsrc/modelname folder
and run these commands:

do symmetric_fir_compile.do
do symmetric_fir_tb_compile.do
do symmetric_fir_tb_sim.do

• If you selected SystemVerilog DPI test bench, the coder generates a script file,
subsystemname_dpi_tb, that compiles the HDL code and runs the test bench simulation.
The script file extension depends on your selected simulator. For example, at the command
line in the Mentor Graphics ModelSim simulator, change to the hdl_prj/hdlsrc/
modelname folder and run this command:
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do symmetric_fir_dpi_tb.do
• If you selected HDL code coverage, the code coverage report from running any test bench,

including the cosimulation model, is saved in hdl_prj\hdlsrc\modelname
\covhtmlreport.

See Also

More About
• “Choose a Test Bench for Generated HDL Code” on page 27-28
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Generate HDL Code for FPGA Floating-Point Target Libraries
In this section...
“Setup for FPGA Floating-Point Library Mapping” on page 31-11
“Map to an FPGA Floating-Point Library” on page 31-11
“View Code Generation Reports of Floating-Point Library Mapping” on page 31-13
“Analyze Results of Floating-Point Library Mapping” on page 31-15

Mapping to a floating-point library enables you to synthesize your floating-point design without
having to do floating-point to fixed-point conversion. Eliminating the floating-point to fixed-point
conversion step reduces the loss of data precision, and enables you to model a wider dynamic range.

An FPGA floating-point library is a set of floating-point IP blocks that are optimized for synthesis on
specific target hardware. Altera Megafunctions and Xilinx LogiCORE IP are examples of such
libraries.

In the HDL Coder block library, a subset of Simulink blocks support floating-point library mapping.
See “HDL Coder Support for FPGA Floating-Point Library Mapping” on page 31-26.

Setup for FPGA Floating-Point Library Mapping
To map your floating-point design to an Altera or Xilinx FPGA floating-point library:

• Set the target device options for your Altera or Xilinx FPGA synthesis tool using hdlset_param.
For example, to set the synthesis tool as Altera Quartus II and chip family as Arria10:

hdlset_param(model,'SynthesisToolChipFamily','Arria10', ...
                   'SynthesisToolDeviceName','10AS066H2F34E1SG', ...
                   'SynthesisToolPackageName','', ...
                   'SynthesisToolSpeedValue','')

• To set up the path to your synthesis tool executable file, use hdlsetuptoolpath. For example, to
set the path to the Altera Quartus II synthesis tool:

hdlsetuptoolpath('ToolName','Altera Quartus II','ToolPath',...
 'C:\altera\14.0\quartus\bin\quartus.exe');

See “Synthesis Tool Path Setup”.
• Set up your Altera or Xilinx FPGA floating-point simulation libraries. See “FPGA Simulation

Library Setup”.

Map to an FPGA Floating-Point Library
You can map your Simulink model to floating-point target libraries from the Configuration Parameters
dialog box or from the command line.

From the Configuration Parameters Dialog Box

To map to an FPGA floating-point library:

1 In the Apps tab, select HDL Coder. The HDL Code tab appears. Click Settings.
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2 In the HDL Code Generation > Floating Point Target pane, select the floating-point IP library.

3 For Xilinx LogiCORE IP, select XILINX LOGICORE as the library. For Altera megafunction IP,
you can select ALTERA MEGAFUNCTION (ALTFP) or ALTERA MEGAFUNCTION (ALTERA
FP FUNCTIONS) as the library.

4 If you choose ALTERA MEGAFUNCTION (ALTERA FP FUNCTIONS) as the library, the
Initialize IP Pipelines to Zero option becomes available. Select the Initialize IP Pipelines to
Zero option to initialize pipeline registers in the IP to zero. In the Target and Optimizations
pane, enter the target frequency that you want the floating-point IP to map to.

Note When mapping to ALTERA FP FUNCTIONS, the target language must be set to VHDL.

When you choose the ALTERA FP FUNCTIONS library, an IP Configuration table appears. By
using the data type table, you can customize the IP settings of the floating-point target library.
For more information, see “Customize the IP Latency with Target Frequency” on page 31-19.

5 If you choose XILINX LOGICORE or ALTERA MEGAFUNCTION (ALTFP) as the library, select
the Latency Strategy and Objective for the IP.
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When you choose these libraries, an IP Configuration table appears. By using the data type table,
you can customize the latency of the floating-point target IP. For more information, see
“Customize the IP Latency with Latency Strategy” on page 31-22.

6 To share floating-point IP resources, on the HDL Code Generation > Target and
Optimizations > Resource Sharing tab, make sure that Floating-point IPs is enabled. The
number of floating-point IP blocks that get shared depends on the SharingFactor that you
specify on the subsystem.

7 Click Apply. On the Simulink Toolstrip, click Generate HDL Code.

From the Command-Line

To generate HDL code from the command line, you can use the
hdlcoder.createFloatingPointTargetConfig function to create a floating-point IP
configuration.

1 By using the hdlcoder.createFloatingPointTargetConfig function, create a
hdlcoder.FloatingPointTargetConfig object for the floating-point library. Then, use
hdlset_param to save the configuration on the model.

For example, to create a floating-point target configuration for the ALTERA FP FUNCTIONS
library with the default settings:
fpconfig = hdlcoder.createFloatingPointTargetConfig('ALTERAFPFUNCTIONS');
hdlset_param('sfir_single', 'FloatingPointTargetConfiguration', fpconfig);

2 You can customize the IP settings based on the floating-point library that you specify. For more
information, see “Customize Floating-Point IP Configuration” on page 31-18.

3 Use makehdl to generate HDL code from the subsystem.

View Code Generation Reports of Floating-Point Library Mapping
To view the code generation reports of floating-point library mapping, before you begin code
generation, enable generation of the Resource Utilization Report and Optimization Report. To learn
how to generate these reports, see “Create and Use Code Generation Reports” on page 25-2.

Target-specific Report

To see the target floating-point block your design mapped to, the latency, and number of target-
specific hardware resources, in the Code Generation Report, select Target-specific Report.
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Target Code Generation Report

In the Code Generation Report, the Target Code Generation section in the Optimization Report
shows the status of optimization settings applied to the model. The report shows whether HDL Coder
successfully generated floating-point target code.
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Analyze Results of Floating-Point Library Mapping
You can get the latency information of the floating-point target IP from the generated model after
HDL code generation. For example, consider this add block in Simulink with inputs of double data
type.
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1 After HDL code generation, the optimization report for target code generation displays a link to a
generated model. To see the floating-point target library that your Simulink block mapped to,
double-click the subsystem in the generated model.

2 Double-click the ALT add block. The length of the delay block is the latency of the floating-point
target IP.

To learn more about the generated model, see “Generated Model and Validation Model” on page 24-5.

To see your FPGA floating-point library mapping results, you can view the IP core files generated
after HDL code generation.

HDL Coder checks and reuses existing generated IP core files, taking less time when successively
generating code for the same floating-point target IP.
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See Also

Related Examples
• “FPGA Floating-Point Library IP Mapping”

More About
• “Customize Floating-Point IP Configuration” on page 31-18
• “HDL Coder Support for FPGA Floating-Point Library Mapping” on page 31-26
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Customize Floating-Point IP Configuration
When mapping your Simulink model to floating-point target libraries, you can create a floating-point
target configuration with your own custom IP settings. To customize the IP settings, you can use an IP
configuration table to choose from different combinations of IP names and data types. The table
contains a list of IP types and additional columns that you can use to specify your own custom latency
value and other IP settings.

The IP configuration depends on the library settings. The library settings are specific to the floating-
point library that you choose. You can customize the IP latency by using the target frequency or the
latency strategy setting.

In this section...
“Customize the IP Latency with Target Frequency” on page 31-19
“Customize the IP Latency with Latency Strategy” on page 31-22
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Customize the IP Latency with Target Frequency
To specify the target frequency that you want the IP to achieve, use the Altera Megafunctions
(ALTERA FP Functions) library. HDL Coder infers the latency of the IP based on the target
frequency value. If you do not specify the target frequency, HDL Coder sets the target frequency to a
default value of 200 MHz.

You can customize the IP latency by using the Target Frequency setting in the Configuration
Parameters dialog box or the TargetFrequency property from the command line.

From the UI

To customize the IP latency by using the target frequency setting:

1 Specify the library:

a In the Apps tab, select HDL Coder. The HDL Code tab appears. Click Settings.
b On the HDL Code Generation > Floating Point Target pane, for Library, select Altera

Megafunctions (ALTERA FP Functions).

2 Specify the target frequency: In the Target pane, for Target Frequency (MHz), enter the target
frequency that you want the floating-point IP to achieve. If you do not specify a target frequency,
HDL Coder sets the target frequency to a default value of 200 MHz.
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3 Specify the library settings: By using the Initialize IP Pipelines to Zero option, you can specify
whether to initialize pipeline registers in the IP to zero. To avoid potential numerical mismatches
in the HDL simulation, it is recommended to leave the Initialize IP Pipelines to Zero option set
to true.

4 Specify the IP settings: In the IP configuration table, you can optionally specify a custom latency
and any additional settings specific to the IP.

• In the Latency column of the table, the default latency value of –1 means that the IP inherits
the latency value from the target frequency. If you specify a latency value, HDL Coder tries to
map your Simulink model to the IP at a target frequency corresponding to that latency value.

• In the ExtraArgs column of the table, you can specify additional settings specific to the IP.

5 Generate code: Click Apply. On the Simulink Toolstrip, click Generate HDL Code.

At the Command Line

To customize the IP latency from the command line:

1 Specify the library: Create a hdlcoder.FloatingPointTargetConfig object for the floating-
point library by using the hdlcoder.createFloatingPointTargetConfig function. Then,
use hdlset_param to save the configuration on the model.
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For example, for an sfir_single model, to create a floating-point target configuration for the
Altera Megafunctions (ALTERA FP FUNCTIONS) library with the default settings, enter:

fpconfig = hdlcoder.createFloatingPointTargetConfig('ALTERAFPFUNCTIONS');
hdlset_param('sfir_single', 'FloatingPointTargetConfiguration', fpconfig);

To see the default settings for the floating-point IP, enter fpconfig.

fpconfig = 

  FloatingPointTargetConfig with properties:

            Library: 'ALTERAFPFUNCTIONS'
    LibrarySettings: [1×1 fpconfig.FrequencyDrivenMode]
           IPConfig: [1×1 hdlcoder.FloatingPointTargetConfig.IPConfig]

2 Specify the target frequency: If you choose ALTERA MEGAFUNCTION (ALTERA FP FUNCTIONS)
as the library, you can create a floating-point configuration with a custom target frequency. To
specify the target frequency for the IP to achieve, use the TargetFrequency property. For
example:

hdlset_param('sfir_single', 'TargetFrequency', 300);
3 Specify the library settings: Specify whether you want to initialize the pipeline registers in the IP

to zero. Use the InitializeIPPipelinesToZero property of the
fpconfig.LibrarySettings function.

For example, to set the InitializeIPPipelinesToZero property to false, enter:

fpconfig.LibrarySettings.InitializeIPPipelinesToZero = false;

To see the library settings that you have applied, enter fpconfig.LibrarySettings.

ans = 

  FrequencyDrivenMode with properties:

    InitializeIPPipelinesToZero: 0

To avoid potential numerical mismatches in the HDL simulation, it is recommended to leave
InitializeIPPipelinesToZero set to true.

4 Specify the IP settings: With the IPConfig method, use the Latency and ExtraArgs to
customize the latency of the IP and specify any additional settings specific to the IP.

For example, when mapping to the ADDSUB IP with Xilinx LogiCORE libraries, to specify a
custom latency of 8:

fpconfig.IPConfig.customize('ADDSUB', 'SINGLE', 'Latency', 8);

To see the IP settings that you have applied, enter fpconfig.IPConfig.
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ans = 

      Name              DataType            Latency    ExtraArgs
    _________    _______________________    _______    _________

    'ABS'        'DOUBLE'                   -1         ''       
    'ABS'        'SINGLE'                   -1         ''       
    'ADDSUB'     'DOUBLE'                   -1         ''       
    'ADDSUB'     'SINGLE'                    8         ''       
    'CONVERT'    'DOUBLE_TO_NUMERICTYPE'    -1         ''       
    'CONVERT'    'NUMERICTYPE_TO_DOUBLE'    -1         ''       
    'CONVERT'    'NUMERICTYPE_TO_SINGLE'    -1         ''       
    'CONVERT'    'SINGLE_TO_NUMERICTYPE'    -1         ''       

5 Generate HDL code: To generate code from the subsystem, use makehdl.

Customize the IP Latency with Latency Strategy
To customize the IP latency with the latency strategy setting, use the ALTERA MEGAFUNCTION
(ALTFP) or XILINX LOGICORE libraries. Specify whether to map your Simulink model to maximum
or minimum latency. HDL Coder infers the latency of the IP from the latency strategy setting.

You can customize the IP latency in the Configuration Parameters dialog box or from the command
line.

From the UI

To customize the IP latency with the latency strategy setting:

1 Specify the library: In the Configuration Parameters dialog box, on the HDL Code Generation >
Floating Point Target pane, for Library, select ALTERA MEGAFUNCTION (ALTFP) or XILINX
LOGICORE.
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2 Specify the library settings: For Latency Strategy, specify whether to map your Simulink model
to the minimum or maximum latency for the IP. For Objective, specify whether to optimize for
speed or area.

3 Specify the IP settings: An IP configuration table appears that contains the IP types, and their
maximum and minimum latencies. In the table, you can optionally specify a custom latency and
any additional settings specific to the IP.

• In the Latency column of the table, the default latency value of –1 means that the IP inherits
the latency value from the library settings. To customize the latency of the IP that your
Simulink blocks map to, enter a value for the latency.

For example, when mapping to the ADDSUB IP with Xilinx LogiCORE, if you specify a latency
of 8, the latency of the IP changes to 8 instead of the default value of 12.

• In the ExtraArgs column of the table, specify any additional settings specific to the IP.

For example, when mapping to Xilinx LogiCORE IP, for ExtraArgs, you can specify the
parameter c_mult_usage to control the DSP resources that you want to use. To learn more
about the parameter usage and syntax, see the IP library documentation.
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4 Generate code: Click Apply. On the Simulink Toolstrip, click Generate HDL Code.

From the Command Line

To customize the IP latency from the command line:

1 Specify the library: Create a hdlcoder.FloatingPointTargetConfig object for the floating-
point library by using the hdlcoder.createFloatingPointTargetConfig function. Then,
use hdlset_param to save the configuration on the model.

For example, for an sfir_single model, to create a floating-point target configuration for the
ALTERA MEGAFUNCTION (ALTFP) library with the default settings, enter:

fpconfig = hdlcoder.createFloatingPointTargetConfig('ALTFP');
hdlset_param('sfir_single', 'FloatingPointTargetConfiguration', fpconfig);

By default, the library uses the minimum latency and speed objective for the floating-point IP.
2 Specify the library settings: Customize the library settings with the Objective and

LatencyStrategy of the fpconfig.LibrarySettings function.

For example, to customize the ALTERA MEGAFUNCTION (ALTFP) library to use the maximum
latency and objective as area, enter:

fpconfig.LibrarySettings.Objective = 'AREA';
fpconfig.LibrarySettings.LatencyStrategy = 'MAX';
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To see the library settings that you have applied, enter fpconfig.LibrarySettings.

ans = 

  LatencyDrivenMode with properties:

    LatencyStrategy: 'MAX'
          Objective: 'AREA'

    fpconfig is a variable of type hdlcoder.FloatingPointTargetConfig.

3 Specify the IP settings: With the IPConfig method, use the Latency and ExtraArgs to
customize the latency of the IP and specify any additional settings specific to the IP.

For example, when mapping to the ADDSUB IP with Xilinx LogiCORE libraries, to use a custom
latency of 8 and to specify the DSP resource usage with the cmultusage parameter:

fpconfig.IPConfig.customize('ADDSUB', 'SINGLE', 'Latency', 8, 'ExtraArgs', 'CSET c_mult_usage=Full_usage');

To see the IP settings that you have applied, enter fpconfig.IPConfig.

ans = 

      Name              DataType            MinLatency    MaxLatency    Latency              ExtraArgs           
    _________    _______________________    __________    __________    _______    ______________________________

    'ADDSUB'     'DOUBLE'                    7            14            -1         ''                            
    'ADDSUB'     'SINGLE'                    7            14             8         'CSET c_mult_usage=Full_usage'
    'CONVERT'    'DOUBLE_TO_NUMERICTYPE'     6             6            -1         ''                            
    'CONVERT'    'NUMERICTYPE_TO_DOUBLE'     6             6            -1         ''                            
    'CONVERT'    'NUMERICTYPE_TO_SINGLE'     6             6            -1         ''                            

4 Generate HDL code: To generate code from the subsystem, use makehdl.

See Also

Related Examples
• “FPGA Floating-Point Library IP Mapping”

More About
• “Generate HDL Code for FPGA Floating-Point Target Libraries” on page 31-11
• “HDL Coder Support for FPGA Floating-Point Library Mapping” on page 31-26
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HDL Coder Support for FPGA Floating-Point Library Mapping
In this section...
“Supported Blocks That Map to FPGA Floating-Point Target IP” on page 31-26
“Supported Blocks That Do Not Need to Map to FPGA Floating-Point Target IP” on page 31-28
“Limitations for FPGA Floating-Point Library Mapping” on page 31-29

In the HDL Coder block library, a subset of Simulink blocks support floating-point library mapping.
The subset includes:

• Blocks that perform basic math operations such as addition, multiplication, and complex
trigonometric sine and cosine functions. These blocks map to one or more floating-point IP units
on the target FPGA device.

• Discrete blocks, blocks that perform signal routing, and blocks that perform math operations such
as matrix concatenation. These blocks need not map to a floating-point IP unit on the target FPGA
device.

Supported Blocks That Map to FPGA Floating-Point Target IP
The following table summarizes the Simulink blocks that can map to FPGA floating-point IP cores.

When mapping to floating-point IP cores, some blocks have mode restrictions.

Note Some blocks do not map to a floating-point IP core in the third-party hardware. For example,
the Abs block maps to an Altera target IP core but not to a Xilinx target IP core.

Block Altera
Megafunction IP
(ALTFP and
ALTERA FP
Functions)

Xilinx LogiCORE
IP

Remarks and Limitations

Abs ✓  —
Add ✓ ✓ —
Bias ✓ ✓ —
Compare To Constant ✓ ✓ —
Compare To Zero ✓ ✓ —
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Block Altera
Megafunction IP
(ALTFP and
ALTERA FP
Functions)

Xilinx LogiCORE
IP

Remarks and Limitations

Data Type Conversion ✓ ✓ • Conversions between single and
double data types are not
supported.

• Integer rounding mode attribute
in the Block Parameters dialog box
must be set to Nearest.

• If you use Altera Megafunction IP
for conversion between floating-
point and fixed-point data types, the
input bitwidth must be between 16
and 128 bits.

Decrement Real World ✓ ✓ —
Discrete FIR Filter ✓ ✓ —
Discrete Transfer Fcn ✓ ✓ —
Discrete-Time Integrator ✓ ✓ —
Divide ✓ ✓ —
Dot Product ✓ ✓  
Gain ✓ ✓ —
Math Function ✓  • Set the Function attribute in Block

Parameters dialog box to either
reciprocal, log or exp.

MinMax ✓ ✓ —
Multiply-Add ✓ ✓ —
Product ✓ ✓ • Product block with more than two

inputs is not supported.
Product of Elements ✓ ✓ • The Architecture in HDL Block

Properties must be set to Tree.
Reciprocal Sqrt ✓  —
Relational Operator ✓ ✓ —
Sqrt ✓ ✓ —
Subtract ✓ ✓ —
Sum ✓ ✓ • Sum block with - ports is not

supported.
• The block cannot have more than

two inputs.
Sum of Elements ✓ ✓ • The Architecture in HDL Block

Properties must be set to Tree.

 HDL Coder Support for FPGA Floating-Point Library Mapping

31-27



Block Altera
Megafunction IP
(ALTFP and
ALTERA FP
Functions)

Xilinx LogiCORE
IP

Remarks and Limitations

Trigonometric Function ✓  • Only single data types are
supported for floating-point library
mapping.

• In the Block Parameters dialog box,
Function must be set to either sin
or cos and Approximation
method must be set to None.

• If you are using Altera Quartus 10.1
or 11.0, turn on the
AlteraBackward Incompatible
SinCosPipeline global property
using hdlset_param.

Unary Minus ✓ ✓ —

Supported Blocks That Do Not Need to Map to FPGA Floating-Point
Target IP
Following are the Simulink blocks that generate HDL code but need not map to an FPGA floating-
point IP core.

• Bus Assignment
• Bus Creator
• Bus Selector
• Constant
• Delay
• Demux
• Deserializer1D
• DownSample
• From
• Goto
• Index Vector
• Vector Concatenate, Matrix Concatenate
• Memory
• Model Info
• Multiport Switch
• Mux
• Rate Transition
• Reshape
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• Serializer1D
• Subsystem
• Switch block with control input other than u2 ~= 0.
• Unit Delay
• Upsample
• Zero-Order Hold

Limitations for FPGA Floating-Point Library Mapping
• If your synthesis tool is Xilinx Vivado, you cannot use FPGA floating-point library mapping.
• Complex data types are not supported.
• The streaming optimization is not supported with floating-point library mapping.
• The resource sharing optimization is not supported with Unary Minus and Abs blocks.
• For IP Core Generation, FPGA Turnkey, and Simulink Real-Time FPGA I/O workflows, your DUT

ports cannot use floating-point data types.

See Also

Related Examples
• “FPGA Floating-Point Library IP Mapping”

More About
• “Generate HDL Code for FPGA Floating-Point Target Libraries” on page 31-11
• “Customize Floating-Point IP Configuration” on page 31-18
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Synthesis Objective to Tcl Command Mapping
In this section...
“Altera Quartus II” on page 31-30
“Xilinx Vivado 2014.4” on page 31-30
“Xilinx ISE 14.7 with PlanAhead” on page 31-31

The HDL Workflow Advisor guides you through the stages of generating HDL code for a Simulink
subsystem and the FPGA design process, such as:

• Checking the model for HDL code generation compatibility and automatically fixing incompatible
settings.

• Generation of HDL code, a test bench, and scripts to build and run the code and test bench.
• Generation of cosimulation or SystemVerilog DPI test benches and code coverage (requires HDL
Verifier).

• Synthesis and timing analysis through integration with third-party synthesis tools.
• Back-annotation of the model with critical path information and other information obtained during

synthesis.
• Complete automated workflows for selected FPGA development target devices, including FPGA-in-

the-loop simulation (requires HDL Verifier), and the Simulink Real-Time FPGA I/O workflow.

When you specify a synthesis objective in the HDL Workflow Advisor Synthesis objective field, or in
the HDL Workflow CLI workflow hdlcoder.Objective, the HDL Coder software generates Tcl
commands that are specific to your synthesis tool.

Altera Quartus II
Synthesis objective Tcl Commands
Area Optimized set_global_assignment -name OPTIMIZATION_TECHNIQUE

"Area"
set_global_assignment -name FITTER_EFFORT "Standard Fit"

Compile Optimized set_global_assignment -name OPTIMIZATION_TECHNIQUE
"Balanced"
set_global_assignment -name FITTER_EFFORT "Fast Fit"

Speed Optimized set_global_assignment -name OPTIMIZATION_TECHNIQUE
"Speed"
set_global_assignment -name FITTER_EFFORT "Standard Fit"

Xilinx Vivado 2014.4
If your tool version is different, the Tcl commands are slightly different.

Synthesis objective Tcl Commands
Area Optimized set_property strategy {Vivado Synthesis Defaults}

[get_runs synth_1]
set_property strategy "Area_Explore" [get_runs impl_1]
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Synthesis objective Tcl Commands
Compile Optimized set_property strategy "Flow_RuntimeOptimized" [get_runs

synth1]
set_property strategy "Flow_Quick" [get_runs impl_1]

Speed Optimized set_property strategy {Vivado Synthesis Defaults}
[get_runs synth_1]
set_property strategy "Performance_Explore" [get_runs
impl_1]

Xilinx ISE 14.7 with PlanAhead
If your tool version is different, the Tcl commands are slightly different.

Synthesis objective Tcl Commands
Area Optimized set_property strategy "AreaReduction" [get_runs synth_1]

set_property strategy "MapCoverArea" [get_runs impl_1]
Compile Optimized set_property strategy "{XST Defaults}" [get_runs

synth_1]
set_property strategy "{ISE Defaults}" [get_runs impl_1]

Speed Optimized set_property strategy "TimingWithIOBPacking" [get_runs
synth_1]
set_property strategy "MapTiming" [get_runs impl_1]

See Also

Related Examples
• “Getting Started with the HDL Workflow Advisor” on page 31-2
• “HDL Workflow Advisor Tasks” on page 37-2
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Run HDL Workflow with a Script

In this section...
“Export an HDL Workflow Script” on page 31-33
“Specify Verbosity of Workflow Script” on page 31-33
“Enable or Disable Tasks in HDL Workflow Script” on page 31-33
“Run a Single Workflow Task” on page 31-33
“Import an HDL Workflow Script” on page 31-34
“Generic ASIC/FPGA Workflow Script Example” on page 31-34
“FPGA-in-the-Loop Script Example” on page 31-35
“FPGA Turnkey Workflow Script Example” on page 31-37
“IP Core Generation Workflow Script Example” on page 31-39
“Simulink Real-Time FPGA I/O Workflow Example” on page 31-41

The HDL Workflow Advisor guides you through the stages of generating HDL code for a Simulink
subsystem and the FPGA design process, such as:

• Checking the model for HDL code generation compatibility and automatically fixing incompatible
settings.

• Generation of HDL code, a test bench, and scripts to build and run the code and test bench.
• Generation of cosimulation or SystemVerilog DPI test benches and code coverage (requires HDL
Verifier).

• Synthesis and timing analysis through integration with third-party synthesis tools.
• Back-annotation of the model with critical path information and other information obtained during

synthesis.
• Complete automated workflows for selected FPGA development target devices, including FPGA-in-

the-loop simulation (requires HDL Verifier), and the Simulink Real-Time FPGA I/O workflow.

To run the HDL workflow as a command-line script, configure and run the HDL Workflow Advisor
with your Simulink design, then export a script. The script uses HDL Workflow CLI commands to
perform the same tasks as the HDL Workflow Advisor, including FPGA bitstream or synthesis project
generation.

You can export an HDL workflow script for these target workflows:

• Generic ASIC/FPGA
• FPGA-in-the-Loop (requires HDL Verifier license)
• FPGA Turnkey
• IP Core Generation
• Simulink Real-Time FPGA I/O (requires Simulink Real-Time)

To update an existing script, import it into the HDL Workflow Advisor, modify the tasks, and export
the updated script. Alternatively, you can manually edit the script.
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Export an HDL Workflow Script
1 In the HDL Workflow Advisor, configure and run all the tasks.
2 Select File > Export to Script.
3 In the Export Workflow Configuration dialog box, enter a file name and save the script.

The script is a MATLAB file that you can run from the command line.

Note When you export to script, default values such as Asynchronous value for Reset type are not
exported. When you import from the script, if the model is unchanged, you do not see the default
settings in the script.

Specify Verbosity of Workflow Script
You can use the Verbosity property of the hdlcoder.runWorkflow function to specify the level of
detail for progress messages generated as code generation and deployment proceeds. To generate
verbose messages while running the workflow for a hdlcoder.WorkflowConfig workflow
configuration object, hWC and Simulink design, model/DUTname, set Verbosity to on.

hdlcoder.runWorkflow('model/DUTname', hWC, 'Verbosity', 'on');

Enable or Disable Tasks in HDL Workflow Script
To disable all workflow tasks, update the workflow configuration object with the clearAllTasks
method.

To reenable all workflow tasks, update the workflow configuration object with the setAllTasks
method.

Run a Single Workflow Task
To run a single workflow task without rerunning other workflow tasks:

1 Disable all tasks in the workflow configuration object by running the clearAllTasks method.
2 In the workflow configuration object, enable the task that you want to run.

For example, if you previously ran an HDL workflow script and generated a bitstream, you can
program your target hardware without rerunning the other workflow tasks. To run the target device
programming task for an hdlcoder.WorkflowConfig workflow configuration object, hWC and
Simulink design, model/DUTname:

1 Run the clearAllTasks method.

hWC.clearAllTasks;
2 Enable the target device programming task.

hWC.RunTaskProgramTargetDevice = true;
3 Run the workflow.

hdlcoder.runWorkflow('model/DUTname', hWC);
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Import an HDL Workflow Script
1 In the HDL Workflow Advisor, select File > Import from Script.
2 In the Import Workflow Configuration dialog box, select the script file and click Open.

The HDL Workflow Advisor updates the tasks with the imported script settings.

Note When you import a HDL Workflow Advisor script, make sure you use the same script that was
exported from the HDL Workflow Advisor UI.

Generic ASIC/FPGA Workflow Script Example
This example shows how to configure and run an exported HDL workflow script.

This script is a generic ASIC/FPGA workflow script that targets a Xilinx Virtex 7 device. It uses the
Xilinx Vivado synthesis tool.

Open and view your exported HDL workflow script.

% Export Workflow Configuration Script
% Generated with MATLAB 9.5 (R2018b Prerelease) at 14:42:37 on 29/03/2018
% This script was generated using the following parameter values:
%     Filename  : 'S:\generic_workflow_example.m'
%     Overwrite : true
%     Comments  : true
%     Headers   : true
%     DUT       : 'sfir_fixed/symmetric_fir'
% To view changes after modifying the workflow, run the following command:
% >> hWC.export('DUT','sfir_fixed/symmetric_fir');
%--------------------------------------------------------------------------

%% Load the Model
load_system('sfir_fixed');

%% Restore the Model to default HDL parameters
%hdlrestoreparams('sfir_fixed/symmetric_fir');

%% Model HDL Parameters
%% Set Model 'sfir_fixed' HDL parameters
hdlset_param('sfir_fixed', 'GenerateCoSimModel', 'ModelSim');
hdlset_param('sfir_fixed', 'GenerateHDLTestBench', 'off');
hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed/symmetric_fir');
hdlset_param('sfir_fixed', 'SynthesisTool', 'Xilinx Vivado');
hdlset_param('sfir_fixed', 'SynthesisToolChipFamily', 'Virtex7');
hdlset_param('sfir_fixed', 'SynthesisToolDeviceName', 'xc7vx485t');
hdlset_param('sfir_fixed', 'SynthesisToolPackageName', 'ffg1761');
hdlset_param('sfir_fixed', 'SynthesisToolSpeedValue', '-2');
hdlset_param('sfir_fixed', 'TargetDirectory', 'hdl_prj\hdlsrc');

%% Workflow Configuration Settings
% Construct the Workflow Configuration Object with default settings
hWC = hdlcoder.WorkflowConfig('SynthesisTool','Xilinx Vivado','TargetWorkflow','Generic ASIC/FPGA');

% Specify the top level project directory
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hWC.ProjectFolder = 'hdl_prj';

% Set Workflow tasks to run
hWC.RunTaskGenerateRTLCodeAndTestbench = true;
hWC.RunTaskVerifyWithHDLCosimulation = true;
hWC.RunTaskCreateProject = true;
hWC.RunTaskRunSynthesis = true;
hWC.RunTaskRunImplementation = false;
hWC.RunTaskAnnotateModelWithSynthesisResult = true;

% Set properties related to 'RunTaskGenerateRTLCodeAndTestbench' Task
hWC.GenerateRTLCode = true;
hWC.GenerateTestbench = false;
hWC.GenerateValidationModel = false;

% Set properties related to 'RunTaskCreateProject' Task
hWC.Objective = hdlcoder.Objective.None;
hWC.AdditionalProjectCreationTclFiles = '';

% Set properties related to 'RunTaskRunSynthesis' Task
hWC.SkipPreRouteTimingAnalysis = false;

% Set properties related to 'RunTaskRunImplementation' Task
hWC.IgnorePlaceAndRouteErrors = false;

% Set properties related to 'RunTaskAnnotateModelWithSynthesisResult' Task
hWC.CriticalPathSource = 'pre-route';
hWC.CriticalPathNumber =  1;
hWC.ShowAllPaths = false;
hWC.ShowDelayData = true;
hWC.ShowUniquePaths = false;
hWC.ShowEndsOnly = false;

% Validate the Workflow Configuration Object
hWC.validate;

%% Run the workflow
hdlcoder.runWorkflow('sfir_fixed/symmetric_fir', hWC);

Optionally, edit the script.

For example, enable or disable tasks in the hdlcoder.WorkflowConfig object, hWC.

Run the HDL workflow script.

For example, if the script file name is generic_workflow_example.m, at the command line, enter:

generic_workflow_example.m

FPGA-in-the-Loop Script Example
This example shows how to configure and run an exported HDL workflow script.

To generate an HDL workflow script, configure and run the HDL Workflow Advisor with your Simulink
design, then export the script.
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This script is an FPGA-in-the-Loop workflow script that targets a Xilinx Virtex 5 development board
and uses the Xilinx ISE synthesis tool.

Open and view your exported HDL workflow script.

%--------------------------------------------------------------------------
% HDL Workflow Script
% Generated with MATLAB 9.5 (R2018b Prerelease) at 15:11:23 on 04/05/2018
% This script was generated using the following parameter values:
%     Filename  : 'C:\Users\ggnanase\Desktop\R2018b\18b_models\ipcore_timing_failure\hdlworkflow_FIL.m'
%     Overwrite : true
%     Comments  : true
%     Headers   : true
%     DUT       : 'sfir_fixed/symmetric_fir'
% To view changes after modifying the workflow, run the following command:
% >> hWC.export('DUT','sfir_fixed/symmetric_fir');
%--------------------------------------------------------------------------

%% Load the Model
load_system('sfir_fixed');

%% Restore the Model to default HDL parameters
%hdlrestoreparams('sfir_fixed/symmetric_fir');

%% Model HDL Parameters
%% Set Model 'sfir_fixed' HDL parameters
hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed/symmetric_fir');
hdlset_param('sfir_fixed', 'SynthesisTool', 'Xilinx Vivado');
hdlset_param('sfir_fixed', 'SynthesisToolChipFamily', 'Kintex7');
hdlset_param('sfir_fixed', 'SynthesisToolDeviceName', 'xc7k325t');
hdlset_param('sfir_fixed', 'SynthesisToolPackageName', 'ffg900');
hdlset_param('sfir_fixed', 'SynthesisToolSpeedValue', '-2');
hdlset_param('sfir_fixed', 'TargetDirectory', 'hdl_prj\hdlsrc');
hdlset_param('sfir_fixed', 'TargetFrequency', 25);
hdlset_param('sfir_fixed', 'TargetPlatform', 'Xilinx Kintex-7 KC705 development board');
hdlset_param('sfir_fixed', 'Workflow', 'FPGA-in-the-Loop');

%% Workflow Configuration Settings
% Construct the Workflow Configuration Object with default settings
hWC = hdlcoder.WorkflowConfig('SynthesisTool','Xilinx Vivado','TargetWorkflow','FPGA-in-the-Loop');

% Specify the top level project directory
hWC.ProjectFolder = 'hdl_prj';

% Set Workflow tasks to run
hWC.RunTaskGenerateRTLCodeAndTestbench = true;
hWC.RunTaskVerifyWithHDLCosimulation = false;
hWC.RunTaskBuildFPGAInTheLoop = true;

% Set properties related to 'RunTaskGenerateRTLCodeAndTestbench' Task
hWC.GenerateRTLCode = true;
hWC.GenerateTestbench = false;
hWC.GenerateValidationModel = false;

% Set properties related to 'RunTaskBuildFPGAInTheLoop' Task
hWC.IPAddress = '192.168.0.2';
hWC.MACAddress = '00-0A-35-02-21-8A';
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hWC.SourceFiles = '';
hWC.Connection = 'Ethernet';
hWC.RunExternalBuild = true;

% Validate the Workflow Configuration Object
hWC.validate;

%% Run the workflow
hdlcoder.runWorkflow('sfir_fixed/symmetric_fir', hWC);
hdlcoder.runWorkflow('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA', hWC);

Optionally, edit the script.

For example, enable or disable tasks in the hdlcoder.WorkflowConfig object, hWC.

Run the HDL workflow script.

For example, if the script file name is FIL_workflow_example.m, at the command line, enter:

fil_workflow_example.m

FPGA Turnkey Workflow Script Example
This example shows how to configure and run an exported HDL workflow script.

This script is an FPGA Turnkey workflow script that targets a Xilinx Virtex 5 development board. It
uses the Xilinx ISE synthesis tool.

Open and view your exported HDL workflow script.

% Export Workflow Configuration Script
% Generated with MATLAB 8.6 (R2015b) at 14:24:32 on 08/07/2015
% Parameter Values:
%     Filename  : 'S:\turnkey_workflow_example.m'
%     Overwrite : true
%     Comments  : true
%     Headers   : true
%     DUT       : 'hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA'

%% Load the Model
load_system('hdlcoderUARTServoControllerExample');

%% Model HDL Parameters
% Set Model HDL parameters
hdlset_param('hdlcoderUARTServoControllerExample', ...
    'HDLSubsystem', 'hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA');
hdlset_param('hdlcoderUARTServoControllerExample', ...
    'SynthesisTool', 'Xilinx ISE');
hdlset_param('hdlcoderUARTServoControllerExample', ...
    'SynthesisToolChipFamily', 'Virtex5');
hdlset_param('hdlcoderUARTServoControllerExample', ...
    'SynthesisToolDeviceName', 'xc5vsx50t');
hdlset_param('hdlcoderUARTServoControllerExample', ...
    'SynthesisToolPackageName', 'ff1136');
hdlset_param('hdlcoderUARTServoControllerExample', ...
    'SynthesisToolSpeedValue', '-1');
hdlset_param('hdlcoderUARTServoControllerExample', ...
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    'TargetDirectory', 'hdl_prj\hdlsrc');
hdlset_param('hdlcoderUARTServoControllerExample', ...
    'TargetPlatform', 'Xilinx Virtex-5 ML506 development board');
hdlset_param('hdlcoderUARTServoControllerExample', 'Workflow', 'FPGA Turnkey');

% Set Inport HDL parameters
hdlset_param('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA/uart_rxd', ...
    'IOInterface', 'RS-232 Serial Port Rx');
hdlset_param('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA/uart_rxd', ...
    'IOInterfaceMapping', '[0]');

% Set Outport HDL parameters
hdlset_param('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA/uart_txd', ...
    'IOInterface', 'RS-232 Serial Port Tx');
hdlset_param('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA/uart_txd', ...
    'IOInterfaceMapping', '[0]');

% Set Outport HDL parameters
hdlset_param('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA/version', ...
    'IOInterface', 'LEDs General Purpose [0:7]');
hdlset_param('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA/version', ...
    'IOInterfaceMapping', '[0:3]');

% Set Outport HDL parameters
hdlset_param('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA/pwm_output', ...
    'IOInterface', 'Expansion Headers J6 Pin 2-64 [0:31]');
hdlset_param('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA/pwm_output', ...
    'IOInterfaceMapping', '[0]');

% Set Outport HDL parameters
hdlset_param('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA/servo_debug1', ...
    'IOInterface', 'Expansion Headers J6 Pin 2-64 [0:31]');
hdlset_param('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA/servo_debug1', ...
    'IOInterfaceMapping', '[1]');

% Set Outport HDL parameters
hdlset_param('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA/servo_debug2', ...
    'IOInterface', 'Expansion Headers J6 Pin 2-64 [0:31]');
hdlset_param('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA/servo_debug2', ...
    'IOInterfaceMapping', '[2]');

%% Workflow Configuration Settings
% Construct the Workflow Configuration Object with default settings
hWC = hdlcoder.WorkflowConfig('SynthesisTool','Xilinx ISE', ...
    'TargetWorkflow','FPGA Turnkey');

% Specify the top level project directory
hWC.ProjectFolder = 'hdl_prj';

% Set Workflow tasks to run
hWC.RunTaskGenerateRTLCodeAndTestbench = true;
hWC.RunTaskVerifyWithHDLCosimulation = true;
hWC.RunTaskCreateProject = true;
hWC.RunTaskPerformLogicSynthesis = true;
hWC.RunTaskPerformMapping = true;
hWC.RunTaskPerformPlaceAndRoute = true;
hWC.RunTaskGenerateProgrammingFile = true;
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hWC.RunTaskProgramTargetDevice = false;

% Set Properties related to Create Project Task
hWC.Objective = hdlcoder.Objective.None;
hWC.AdditionalProjectCreationTclFiles = '';

% Set Properties related to Perform Mapping Task
hWC.SkipPreRouteTimingAnalysis = true;

% Set Properties related to Perform Place and Route Task
hWC.IgnorePlaceAndRouteErrors = false;

% Validate the Workflow Configuration Object
hWC.validate;

%% Run the workflow
hdlcoder.runWorkflow('hdlcoderUARTServoControllerExample/UART_Servo_on_FPGA', hWC);

Optionally, edit the script.

For example, enable or disable tasks in the hdlcoder.WorkflowConfig object, hWC.

Run the HDL workflow script.

For example, if the script file name is turnkey_workflow_example.m, at the command line, enter:

turnkey_workflow_example.m

IP Core Generation Workflow Script Example
This example shows how to configure and run an exported HDL workflow script.

This script is an IP core generation workflow script that targets the Altera Cyclone V SoC
development kit. It uses the Altera Quartus II synthesis tool.

Open and view your exported HDL workflow script.

% Export Workflow Configuration Script
% Generated with MATLAB 8.6 (R2015b) at 14:42:16 on 08/07/2015
% Parameter Values:
%     Filename  : 'S:\ip_core_gen_workflow_example.m'
%     Overwrite : true
%     Comments  : true
%     Headers   : true
%     DUT       : 'hdlcoder_led_blinking/led_counter'

%% Load the Model
load_system('hdlcoder_led_blinking');

%% Model HDL Parameters
% Set Model HDL parameters
hdlset_param('hdlcoder_led_blinking', ...
    'HDLSubsystem', 'hdlcoder_led_blinking/led_counter');
hdlset_param('hdlcoder_led_blinking', 'OptimizationReport', 'on');
hdlset_param('hdlcoder_led_blinking', ...
    'ReferenceDesign', 'Default system (Qsys 14.0)');
hdlset_param('hdlcoder_led_blinking', 'ResetType', 'Synchronous');
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hdlset_param('hdlcoder_led_blinking', 'ResourceReport', 'on');
hdlset_param('hdlcoder_led_blinking', 'SynthesisTool', 'Altera QUARTUS II');
hdlset_param('hdlcoder_led_blinking', 'SynthesisToolChipFamily', 'Cyclone V');
hdlset_param('hdlcoder_led_blinking', 'SynthesisToolDeviceName', '5CSXFC6D6F31C6');
hdlset_param('hdlcoder_led_blinking', 'TargetDirectory', 'hdl_prj\hdlsrc');
hdlset_param('hdlcoder_led_blinking', ...
    'TargetPlatform', 'Altera Cyclone V SoC development kit - Rev.D');
hdlset_param('hdlcoder_led_blinking', 'Traceability', 'on');
hdlset_param('hdlcoder_led_blinking', 'Workflow', 'IP Core Generation');

% Set SubSystem HDL parameters
hdlset_param('hdlcoder_led_blinking/led_counter', ...
    'ProcessorFPGASynchronization', 'Free running');

% Set Inport HDL parameters
hdlset_param('hdlcoder_led_blinking/led_counter/Blink_frequency', ...
    'IOInterface', 'AXI4');
hdlset_param('hdlcoder_led_blinking/led_counter/Blink_frequency', ...
    'IOInterfaceMapping', 'x"100"');

% Set Inport HDL parameters
hdlset_param('hdlcoder_led_blinking/led_counter/Blink_direction', ...
    'IOInterface', 'AXI4');
hdlset_param('hdlcoder_led_blinking/led_counter/Blink_direction', ...
    'IOInterfaceMapping', 'x"104"');

% Set Outport HDL parameters
hdlset_param('hdlcoder_led_blinking/led_counter/LED', 'IOInterface', 'External Port');

% Set Outport HDL parameters
hdlset_param('hdlcoder_led_blinking/led_counter/Read_back', 'IOInterface', 'AXI4');
hdlset_param('hdlcoder_led_blinking/led_counter/Read_back', ...
    'IOInterfaceMapping', 'x"108"');

%% Workflow Configuration Settings
% Construct the Workflow Configuration Object with default settings
hWC = hdlcoder.WorkflowConfig('SynthesisTool','Altera QUARTUS II', ...
    'TargetWorkflow','IP Core Generation');

% Specify the top level project directory
hWC.ProjectFolder = 'hdl_prj';

% Set Workflow tasks to run
hWC.RunTaskGenerateRTLCodeAndIPCore = true;
hWC.RunTaskCreateProject = true;
hWC.RunTaskGenerateSoftwareInterfaceModel = false;
hWC.RunTaskBuildFPGABitstream = true;
hWC.RunTaskProgramTargetDevice = false;

% Set Properties related to Generate RTL Code And IP Core Task
hWC.IPCoreRepository = '';
hWC.GenerateIPCoreReport = true;

% Set Properties related to Create Project Task
hWC.Objective = hdlcoder.Objective.AreaOptimized;

% Set Properties related to Generate Software Interface Model Task
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hWC.OperatingSystem = '';
hWC.AddLinuxDeviceDriver = false;

% Set Properties related to Build FPGA Bitstream Task
hWC.RunExternalBuild = true;
hWC.TclFileForSynthesisBuild = hdlcoder.BuildOption.Default;

% Validate the Workflow Configuration Object
hWC.validate;

%% Run the workflow
hdlcoder.runWorkflow('hdlcoder_led_blinking/led_counter', hWC);

Optionally, edit the script.

For example, enable or disable tasks in the hdlcoder.WorkflowConfig object, hWC.

Run the HDL workflow script.

For example, if the script file name is ip_core_workflow_example.m, at the command line, enter:

ip_core_gen_workflow_example.m

Simulink Real-Time FPGA I/O Workflow Example
This example shows how to configure and run an exported HDL workflow script.

To generate an HDL workflow script, configure and run the HDL Workflow Advisor with your Simulink
design, then export the script.

This script is a Simulink Real-Time FPGA I/O workflow script that targets the Speedgoat
IO333-325K board that uses the Xilinx Vivado synthesis tool.

Open and view your exported HDL workflow script.

%--------------------------------------------------------------------------
% HDL Workflow Script
% Generated with MATLAB 9.5 (R2018b Prerelease) at 18:14:33 on 08/05/2018
% This script was generated using the following parameter values:
%     Filename  : 'C:\Users\ggnanase\Desktop\R2018b\18b_models\ipcore_timing_failure\hdlworkflow_IO333.m'
%     Overwrite : true
%     Comments  : true
%     Headers   : true
%     DUT       : 'sfir_fixed/symmetric_fir'
% To view changes after modifying the workflow, run the following command:
% >> hWC.export('DUT','sfir_fixed/symmetric_fir');
%--------------------------------------------------------------------------

%% Load the Model
load_system('sfir_fixed');

%% Restore the Model to default HDL parameters
%hdlrestoreparams('sfir_fixed/symmetric_fir');

%% Model HDL Parameters
%% Set Model 'sfir_fixed' HDL parameters
hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed/symmetric_fir');
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hdlset_param('sfir_fixed', 'SynthesisTool', 'Xilinx Vivado');
hdlset_param('sfir_fixed', 'SynthesisToolChipFamily', 'Kintex7');
hdlset_param('sfir_fixed', 'SynthesisToolDeviceName', 'xc7k325t');
hdlset_param('sfir_fixed', 'SynthesisToolPackageName', 'ffg900');
hdlset_param('sfir_fixed', 'SynthesisToolSpeedValue', '-2');
hdlset_param('sfir_fixed', 'TargetDirectory', 'hdl_prj\hdlsrc');
hdlset_param('sfir_fixed', 'TargetFrequency', 100);
hdlset_param('sfir_fixed', 'TargetPlatform', 'Speedgoat IO333-325K');
hdlset_param('sfir_fixed', 'Workflow', 'Simulink Real-Time FPGA I/O');

%% Workflow Configuration Settings
% Construct the Workflow Configuration Object with default settings
hWC = hdlcoder.WorkflowConfig('SynthesisTool','Xilinx Vivado','TargetWorkflow','Simulink Real-Time FPGA I/O');

% Specify the top level project directory
hWC.ProjectFolder = 'hdl_prj';
hWC.ReferenceDesignToolVersion = '2017.4';
hWC.IgnoreToolVersionMismatch = false;

% Set Workflow tasks to run
hWC.RunTaskGenerateRTLCodeAndIPCore = true;
hWC.RunTaskCreateProject = true;
hWC.RunTaskBuildFPGABitstream = true;
hWC.RunTaskGenerateSimulinkRealTimeInterface = true;

% Set properties related to 'RunTaskGenerateRTLCodeAndIPCore' Task
hWC.IPCoreRepository = '';
hWC.GenerateIPCoreReport = true;
hWC.GenerateIPCoreTestbench = false;
hWC.CustomIPTopHDLFile = '';
hWC.AXI4RegisterReadback = false;
hWC.IPDataCaptureBufferSize = '128';

% Set properties related to 'RunTaskCreateProject' Task
hWC.Objective = hdlcoder.Objective.None;
hWC.AdditionalProjectCreationTclFiles = '';
hWC.EnableIPCaching = true;

% Set properties related to 'RunTaskBuildFPGABitstream' Task
hWC.RunExternalBuild = false;
hWC.TclFileForSynthesisBuild = hdlcoder.BuildOption.Default;
hWC.CustomBuildTclFile = '';
hWC.ReportTimingFailure = hdlcoder.ReportTiming.Error;

% Validate the Workflow Configuration Object
hWC.validate;

%% Run the workflow
hdlcoder.runWorkflow('sfir_fixed/symmetric_fir', hWC);

Optionally, edit the script.

For example, enable or disable tasks in the hdlcoder.WorkflowConfig object, hWC.

Run the HDL workflow script.

For example, if the script file name is slrt_workflow_example.m, at the command line, enter:
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slrt_workflow_example.m

See Also
Functions
clearAllTasks | hdlcoder.runWorkflow | setAllTasks

Classes
hdlcoder.WorkflowConfig

Related Examples
• “Getting Started with the HDL Workflow Advisor” on page 31-2
• “HDL Workflow Advisor Tasks” on page 37-2
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Simscape to HDL Workflow

• “Generate HDL Code for Simscape Models” on page 32-2
• “Partition Simscape Models Containing a Large Network into Multiple Smaller Networks”

on page 32-13
• “Generate HDL Code for Simscape Models with Multiple Networks” on page 32-21
• “Deploy Simscape™ Plant Models to Speedgoat FPGA I/O Modules” on page 32-30
• “Troubleshoot Conversion of Simscape DC Motor Control to HDL-Compatible Simulink Model”

on page 32-40
• “Troubleshoot Conversion of Simscape Permanent Magnet Synchronous Motor to HDL-Compatible

Simulink Model” on page 32-48
• “Validate HDL Implementation Model to Simscape Algorithm” on page 32-65
• “Improve Sampling Rate of HDL Implementation Model Generated from Simscape Algorithm”

on page 32-71
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Generate HDL Code for Simscape Models
This example uses a halfwave rectifier model to illustrate how you can develop your plant model in
Simscape™ and use Simscape HDL Workflow Advisor to generate HDL code for your model.

Why Generate HDL Code?

To perform hardware-in-the-loop (HIL) simulation with smaller timesteps and increased accuracy, you
can deploy the plant models to the FPGAs on board the Speedgoat I/O modules. By using the
Simscape HDL Workflow Advisor, you can generate an HDL implementation model. You can then
generate HDL code for the implementation model and deploy the generated code onto the FPGA
platforms. Using this capability, you can model and deploy complex physical systems in Simscape that
previously took long time to model by using Simulink™ blocks.

Simscape Example models for HDL Code generation

For HDL code generation, you can design your own Simscape algorithm or choose from a list of
example models that are created in Simscape. The example models include:

• Boost Converter
• Bridge Rectifier
• Buck Converter
• Halfwave Rectifier
• Three Phase Rectifier
• Two Level Converter Ideal
• Two Level Converter Igbt

All examples are prefixed with sschdlex and postfixed with Example. For example, to open the
Boost Converter model, in the MATLAB™ command window, enter:

load_system('sschdlexBoostConverterExample')
open_system('sschdlexBoostConverterExample/Simscape_system')

Restrictions for HDL Code Generation from Simscape Models

HDL Coder™ does not support code generation from Simscape networks that contain:

• Events
• Mode charts
• Delays
• Runtime parameters
• Periodic sources
• Simscape™ Multibody™ blocks
• Simscape Electrical Specialized Power Systems blocks
• Nonlinear and time-varying Simscape blocks. Time-varying blocks include blocks such as Variable

Inductor and Variable Capacitor.

Guidelines for Modeling Simscape for HDL Compatibility

1. Create a Simscape model by using switched linear blocks. Switched linear blocks are blocks such
as diodes and switches. These blocks are defined by a linear relationship such as V = IR where R can
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switch between two or more values depending on the state of the diodes or switches. Add Simulink-
PS Converter blocks at the input ports and PS-Simulink Converter blocks at the output ports.

2. Configure the solver options for HDL code generation by using a Solver Configuration block. In the
block parameters of this block:

• Select Use local solver.
• Use Backward Euler as the Solver type.
• Specify a discrete sample time, Ts.

3. Enclose the blocks inside a Subsystem and provide the test inputs.

4. Configure the model for HDL code generation by running the hdlsetup function. hdlsetup
configures the solver settings such as using a fixed-step solver, specifies the simulation start and stop
times, and so on. To run the command for your current_model:

hdlsetup('current_model')

5. Verify Simscape model compatibility by using the simscape.findNonlinearBlocks function.
This function detects nonlinear blocks in your Simscape model. Provide the path to your Simscape
model as an argument to this function. It returns the names of nonlinear blocks.

For example: To verify presence of nonlinear blocks in Half Wave Rectifier Model, in the MATLAB
command window, enter:

simscape.findNonlinearBlocks('sschdlexHalfWaveRectifierExample')

The Halfwave Rectifier Model

To open the half-wave rectifier model, in the MATLAB Command Window, enter:

open_system('sschdlexHalfWaveRectifierExample')

Save this model locally as HalfWaveRectifier_HDL to run the workflow.

load_system('HalfWaveRectifier_HDL')
open_system('HalfWaveRectifier_HDL/Simscape_system')
set_param('HalfWaveRectifier_HDL', 'SimulationCommand', 'update');
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The Simscape model uses switched linear blocks such as Diodes and Resistors to model the design.
The model has Simulink-PS Converter blocks at the input port and PS-Simulink converter blocks at
the output ports. To verify that you configured the solver settings correctly, open the Solver
Configuration block.

At the top level of the model, you see a Simscape_system block that models the half-wave rectifier
algorithm. The model accepts a Sine Wave input, uses a Rate Transition block to discretize the
continuous time input, and has a Scope block that calculates the output. To see the input stimulus and
the output from the model, connect the Sine Wave input to the Scope block.

open_system('HalfWaveRectifier_HDL')

To configure the half-wave rectifier model for HDL compatibility, in the MATLAB command window,
enter:

hdlsetup('HalfWaveRectifier_HDL')

### The configuration parameter values use the recommended settings for HDL code generation and does not need any modification as a part of hdlsetup. Please refer to <a href="matlab:helpview(fullfile(docroot, 'hdlcoder', 'helptargets.map'), 'msg_hdlsetup_function')">hdlsetup</a> document for best practices on model settings.
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Simulate and Verify Functionality of Simscape Algorithm

To see the simulation results, simulate the model and then open the Scope block.

sim('HalfWaveRectifier_HDL')

This figure shows simulation results with the sine wave input and the outputs from
Simscape_system.

Open Simscape HDL Workflow Advisor

To generate an HDL implementation model from which you can generate code, use the Simscape HDL
Workflow Advisor. To open the Advisor, run this command:

sschdladvisor('HalfWaveRectifier_HDL')

### Running Simscape HDL Workflow Advisor for <a href="matlab:(HalfWaveRectifier_HDL)">HalfWaveRectifier_HDL</a>

This command updates the model advisor cache and opens the Simscape HDL Workflow Advisor. To
learn more about the Simscape HDL Workflow Advisor and the various tasks, right-click that folder or
task, and select What's This?.

See also “Simscape HDL Workflow Advisor Tasks” on page 33-2.
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Run Simscape HDL Workflow Advisor

To run the workflow, in the Simscape HDL Workflow Advisor, right-click the Generate
implementation model task and select Run to Selected Task.

If the task passes, you see a link to the implementation model.

In some cases, your Simscape algorithm may not be compatible for generating an implementation
model using the Simscape HDL Workflow Advisor. In such cases, running certain tasks in the Advisor
can result in the task to fail. To learn how you can make it HDL compatible, see

• “Troubleshoot Conversion of Simscape DC Motor Control to HDL-Compatible Simulink Model” on
page 32-40

• “Troubleshoot Conversion of Simscape Permanent Magnet Synchronous Motor to HDL-Compatible
Simulink Model” on page 32-48

Open HDL Implementation Model

To see the implementation model, in the Generate implementation model task, click the link.

open_system('gmStateSpaceHDL_HalfWaveRectifier_HDL')
set_param('gmStateSpaceHDL_HalfWaveRectifier_HDL','SimulationCommand','Update')
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The model contains two subsystems. The Subsystem block contains the Simscape algorithm that you
modeled. From and Goto blocks inside this Subsystem provide the same Sine Wave input to the HDL
Subsystem.

The HDL Subsystem models the state-space representation that you generated from the Simscape
model. The ports of this Subsystem use the same name as the Simulink-PS Converter and PS-Simulink
Converter blocks in your original Simscape model. If you navigate inside this Subsystem, you see
several delays, adders, and Matrix Multiply blocks that model the state-space equations.

open_system('gmStateSpaceHDL_HalfWaveRectifier_HDL/HDL Subsystem/HDL Algorithm')

To simulate the HDL Implementation model, enter this command:

sim('gmStateSpaceHDL_HalfWaveRectifier_HDL')

Open the scope block to view results.
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The simulation results from the HDL implementation model matches that of the original plant model.
Therefore, we can verify that the plant simulation model is correctly transformed into an HDL
implementation model.

HDL code is generated for the HDL Subsystem block inside this model.

Generate HDL Code and Validation Model

The HDL model and subsystem parameter settings are saved using this command:

hdlsaveparams('gmStateSpaceHDL_HalfWaveRectifier_HDL');

%% Set Model 'gmStateSpaceHDL_HalfWaveRectifier_HDL' HDL parameters
hdlset_param('gmStateSpaceHDL_HalfWaveRectifier_HDL', 'FloatingPointTargetConfiguration', hdlcoder.createFloatingPointTargetConfig('NativeFloatingPoint' ...
, 'LatencyStrategy', 'MIN') ...
);
hdlset_param('gmStateSpaceHDL_HalfWaveRectifier_HDL', 'MaskParameterAsGeneric', 'on');
hdlset_param('gmStateSpaceHDL_HalfWaveRectifier_HDL', 'Oversampling', 60);

% Set SubSystem HDL parameters
hdlset_param('gmStateSpaceHDL_HalfWaveRectifier_HDL/HDL Subsystem', 'FlattenHierarchy', 'on');

hdlset_param('gmStateSpaceHDL_HalfWaveRectifier_HDL/HDL Subsystem/HDL Algorithm/Mode Selection/Generate Mode Vector', 'Architecture', 'MATLAB Datapath');

The model uses single data types and generates HDL code in native floating-point mode. Floating-
point operators can introduce delays. Because the design contains feedback loops, for the model
transformation advisor to allocate enough delays for the operators inside the feedback loops, the
model uses clock-rate pipelining in conjunction with a large value for the Oversampling factor. An
Oversampling factor of 100 and the clock-rate pipelining optimization is saved on this model.

For more information, see:
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• “Clock-Rate Pipelining” on page 24-52
• “Oversampling factor” on page 16-15
• “Allocate Sufficient Delays for Floating-Point Operations” on page 10-36

Before you generate HDL code, it is recommended to enable generation of the validation model. The
validation model compares the output of the generated model after code generation and the original
model. To learn more, see “Generated Model and Validation Model” on page 24-5.

Run these commands to save validation model generation settings on your Simulink model:

HDLmodelname = 'gmStateSpaceHDL_HalfWaveRectifier_HDL';
hdlset_param(HDLmodelname, 'TargetDirectory', 'C:/Temp/hdlsrc');
hdlset_param(HDLmodelname, 'GenerateValidationModel', 'on');

To generate HDL code, run this command:

makehdl('gmStateSpaceHDL_HalfWaveRectifier_HDL/HDL Subsystem');

The generated HDL code and validation model are saved in C:/Temp/hdlsrc directory. The
generated code is saved as HDL_Subsystem_tc.vhd. To open the validation model, click the link to
gm_gmStateSpaceHDL_HalfWaveRectifier_HDL_vnl.slx in the code generation logs in the
Command Window.

Open the Compare block at the output of HDL Subsystem_vnl Subsystem of the validation model.
Then, open the Assert_Out1 block. To see the simulation results after HDL code generation, open
the Compare: Out1 Scope block:
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The top graph represents the output of the generated model, and the middle graph represents the
output of the implementation model. Since the output generated by both the models are exactly
matching, the error between them is zero, which is represented in the last graph.

Optimize the HDL Algorithm

Before you generate HDL code for the HDL Subsystem, you can optimize the algorithm by using
optimizations in HDL Coder. The optimizations save resources or improve the timing of your design
on the target FPGA device.

For example, to save resources on the target FPGA device, you can use the resource sharing
optimization. Resource sharing is an area optimization that identifies multiple functionally equivalent
resources and replaces them with a single. The data is time-multiplexed over the shared resource to
perform the same operations. See “Resource Sharing” on page 24-23.

In the HDL implementation model, you can share the masked subsystem blocks that perform state
updates and compute the output. To share the subsystems, specify a SharingFactor on the
subsystems.

Multiplyinputsubsys = 'gmStateSpaceHDL_HalfWaveRectifier_HDL/HDL Subsystem/HDL Algorithm/State Update';
Multiplystatesubsys = 'gmStateSpaceHDL_HalfWaveRectifier_HDL/HDL Subsystem/HDL Algorithm/Output';
open_system(Multiplyinputsubsys)
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open_system(Multiplystatesubsys)

To share these subsystems and generate HDL code:

1. Specify a SharingFactor of 2 on the Multiply Input and Multiply State subsystems.

hdlset_param([Multiplyinputsubsys '/Multiply Input'],'SharingFactor', 2)
hdlset_param([Multiplystatesubsys '/Multiply State'],'SharingFactor', 2)

2. Enable generation of the resource utilization report and the optimization report.

hdlset_param(HDLmodelname, 'resourcereport', 'on', 'optimizationreport', 'on')

3. Generate HDL code for the HDL Subsystem block in the implementation model.
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makehdl('gmStateSpaceHDL_HalfWaveRectifier_HDL/HDL Subsystem');

When you generate code, HDL Coder opens a Code Generation report. To see the status of the
resource sharing optimization, click the Streaming and Sharing section of the report.

See Also
Functions
checkhdl | makehdl

More About
• “Get Started with Simscape Electrical” (Simscape Electrical)
• “Troubleshoot Conversion of Simscape DC Motor Control to HDL-Compatible Simulink Model”

on page 32-40
• “Validate HDL Implementation Model to Simscape Algorithm” on page 32-65
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Partition Simscape Models Containing a Large Network into
Multiple Smaller Networks

This example shows how you can partition a solar power inverter model that contains a single, large
Simscape™ network into multiple networks. After you partition the network, you can run the
Simscape HDL Workflow Advisor to generate the HDL implementation model. To learn how you run
the Advisor for the model, see “Generate HDL Code for Simscape Models with Multiple Networks” on
page 32-21.

Why Partition a Simscape Network

When your Simscape model contains many switching elements, the state-space representation can
contain a large number of modes. The Simscape HDL Workflow Advisor simulates the Simscape
model to calculate the number of modes that are relevant. Certain Simscape models can have a large
number of modes that are relevant. The generated HDL implementation model for such a large
design can consume a significantly large number of resources, and the generated HDL
implementation md may even fail to synthesize on the target FPGA device. To reduce the number of
modes, you can partition the Simscape network in your model into multiple networks, and then run
the Simscape HDL Workflow Advisor.

Solar Power Inverter Model with Single Network

To open the solar power inverter example model, run:

open_system('sschdlexSolarInverterSingleNetworkExample')

For this example, the model is saved as Solar_Power_Inverter_Single_Network_HDL. This model is the
same as sschdlexSolarInverterSingleNetworkExample but has the subsystems rearranged and the
logic for the solar panel placed inside a Solar_Panel subsystem.

open_system('Solar_Power_Inverter_Single_Network_HDL')
set_param('Solar_Power_Inverter_Single_Network_HDL', 'SimulationCommand', 'Update')
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The model consists of four parts: solar panel, boost controller, inverter controller, and a boost
converter and full bridge inverter. The solar panel is modeled in Simulink® by using lookup tables.
The boost controller and inverter controller provide the control signals for the boost converter and
the full bridge inverter which is an H-bridge.

To see the boost converter and the inverter, open the Network subsystem.

open_system('Solar_Power_Inverter_Single_Network_HDL/Network')
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Run Simscape HDL Workflow Advisor

1. To open the Simscape HDL Workflow Advisor for the model, enter:

sschdladvisor('Solar_Power_Inverter_Single_Network_HDL')

### Running Simscape HDL Workflow Advisor for <a href="matlab:(Solar_Power_Inverter_Single_Network_HDL)">Solar_Power_Inverter_Single_Network_HDL</a>

2. Run the workflow to the Discretize Equations task. You see that the state-space representation
uses around 173 modes, which is a large number of modes.

Such a large number of modes can consume a significantly large number of hardware resources, and
may even cause the DUT subsystem in the HDL implementation model to fail to synthesize on the
target FPGA device.

Generate HDL Implementation Model and View Resource Consumption

To see the resource consumption:

1. Run the Generate implementation model task.
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2. Click the link to open the HDL implementation model. The model contains a HDL Subsystem block
that models the state-space equations for the Simscape network. Save the model as
Solar_Power_Inverter_Single_Network_StateSpace.slx.

open_system('Solar_Power_Inverter_Single_Network_StateSpace')
set_param('Solar_Power_Inverter_Single_Network_StateSpace', 'SimulationCommand', 'Update')
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3. Enable generation of the resource utilization report.

hdlset_param('Solar_Power_Inverter_Single_Network_StateSpace', 'ResourceReport', 'on')

4. Run the makehdl function to generate code for the HDL Subsystem block.

makehdl('Solar_Power_Inverter_Single_Network_StateSpace/HDL Subsystem')

If HDL Coder™ generates an error that it is unable to allocate delays, increase the Oversampling
factor. Start by increasing the Oversampling factor to 100, and then generate HDL code. If HDL
Coder is still unable to allocate delays, then further increase the Oversampling factor.

hdlset_param('Solar_Power_Inverter_Single_Network_StateSpace', 'Oversampling', 100)

5. As you generate HDL code, open the Code Generation Report. The resource utilization report
indicates a large amount of multipliers, adders, and registers that might be consumed on the target
FPGA device.
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Partition Solar Inverter Network into Multiple Simscape Networks

To reduce the number of modes, you can partition the Simscape network inside the Network
subsystem into two Simscape networks. To partition the network into multiple networks:

1. Identify the boundary for partitioning the network into multiple networks. An energy storage
element such as a capacitor or an inductor makes a good candidate for partitioning the network. To
produce a Simscape model that contains multiple networks and effectively reduces the number of
modes in the state-space representation, choose a boundary that produces identical or near identical
partitions. That is, the number of switching elements on either side of the boundary are identical or
nearly identical.

For the solar power inverter, you can choose the DC link capacitor between the H-bridge inverter and
the boost converter as the boundary for partitioning the network.

2. After you partition the network, prepare the modified Simscape model for compatibility with the
Simscape HDL Workflow Advisor. Place each partitioned network inside a subsystem and use a Solver
Configuration block for each network.
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The Simscape HDL Workflow Advisor uses the Solver Configuration block to identify each unique
network in your Simscape model.

3. For the simulation to converge when using multiple networks, in the network containing the boost
converter, add a snubber resistance and a controlled current source in parallel to the capacitor for
the current output to the inverter network.

4. In the inverter network, add a controlled voltage source to the voltage input to the network.

5. To break the algebraic loops in the system, add Delay blocks between the signal lines that connect
the output of one subsystem to the input of the other subsystem. For higher accuracy, add Data Type
Conversion blocks to provide double data types as inputs to the networks.
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Solar Power Inverter Model with Multiple Networks

The single network model is now partitioned into multiple networks. To open the model containing
multiple networks, enter:

open_system('sschdlexSolarInverterPartitionedNetworkExample')

To learn how you run the Simscape HDL Workflow Advisor and generate HDL code for this model, see
“Generate HDL Code for Simscape Models with Multiple Networks” on page 32-21.

See Also
Functions
checkhdl | makehdl | sschdladvisor

More About
• “Generate HDL Code for Simscape Models” on page 32-2
• “Simscape HDL Workflow Advisor Tasks” on page 33-2
• “Simscape HDL Workflow Advisor Tips and Guidelines” on page 33-6
• “Validate HDL Implementation Model to Simscape Algorithm” on page 32-65
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Generate HDL Code for Simscape Models with Multiple
Networks

This example shows how you run the Simscape HDL Workflow Advisor to generate the HDL
implementation model for a Simscape™ model that contains multiple networks. You can also generate
a validation logic that numerically compares each Simscape network with the corresponding state-
space implementation in the HDL implementation model. The Simscape model in this example is a
solar power inverter partitioned into two networks. To learn how this network is partitioned, see
“Partition Simscape Models Containing a Large Network into Multiple Smaller Networks” on page
32-13.

Why Use a Simscape Model with Multiple Networks

When your Simscape model contains many switching elements, the state-space representation can
contain a large number of modes. The generated HDL implementation model for such a large design
can consume a significantly large number of resources, and may even fail to synthesize on the target
FPGA device. To reduce the number of modes, you can partition the Simscape network in your model
into multiple networks, and then run the Simscape HDL Workflow Advisor.

Solar Power Inverter Model with Multiple Networks

To open the model that contains multiple networks, run:

open_system('sschdlexSolarInverterPartitionedNetworkExample')

For this example, the model is saved as Solar_Power_Inverter_Multiple_Network_HDL. This model is
the same as sschdlexSolarInverterPartitionedNetworkExample but has the subsystems rearranged
and the logic for the solar panel placed inside a Solar_Panel subsystem.

open_system('Solar_Power_Inverter_Multiple_Network_HDL')
set_param('Solar_Power_Inverter_Multiple_Network_HDL', 'SimulationCommand', 'Update')

 Generate HDL Code for Simscape Models with Multiple Networks

32-21



The model consists of four parts: solar panel, boost controller, inverter controller, and a boost
converter and full bridge inverter. The solar panel is modeled in Simulink® by using lookup tables.
The boost controller and inverter controller provide the control signals for the boost converter and
the full bridge inverter which is an H-bridge.

The original model contains the boost converter and full bridge inverter as a single network inside
one subsystem. To see this model, enter:

open_system('sschdlexSolarInverterSingleNetworkExample')

The partitioned model contains the two networks inside separate subsystems. To see the boost
converter, open the PV Boost subsystem.

open_system('Solar_Power_Inverter_Multiple_Network_HDL/PV Boost')
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To see the full bridge inverter, open the PV Inverter subsystem.

open_system('Solar_Power_Inverter_Multiple_Network_HDL/PV Inverter')

Run Simscape HDL Workflow Advisor for Model with Multiple Networks

1. To open the Simscape HDL Workflow Advisor for the model, enter:

sschdladvisor('Solar_Power_Inverter_Multiple_Network_HDL')

### Running Simscape HDL Workflow Advisor for <a href="matlab:(Solar_Power_Inverter_Multiple_Network_HDL)">Solar_Power_Inverter_Multiple_Network_HDL</a>

2. Run the workflow to the Check switched linear task.

The Simscape HDL Workflow Advisor lists the number of networks present in the model and the
number of algebraic and differential variables for each network. The Advisor uses the Solver
Configuration block to identify each unique network in your model.
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3. Run the Extract equations task.

The task displays the number of modes, states, inputs, outputs, and differential variables for each
Simscape network.

32 Simscape to HDL Workflow

32-24



4. Run the Discretize equations task.

The state-space representation now uses fewer modes. The number of modes is 58 for the boost
converter and 9 for the full bridge inverter, which results in a total number of 67 modes. The
reduction in the number of modes saves area of the HDL implementation model on the target device.

5. Change the Validation logic tolerance to 1e-4 and select the Generate validation logic for
the implementation model check box. Run the Generate implementation model task.
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Open HDL Implementation Model and Validate HDL Algorithm

To open the implementation model, click the link in the Generate implementation model task log.
Rename the model as Solar_Power_Inverter_Multiple_Network_StateSpace.

open_system('Solar_Power_Inverter_Multiple_Network_StateSpace')
set_param('Solar_Power_Inverter_Multiple_Network_StateSpace', 'SimulationCommand', 'Update')
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The model contains two HDL Subsystems. The HDL Subsystem block models the state-space
equations for the boost converter. The HDL Subsystem1 block models the state-space equations for
the full bridge inverter. The Validation and Validation1 subsystems compare functional equivalence of
the state space representation of the boost converter and full bridge inverter with the corresponding
Simscape network in the original model.

The state-space parameters are saved in a MAT file
Solar_multiple_network_stateSpaceParameters.mat. The file contains a cell array of two structures.
One structure contains the parameters for the boost converter. The other structure contains the
parameters for the full bridge inverter.

To compare the functional equivalence, simulate the model. If simulating the model produces
assertions, you can resolve the validation mismatch by modifying a combination of various settings in
the Generate implementation model task until the HDL implementation model matches the
Simscape algorithm. The settings include increasing the validation logic tolerance, increasing the
number of solver iterations, and changing the floating-point precision. For more information, see
“Validate HDL Implementation Model to Simscape Algorithm” on page 32-65.

Generate HDL Code and Validation Model

1. Enable generation of the resource utilization report.
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hdlset_param('Solar_Power_Inverter_Multiple_Network_StateSpace', 'ResourceReport', 'on')

2. Before you generate HDL code, it is recommended that you enable generation of the validation
model. The validation model compares the output of the generated model after code generation to the
output of the original model. To learn more, see “Generated Model and Validation Model” on page 24-
5.

HDLmodelname = 'Solar_Power_Inverter_Multiple_Network_StateSpace';
hdlset_param(HDLmodelname, 'TargetDirectory', 'C:/Temp/hdlsrc');
hdlset_param(HDLmodelname, 'GenerateValidationModel', 'on');

3. Run the makehdl function to generate code. To generate HDL code for both HDL Subsystem
blocks, you can place the blocks inside another top level subsystem and then generate HDL code.
Name this subsystem as HDL_DUT.

makehdl('Solar_Power_Inverter_Single_Network_StateSpace/HDL_DUT')

The generated HDL code and validation model are saved in C:/Temp/hdlsrc directory. The generated
code is saved as HDL_DUT_tc.vhd. To open the validation model, click the link to
gm_Solar_Power_Inverter_Multiple_Network_StateSpace_vnl.slx in the code generation logs in the
Command Window.

4. As you generate HDL code, open the Code Generation Report. The resource utilization report
indicates a large amount of adders, multipliers, and registers that might be consumed on the target
FPGA device.

The overall resource consumption of the two networks is significantly less than the resource
consumption of a single, large network. To learn about the resource consumption of the single solar
power inverter network, see “Partition Simscape Models Containing a Large Network into Multiple
Smaller Networks” on page 32-13.

See Also
Functions
checkhdl | makehdl | sschdladvisor
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More About
• “Generate HDL Code for Simscape Models” on page 32-2
• “Simscape HDL Workflow Advisor Tasks” on page 33-2
• “Simscape HDL Workflow Advisor Tips and Guidelines” on page 33-6
• “Validate HDL Implementation Model to Simscape Algorithm” on page 32-65
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Deploy Simscape™ Plant Models to Speedgoat FPGA I/O
Modules

This example shows how you can deploy the Simscape plant models on Speedgoat FPGA I/O modules
by using the HDL Workflow Advisor. This workflow is a two-step process.

1 Develop the Simscape model and convert it into an implementation model by using the Simscape
HDL Workflow Advisor. HDL code is generated from this implementation model. For more
information, see “Generate HDL Code for Simscape Models” on page 32-2.

2 Deploy HDL code to a Speedgoat I/O module by using the HDL Workflow Advisor.

Why Deploy a Simulink Model to Speedgoat FPGA Modules

You can use the HDL Workflow Advisor to deploy the Simulink™ model to Speedgoat FPGA I/O
modules. Simulating the plant model on the FPGA provides:

• Real-time Simulation: Hardware-in-the-loop provides real-time simulation of your Simscape
plant model.

• Hardware Acceleration: The speed of simulating physical systems increases by implementing it
on hardware as reconfigurable FPGAs provide rapid hardware prototyping. You can use this
capability to model complex physical systems.

Set Up and Configuration

To deploy the Simscape plant models onto Speedgoat FPGA modules:

1. Install Xilinx Vivado®

Speedgoat FPGA IO333-325K uses Xilinx Vivado. If it is not already present, install Xilinx Vivado
v2018.2. Then, set the tool path to the installed Xilinx Vivado 2018.2 executable. To set the tool path,
use the hdlsetuptoolpath function.

hdlsetuptoolpath('ToolName','Xilinx Vivado','ToolPath','C:\Xilinx\Vivado\2018.2\bin\vivado.bat')

2. Set Up I/O Module

To run the simulation of the Simscape plant model in real time on hardware, you must set up the I/O
module. For information on setting up the I/O module, see Xilinx HDL Software for Speedgoat I/O
Hardware.
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HDL Workflow Advisor

The HDL Workflow Advisor guides you through the stages of generating HDL code for a Simulink
subsystem and the FPGA design process, such as:

• Checking the model for HDL code generation compatibility and automatically fixing incompatible
settings.

• Generating HDL code, a test bench, and scripts to build and run the code and test bench.
• Synthesis and timing analysis through integration with third-party synthesis tools.
• Completing the automated workflows for deployment on hardware platforms such as System-on-

Chip(SoC), FPGAs, and Speedgoat I/O modules.

This example shows how to use the HDL Workflow Advisor to deploy HDL code on Speedgoat
IO333-325K module that uses Xilinx Vivado. For example, to open the HDL Workflow Advisor for a
Subsystem inside the model, enter:

load_system('sschdlexTwoLevelConverterIgbtExample')
hdladvisor('sschdlexTwoLevelConverterIgbtExample/Simscape_system')

For more information, see hdladvisor.

In the HDL Workflow Advisor, the left pane lists the folders in the hierarchy. Each folder represents a
group or category of related tasks. Expanding the folders shows the available tasks in each folder.
From the left pane, you can select a folder or an individual task. The HDL Workflow Advisor displays
information about the selected folder or task in the right pane. The contents of the right pane
depends on the selected folder or task. For some tasks, the right pane contains simple controls for
running the task and a display area for status messages and other task results. For other tasks that
involve setting code or test bench generation parameters, the right pane displays several parameter
and option settings.

To learn more about each individual task, right-click that task, and select What's This?.

For more information, see “Getting Started with the HDL Workflow Advisor” on page 31-2.

Two Level Ideal Converter Model

This example uses a Two-Level Ideal converter Simscape plant model. To open this model, enter:
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open_system('sschdlexTwoLevelConverterIdealExample')

Save this model locally as TwoLevelConverter_HDL.slx to run this workflow.

open_system('TwoLevelConverter_HDL')
set_param('TwoLevelConverter_HDL','SimulationCommand','update')

open_system('TwoLevelConverter_HDL/Simscape_system')
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The Simscape subsystem receives six-switch controlling pulses as input. The Simscape subsystem
acts as a generator that uses a two-level, carrier-based PWM method to:

1 Sample a reference wave.
2 Compare the sample to a triangular carrier wave.
3 Generate a switch-on pulse if a sample is higher than the carrier signal or a switch-off pulse if a

sample is lower than the carrier wave.

Generate HDL Implementation Model

To generate an implementation model, use the Simscape HDL Workflow Advisor. Run the
sschdladvisor function for your model:

sschdladvisor('TwoLevelConverter_HDL')

### Running Simscape HDL Workflow Advisor for <a href="matlab:(TwoLevelConverter_HDL)">TwoLevelConverter_HDL</a>

 Deploy Simscape™ Plant Models to Speedgoat FPGA I/O Modules

32-33



To generate the implementation model, in the Simscape HDL Workflow Advisor, keep the default
settings for all the tasks, and then run the tasks. You see a link to the model in the Generate
implementation model task.

The Implementation Model

To open the implementation model, enter:

open_system('gmStateSpaceHDL_TwoLevelConverter_HDL')

The model contains two subsystems. The HDL Subsystem models the state-space representation that
you generated from the Simscape model. The ports of this subsystem use the same name as the
Simulink-PS Converter and PS-Simulink Converter blocks that you use in your original Simscape
model. If you navigate inside this Subsystem, you see several delays, adders, and Matrix Multiply
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blocks that model the state-space equations. From and Goto blocks inside this subsystem provide the
same input as that of the original model to the HDL Subsystem.

Deploy Two Level IGBT Converter Model to Speedgoat IO333-325K Module

This example shows how to deploy the implementation model of Two Level IGBT Converter to
Speedgoat IO333-325K FPGA module by using the HDL Workflow Advisor. The Speedgoat IO333
FPGA module uses Xilinx Vivado and IP Core Generation Infrastructure. Before you run the Workflow
Advisor, make sure that you have specified the path to the installed Xilinx Vivado executable.

1. Open HDL Workflow Advisor

To open the HDL Workflow Advisor for the Implementation model, enter:

hdladvisor('gmStateSpaceHDL_TwoLevelConverter_HDL/HDL Subsystem')

2. In Set Target Device and Synthesis Tool task, set these parameters and select Run This Task:

• Target workflow as Simulink Real-Time FPGA I/O
• Target platform as Speedgoat IO333-325K
• Synthesis tool as Xilinx Vivado

3. In Set Target Reference Design task, select a value of x4 for the parameter PCIe lanes, and
select Run This Task.
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4. In Set Target Interface task, map the Input and Output single data type ports to PCIe
Interface and select Run This Task.
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5. In Set Target Frequency task, select a target frequency that is within the range. If the target
frequency is set to higher values, it results in a failure to generate the bitstream when you run task
Build FPGA Bitstream. This example has Target Frequency set to 50 MHz.

6. Right-click Generate RTL Code and IP Core task and select Run to Selected Task. This step
generates a warning if the model uses vector data types. Click the link in the warning, select
Scalarize vector ports, and rerun the task.

7. Run the workflow to the Generate Simulink Real-Time interface task. In Create Project task,
you can open the Vivado project and see the implemented design.

8. When the Generate Simulink Real-Time interface task passes, you see a link to open the
Simulink Real-Time Interface Model. Select this link.
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Export HDL Workflow to Script

Optionally, you can:

• Save the HDL Workflow Advisor settings to script and run the script using command line.
• Import the settings to modify it and rerun it using the HDL Workflow Advisor User Interface.

Export an HDL Workflow Script

1 In the HDL Workflow Advisor, configure and run all the tasks.
2 Select File > Export to Script.
3 In the Export Workflow Configuration dialog box, enter a file name and save the script.

The script is a MATLAB® file that you can run from the command line.
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Import an HDL Workflow Script

1 In the HDL Workflow Advisor, select File > Import from Script.
2 In the Import Workflow configuration dialog box, select the script file and click Open.

The HDL Workflow Advisor updates the tasks with the imported script settings.

Simulink Real-Time FPGA I/O Workflow Example

This example shows how to configure and run an exported HDL Workflow script.

To generate an HDL Workflow script, configure and run the HDL Workflow Advisor with your
Simulink design, then export the script.

This script is a Simulink Real-Time FPGA I/O workflow script that targets the Speedgoat
IO333-325K module, which uses the Xilinx Vivado synthesis tool.

To edit the exported script in MATLAB command window, enter:

edit('hdlworkflow_slrt.m')

See Also
Functions
checkhdl | makehdl

More About
• “Run HDL Workflow with a Script” on page 31-32
• “IP Core Generation Workflow for Speedgoat I/O Modules” on page 41-98
• “FPGA Programming and Configuration” on page 41-66
• “Simscape HDL Workflow Advisor Tasks” on page 33-2
• “Validate HDL Implementation Model to Simscape Algorithm” on page 32-65
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Troubleshoot Conversion of Simscape DC Motor Control to HDL-
Compatible Simulink Model

This example shows how to modify a Simscape™ plant model to generate an HDL-compatible
Simulink® model with HDL Coder™. HDL code is then generated from this Simulink model.

Introduction

The Simscape plant model is converted to an HDL-compatible Simulink model by using the Simscape
HDL Workflow Advisor. To run the Advisor, you run the sschdladvisor function for the model.

The Simscape HDL Workflow Advisor generates an HDL implementation model from which you
generate HDL code. Before you generate the implementation model, configure the Simscape plant
model for generation of the implementation model using the Simscape HDL Workflow Advisor. For
more information, see “Generate HDL Code for Simscape Models” on page 32-2.

In some cases, the Simscape plant model may not be compatible for generation of the implementation
model using the Simscape HDL Workflow Advisor. For HDL compatibility, you modify the Simscape
plant model and then run the Simscape HDL Workflow Advisor. This example illustrates the DC Motor
Control plant model. The model contains a nonlinear Friction block. You can use the approach in this
example to convert Simscape models with few nonlinear blocks to a HDL-compatible Simulink model.

DC Motor Control Model

The DC Motor Control model is a physical model developed in Simscape. The model contains
nonlinear elements and must be modified for implementation model generation.

open_system('ee_dc_motor_control')

Enclose the DC Motor and Friction block inside a Subsystem and save the model as
ee_dc_motor_control_original.

open_system('ee_dc_motor_control_original')
set_param('ee_dc_motor_control_original','SimulationCommand','Update')

DC motor control is used as a speed control structure. A PWM controlled four-quadrant Chopper is
used to feed the DC motor. The DC motor consists of Rotational Electromechanical Converter,
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Resistor, Inductance, Friction block and an Inertia block. The control subsystem includes the outer
speed-control loop, the inner current-control loop and the PWM generation.

sim('ee_dc_motor_control_original')
open_system('ee_dc_motor_control_original/Scope')

Make DC Motor Model HDL-Compatible

To convert the model to a model that is compatible for conversion with Simscape HDL Workflow
Advisor:

1. Detect presence of nonlinear components or blocks in the model. To verify the presence of
nonlinear blocks in Simscape plant model, enter:

simscape.findNonlinearBlocks('ee_dc_motor_control_original')
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Found network that contains nonlinear equations in the following blocks:
    {'ee_dc_motor_control_original/DC Motor/Friction'}

The number of linear or switched linear networks in the model is 0.
The number of nonlinear networks in the model is 1.

ans =

  1x1 cell array

    {'ee_dc_motor_control_original/DC Motor/Friction'}

The Simscape plant model has a nonlinear block, which is the Friction block.

2. For HDL compatibility, the model must not contain nonlinear elements. Remove the Friction block
from the model.

3. To simulate the model faster and to reduce the time that the Simscape HDL Workflow Advisor
takes to extract the state-space equations, reduce the stop time of this model. In the Simulink
Toolstrip, on the Simulation tab, change Stop Time to 1.

Save the changes into a new model as ee_dc_motor_control_modified.

open_system('ee_dc_motor_control_modified')
set_param('ee_dc_motor_control_original','SimulationCommand','Update')

To see the simulation results of the modified model, run these commands:

sim('ee_dc_motor_control_modified')
open_system('ee_dc_motor_control_modified/Scope')
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Run Simscape HDL Workflow Advisor and Verify Simulation Results

To open the Simscape HDL Workflow Advisor, run the sschdladvisor for your model.

sschdladvisor('ee_dc_motor_control_modified')

### Running Simscape HDL Workflow Advisor for <a href="matlab:(ee_dc_motor_control_modified)">ee_dc_motor_control_modified</a>
Updating Model Advisor cache...
Model Advisor cache updated. For new customizations, to update the cache, use the Advisor.Manager.refresh_customizations method.

To generate the implementation model, in the Simscape HDL Workflow Advisor, leave all tasks to the
default settings and then run the tasks. You see a link to the model in the Generate implementation
model task.
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Click the link to open the implementation model.

Simulate Implementation model and Generate HDL code

Before you can generate HDL code from the model, you must change the sample time and specify
certain settings that make the model compatible for HDL code generation. The sample time of
modified plant model is Ts and the number of solver iterations to compute the modes is 3. Therefore,
you must change the sample time of the model. To specify the HDL-compatible settings:

1 In the Configuration Parameters dialog box:

• On the Solver pane, set Fixed-step size (fundamental sample time) to Ts/3 and select Treat
each discrete rate as a separate task.
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• On the Diagnostics > Sample Time pane, set Multitask rate transition and Single task rate
transition to error.

1 Add a Rate Transition block in your Simscape model that is placed inside the Subsystem block in
your implementation model as illustrated in figure below.

To simulate the model, run this command and then open the Scope block to see the results:

sim('gmStateSpaceHDL_ee_dc_motor_control_modifie')
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You see that the output generated by the modified Simscape plant model matches the output
generated by the implementation model.

Generate HDL Code and Validation Model

Before you generate HDL code, it is recommended that you enable generation of the validation
model. The validation model compares the output of the generated model after code generation and
the modified Simscape plant model. To learn more, see “Generated Model and Validation Model” on
page 24-5.

To save validation model generation settings on your Simulink model, run this command:

hdlset_param('gmStateSpaceHDL_ee_dc_motor_control_modifie', 'GenerateValidationModel', 'on');

To generate HDL code, run this command:

makehdl('gmStateSpaceHDL_ee_dc_motor_control_modified/HDL Subsystem')

By default, HDL Coder generates VHDL code. To generate Verilog code, run this command:

makehdl('gmStateSpaceHDL_ee_dc_motor_control_modifie/HDL Subsystem', 'TargetLanguage', 'Verilog')
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The generated HDL code and the validation model is saved in the hdlsrc directory. The generated
code is saved as HDL_Subsystem_tc.vhd. You can also verify the simulation results by running the
validation model gm_gmStateSpaceHDL_ee_dc_motor_control_modifie_vnl.slx.

See Also
Functions
checkhdl | makehdl

More About
• “Generate HDL Code for Simscape Models” on page 32-2
• “Get Started with Simscape Electrical” (Simscape Electrical)
• “Simscape HDL Workflow Advisor Tasks” on page 33-2
• “Validate HDL Implementation Model to Simscape Algorithm” on page 32-65
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Troubleshoot Conversion of Simscape Permanent Magnet
Synchronous Motor to HDL-Compatible Simulink Model

This example shows how to modify a Simscape™ plant model that is continuous time and contains
nonlinear elements to generate an HDL-compatible Simulink® model. You can then generate HDL
code for this Simulink model.

Introduction

The Simscape HDL Workflow Advisor converts the Simscape plant model to an HDL-compatible
implementation model from which you generate HDL code. In some cases, the Simscape plant model
might not be compatible for implementation model generation. In such cases, you first modify the
Simscape plant model and then run the Advisor.

This example illustrates how to modify a permanent magnet synchronous motor model for
compatibility with Simscape HDL Workflow Advisor. The model is continuous time and contains many
nonlinear components. You modify this model to a discrete-time switched linear model and then run
the Simscape HDL Workflow Advisor.

Permanent Magnet Synchronous Motor Model

The permanent magnet synchronous motor model is a physical system in Simscape. To open the
model, run this command:

open_system('ee_pmsm_drive')

Save this model as ee_pmsm_drive_original.slx.

open_system('ee_pmsm_drive_original')
set_param('ee_pmsm_drive_original','SimulationCommand','Update')
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The model contains a Permanent Magnet Synchronous Machine (PMSM) and inverter sized that you
can use in a typical hybrid vehicle. The inverter is connected to the vehicle battery. To see how the
model works, simulate the model.

sim('ee_pmsm_drive_original')
open_system('ee_pmsm_drive_original/Scope')
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This model is a continuous time system. To use this model with Simscape HDL Workflow Advisor,
convert the model into a discrete system. You then modify the model to use blocks that are
compatible for the Simscape to HDL workflow.

Convert Continuous-Time Model to Fixed-Step Discrete Model

1. Configure the solver options for HDL code generation by using a Solver Configuration block. In the
block parameters:

• Select Use local solver.
• Use Backward Euler as the Solver type.
• Specify a discrete Sample time, Ts.

2. Modify the Solver settings of the model. On the Modeling tab, click Model Settings. On the
Solver pane:

• Set Solver selection type to Fixed-Step.
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• Set Solver to discrete (no continuous states).
• Set Fixed-step size (fundamental sample time) to Ts.
• In the section Tasking and sample time options, clear Treat each discrete rate as a

separate task.

3. Modify the display settings of your model. On the Debug tab, select Information Overlays >
Sample Time > Colors. Review the Sample Time Legend for blocks that have a sample time other
than Ts, or run at a continuous time scale. Double-click the Step block and set the Sample time to
Ts.

4. For faster simulation, ignore the zero-sequence parameters of the PMSM. Double-click the
Permanent Magnet Synchronous Motor block and set Zero Sequence to Exclude.

The model is now a fixed-step discrete system. Simulate the model and compare the Torque Demand
and Motor Torque signals in the Simulation Data Inspector. The signals differ by more than the
tolerance levels toward the end of simulation but are within acceptable limits.

You use a two-step process to convert the Simscape plant model to a HDL-compatible implementation
model:

1 Implement a Simulink model that replaces the nonlinear part of the Simscape algorithm by using
equivalent Simulink blocks.

2 Modify this model to use blocks that are compatible for Simscape to HDL workflow.
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Replace Nonlinear Simscape Blocks with Equivalent Simulink Implementation

1. To make the Simscape plant model HDL-Compatible, identify the presence of any nonlinear
components or blocks in the model:

simscape.findNonlinearBlocks('ee_pmsm_drive_original')

Found network that contains nonlinear equations in the following blocks:
    {'ee_pmsm_drive_original/Permanent Magnet Synchronous Motor'}

The number of linear or switched linear networks in the model is 0.
The number of nonlinear networks in the model is 1.

ans =

  1x1 cell array

    {'ee_pmsm_drive_original/Permanent Magnet Synchronous Motor'}

The Simscape plant model has a nonlinear block, which is the PMSM block.

2. The PMSM block, Encoder block, Gmin resistor, and Motor & Load Inertia block are replaced with
Simulink blocks that perform the equivalent algorithm.

To implement the Electrical Interface block, you use Controlled Current Sources.
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The interface to the PMSM is isolated from the implementation. To implement the PMSM by using
Simulink blocks, you use Electrical Equations and Mechanical Equations. Inside the Park Transform
and Inverse Park Transform blocks, eliminate the Sine and Cosine blocks.
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Identify Simscape Blocks that Run on FPGA and Restructure Simscape Model

The ee_pmsm_drive_singleSL model illustrates how you modify the original model
ee_pmsm_drive_original and prepare the model for readiness with Simscape HDL Workflow Advisor.

1. To modify the Simscape model for compatibility with HDL implementation model generation,
identify the part of the Simscape algorithm that you want to run on the FPGA. In this example, you
can run the three-phase inverter, electrical interface, PWM, and the Permanent Magnet Synchronous
Motor (Simulink) on the FPGA.

2. After blocks to run on the FPGA have been identified, the blocks are placed inside a top-level
subsystem. This subsystem is the DUT (Design Under Test) and contains blocks you run on the FPGA
after generating the HDL implementation model. Afer running the Simscape HDL Workflow Advisor,
this subsystem is replaced with the HDL algorithm. This part of the Simscape model must run at the
fastest sample rate. Rate Transition blocks are added to upsample the design.

3. To save resource usage on the target hardware, Data Type Conversion blocks are added to convert
the model to use single data types.

The ee_pmsm_drive_singleSL model shows how these blocks are placed inside a top-level subsystem
Subsystem1, which is the DUT. The blocks inside the subsystem are running at a faster rate.

load_system('ee_pmsm_drive_singleSL')
set_param('ee_pmsm_drive_singleSL','SimulationCommand','update')
open_system('ee_pmsm_drive_singleSL/Subsystem1')

32 Simscape to HDL Workflow

32-54



In the ee_pmsm_drive_singleSL model, the three-phase inverter and electrical interface are placed
inside the Simscape Inverter and Interface subsystem.

open_system('ee_pmsm_drive_singleSL/Subsystem1/Simscape Inverter and Interface')

Modify Permanent Magnet Synchronous Motor Subsystem for HDL Compatibility

The preceding section describes the changes that have been applied to the masked subsystem,
Permanent Magnet Synchronous Motor (Simulink).

1. The Integrator with Wrapped State (Discrete or Continuous) block is not compatible for HDL code
generation. This block has been replaced with a Wrapped State DTI subsystem.

PMSMSubsystem = 'ee_pmsm_drive_singleSL/Subsystem1/Permanent Magnet Synchronous Motor (Simulink)';
open_system(PMSMSubsystem, 'force')
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open_system([PMSMSubsystem, '/Wrapped State DTI'])
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2. To reduce the FPGA area footprint for the:

• Park Transform block, Clarke Transform and Clarke to Park Angle Transform blocks are added.
• Inverse Park Transform block, Inverse Park to Clarke Angle Transform and Inverse Clarke

Transform blocks are added.

open_system([PMSMSubsystem, '/Park Transform'])

open_system([PMSMSubsystem, '/Inverse Park Transform'])

3. For the Discrete-Time Integrator blocks inside this subsystem, the Sample time is set to -1, Gain
value to Ts, and Integrator method to Accumulation:Forward Euler. You can view these block
parameters programmatically by running these commands.

blockDTI = find_system(PMSMSubsystem, 'LookUnderMasks', 'on', ...
                                'blocktype', 'DiscreteIntegrator');
 for  n  =  1:numel(blockDTI)
    Integpath = blockDTI(n);
    Integname = get_param(Integpath, 'Name');
    stime = num2str(get_param(blockDTI{n}, 'SampleTime'));
    gval = num2str(get_param(blockDTI{n}, 'gainval'));
    integmethod = num2str(get_param(blockDTI{n}, 'IntegratorMethod'));
    disp('----------------------------------------------------')
    disp(Integpath)
    disp(['Sample time: ', stime, '    Gain: ', gval, ...
                    '    Integration method: ', integmethod])
 end
disp('----------------------------------------------------')

----------------------------------------------------
    {'ee_pmsm_drive_singleSL/Subsystem1/Permanent Magnet...'}

Sample time: -1    Gain: Ts    Integration method: Accumulation: Forward Euler
----------------------------------------------------
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    {'ee_pmsm_drive_singleSL/Subsystem1/Permanent Magnet...'}

Sample time: -1    Gain: Ts    Integration method: Accumulation: Forward Euler
----------------------------------------------------

Prepare Model for Simscape HDL Workflow Advisor

Further changes apply to the top level of the model.

1 A Digital Clock that has Sample time Ts has been added and connected to a Display block.
2 The Three-Phase Current Sensor Simscape block is replaced by feeding the controller with three-

phase currents coming from the PMSM model.

This figure illustrates the top level of the model with the above changes.

open_system('ee_pmsm_drive_singleSL')
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Run Simscape HDL Workflow Advisor

To open the Simscape HDL Workflow Advisor, run the sschdladvisor function for your model:

sschdladvisor('ee_pmsm_drive_singleSL')

To generate the implementation model, in the Simscape HDL Workflow Advisor, leave the default
settings and then run the tasks. To open the implementation model, in the Generate
implementation model task, click the link.
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Reconfigure Implementation Model for HDL Code Generation

In this example, the implementation model has been modified for deployment to Speedgoat FPGA I/O
platforms. The model is resaved as gmStateSpaceHDL_ee_pmsm_drive_GenerateHDL.

To reconfigure the single-precision implementation model for HDL code generation:

1. Run the hdlsetup function on the model.

hdlsetup('gmStateSpaceHDL_ee_pmsm_drive_GenerateHDL')

2. The model solver setting, Fixed-step size, is modified to Ts/5 because the default Number of
solver iterations is 5.

3. The Subsystem1 block contains blocks that you run on the FPGA. The Simscape Inverter and
Interface subsystem is replaced with the HDL Subsystem block. The HDL Subsystem block contains
the HDL Algorithm that contains the HDL implementation of the Simscape algorithm. To see the HDL
algorithm implementation, open this block.

model_name = 'gmStateSpaceHDL_ee_pmsm_drive_GenerateHDL';
dut_name = 'gmStateSpaceHDL_ee_pmsm_drive_GenerateHDL/Subsystem1';
load_system(model_name)
set_param(model_name,'SimulationCommand','Update')
open_system([dut_name, '/HDL Subsystem'])
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open_system([dut_name, '/HDL Subsystem/HDL Algorithm'])

4. The HDL Algorithm Subsystem has a Valid Out signal. The Permanent Magnet Synchronous Motor
(Simulink) subsystem is placed inside an Enabled Subsystem and the vs_LL input port is connected to
the Valid Out signal.

open_system(dut_name)
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5. Move the block inside the subsystem that originally contained the Simscape algorithm to the top
level of the model.

This figure illustrates the top level of the model with the above changes.

open_system(model_name)
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Generate HDL Code

Before you generate HDL code, to compare the output of the generated model after code generation
with the modified Simscape plant model, specify validation model generation.

hdlset_param(model_name, 'GenerateValidationModel', 'on');

To learn more, see “Generated Model and Validation Model” on page 24-5.

To generate HDL code, run this command:

makehdl('gmStateSpaceHDL_ee_pmsm_drive_GenerateHDL/HDL Subsystem')

By default, HDL Coder generates VHDL code. To generate Verilog code, run this command:

makehdl('gmStateSpaceHDL_ee_pmsm_drive_GenerateHDL/HDL Subsystem', 'TargetLanguage', 'Verilog')
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The code generator saves the generated HDL code and the validation model in the hdlsrc folder.
The generated code is saved as HDL_Subsystem_tc.vhd. To see the resource usage information of
your design, view the Code Generation Report.

To open the validation model, after you generate HDL code, open the
gm_gmStateSpaceHDL_ee_pmsm_drive_GenerateHDL_vnl.slx model.

Deploy Permanent Magnet Synchronous Motor to Speedgoat FPGA I/O Modules

In the HDL implementation model, Subsystem1 contains blocks you run on the FPGA. You can run the
HDL Workflow Advisor on this Subsystem to deploy the HDL algorithm onto FPGA boards in
Speedgoat target platforms. For an example, see “Hardware-in-the-Loop (HIL) Implementation of a
Simscape™ Model on Speedgoat FPGA I/O Modules”.

See Also
Functions
checkhdl | makehdl

More About
• “Generate HDL Code for Simscape Models” on page 32-2
• “Deploy Simscape™ Plant Models to Speedgoat FPGA I/O Modules” on page 32-30
• “Validate HDL Implementation Model to Simscape Algorithm” on page 32-65
• “Simscape HDL Workflow Advisor Tips and Guidelines” on page 33-6
• “Get Started with Simscape Electrical” (Simscape Electrical)
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Validate HDL Implementation Model to Simscape Algorithm
If you design your algorithm by using Simscape switched linear blocks, you can run the Simscape
HDL Workflow Advisor to generate an HDL implementation model. The HDL implementation model
represents the Simscape algorithm by using Simulink blocks that are compatible for HDL code
generation.

Before you prototype the implementation model on an FPGA or target Speedgoat FPGA I/O modules,
you can verify the functionality of your design in the Simulink modeling environment. To verify the
functionality, specify insertion of validation logic in the HDL implementation model when you run the
Simscape HDL Workflow Advisor. This logic verifies whether the numeric results of the HDL
implementation model match the original Simscape algorithm.

In some cases, there can be a mismatch in simulation results between the Simscape algorithm and
the corresponding HDL implementation. Such mismatches generate warnings or assertions when you
simulate the implementation model. To resolve the warnings, use a combination of various settings in
the Generate implementation model task as illustrated below.

Bridge Rectifier Model
This example uses the bridge rectifier model to illustrate how to generate an implementation model
with validation logic inserted in the model, and how you can resolve any assertions that may be
generated when you simulate the implementation model.

1 Open the bridge rectifier model. In the MATLAB Command Window, enter:

open_system('sschdlexBridgeRectifierExample')
open_system('sschdlexBridgeRectifierExample/Simscape_system')

Inside the Simscape_system, you see four diodes arranged in a bridge configuration. For both
positive and negative input values, this configuration provides a positive, rectified output.

2 Open the Simscape HDL Workflow Advisor for your model:
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sschdladvisor('sschdlexBridgeRectifierExample')
3 Right-click the Get state-space parameters task and select Run to Selected Task to run all

tasks in the Advisor except for the Generate implementation model task.
4 In the Generate implementation model task, select the Generate validation logic for the

implementation model check box. Leave the other options with their default values and select
Run This Task.

After running this task, keep the UI window for this task open. If simulating the HDL
implementation model generates warnings, you modify the settings in the Generate
implementation model task and then rerun this task. You do not have to modify or rerun other
tasks.

5 Click the link to open the HDL implementation model. You see a Validation Subsystem that
compares the simulation results of the Simscape model to the HDL implementation model.
Simulate the implementation model.
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You see that simulating the model generates multiple assertions indicating a mismatch in the
simulation results. If you open the Diagnostic Viewer, you see this message:

Assertion detected in 'gmStateSpaceHDL_BridgeRectifier_HDL_SimMismatch/
Validation/Check Static Range1' at time 0.04186 [4982 similar]

The message indicates that the Simscape™ algorithm does not match the equivalent HDL
implementation. To resolve the validation mismatch, you can modify various settings in the Generate
implementation model task until the HDL implementation model matches the Simscape algorithm.
In most cases, to resolve the numeric mismatch, you may want to use a combination of these settings.

Increase Validation Logic Tolerance
Conversion of a Simscape algorithm to an equivalent HDL implementation leads to rounding errors.
By default, the Validation logic tolerance is set to 1e-12. This tolerance value is relatively small
and can be difficult to achieve especially with single-precision data types in the HDL implementation
model. To resolve the mismatch:

1 Start by increasing the Validation logic tolerance to an initial value such as 1e-4.
2 Select Generate validation logic for the implementation model and run the task to generate

the HDL implementation model that includes validation logic.
3 Simulate the model and check whether the simulation displays assertions in the Diagnostic

Viewer. If the simulation results produce warnings, proceed to the next step to increase the
number of solver iterations.

Increase Number of Solver Iterations
For each mode in the physical system, the switched linear workflow arrives at a state-space
representation. The solver method is iterative and performs multiple computations to determine the
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correct mode for the next time step. After a certain number of iterations, the output value from the
next time step becomes the same as the value from the previous time step. This consistency in the
output value indicates the correct number of solver iterations.

To improve the numeric accuracy of the generated HDL implementation model and resolve the
mismatch, increase the number of solver iterations. This flowchart illustrates how to change the
Number of solver iterations.

Note When you increase the number of solver iterations, the code generator changes the sample
time of the generated HDL implementation model. A large number of iterations can increase the
simulation time significantly.

Use Larger Floating-Point Precision
You can use the Floating-point precision setting in the Generate implementation model task to
specify the floating-point data type you want to use for the algorithm inside the HDL Subsystem.
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Specify whether you want to store the matrix coefficients in single or double data types and
whether to use single or double when performing the computations.

Floating-Point Precision Description
Double Using double floating-point precision increases the

numerical accuracy of the generated model and the maximum
achievable target frequency. However, the area consumption
and pipeline latency are also increased.

Single This is the default setting for floating-point precision.
Single coefficient, double
computation

This mode offers a tradeoff between Single and Double
modes of floating-point precision. To save memory usage, the
coefficients that are stored in single. The matrix
computations are then performed in double for improved
accuracy.

This flowchart illustrates how to change the Floating Point Precision and improve the numeric
accuracy of the generated HDL implementation model.
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Note Double-precision operations have large latencies and require a large Oversampling factor to
allocate sufficient delays for the floating-point operations, which reduces the sampling frequency. For
a tradeoff between accuracy and precision, use Single coefficient, double computation as
the Floating Point Precision.

After specifying double data types, if the simulation results still produce warnings:

1 Proceed to the first step to further increase the validation logic tolerance. Use a tolerance value
of 1e-03 and then simulate the model to see if the numeric accuracy requirements are met.

2 Increase the number of solver iterations if you still see warnings in the Diagnostic Viewer.
Continue iterating between these steps till the HDL implementation model numerically matches
the Simscape algorithm.

For the bridge rectifier model, to resolve the warnings, set the Validation logic tolerance to 1e-4
and specify the Floating Point Precision as double. After you generate the implementation model
with the validation logic, you see that simulating the model does not display warnings in the
Diagnostic Viewer.

See Also
Functions
simscape.findNonlinearBlocks | sschdladvisor

More About
• “Generate HDL Code for Simscape Models” on page 32-2
• “Simscape HDL Workflow Advisor Tasks” on page 33-2
• “Simscape HDL Workflow Advisor Tips and Guidelines” on page 33-6
• “Deploy Simscape™ Plant Models to Speedgoat FPGA I/O Modules” on page 32-30
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Improve Sampling Rate of HDL Implementation Model
Generated from Simscape Algorithm

If you design your algorithm by using Simscape switched linear blocks, you can run the Simscape
HDL Workflow Advisor to generate an HDL implementation model. When you open the HDL
implementation model, you see the HDL algorithm that models the state-space representation by
using Simulink blocks that are compatible for HDL code generation. To learn more about the
Simscape HDL Workflow Advisor, see “Simscape HDL Workflow Advisor Tasks” on page 33-2.

Sampling Frequency
When you generate HDL code and deploy the plant model onto an FPGA, you may want to improve
the sampling frequency. The sampling frequency depends on these parameters:

• FPGA clock frequency
• Oversampling factor
• Number of solver iterations

To improve the sampling rate, you want to maximize the FPGA clock frequency, and minimize the
oversampling factor and number of solver iterations. As you improve the sampling rate, make sure
that the updated sampling frequency is equivalent to the fixed sample time that you specify for your
original Simscape model by using the Solver Configuration block. To learn more about how this block
is used in your model before running the Simscape HDL Workflow Advisor, see “Generate HDL Code
for Simscape Models” on page 32-2.

The preceding section uses the boost converter model as an example to illustrate how you can modify
the oversampling factor and the number of solver iterations to improve the sampling rate.

Boost Converter Model
This example uses the boost converter model to illustrate the change in sample time in the generated
HDL implementation model and the oversampling factor that is saved on the model.

1 Open the boost converter model. To learn how the boost converter is implemented, open the
Simscape_system Subsystem. To open the boost converter model, in the MATLAB Command
Window, enter:

open_system('sschdlexBoostConverterExample')
open_system('sschdlexBoostConverterExample/Simscape_system')
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You see that the model runs at a sample time 1e-6. The sample time of 200e-9 corresponds to
the sample time of the sources that drive the Simscape algorithm.

2 Open the Simscape HDL Workflow Advisor for your model:

sschdladvisor('sschdlexBoostConverterExample')
3 Run the workflow to the Generate implementation model task.

After running this task, you see a link to the generated HDL implementation model. Click the link
to open the HDL implementation model.

4 Simulate the HDL implementation model. When you navigate the model to the HDL Algorithm
Subsystem, you see that the model uses single data types and runs at a sample time 200e-9,
which is 5 times faster than the original Simscape model.

5 Run this command to see the HDL parameter settings that are saved on the model:

hdlsaveparams('gmStateSpaceHDL_sschdlexBoostConverterExamp')

%% Set Model 'gmStateSpaceHDL_BoostConverter_HDL' HDL parameters
hdlset_param('gmStateSpaceHDL_BoostConverter_HDL', ... 
'FloatingPointTargetConfiguration', hdlcoder.createFloatingPointTargetConfig('NativeFloatingPoint' ...
, 'LatencyStrategy', 'MIN') ...
);
hdlset_param('gmStateSpaceHDL_BoostConverter_HDL', 'HDLSubsystem', 'gmStateSpaceHDL_BoostConverter_HDL');
hdlset_param('gmStateSpaceHDL_BoostConverter_HDL', 'MaskParameterAsGeneric', 'on');
hdlset_param('gmStateSpaceHDL_BoostConverter_HDL', 'Oversampling', 60);

% Set SubSystem HDL parameters
hdlset_param('gmStateSpaceHDL_BoostConverter_HDL/HDL Subsystem', 'FlattenHierarchy', 'on');
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% Set SubSystem HDL parameters
hdlset_param('gmStateSpaceHDL_BoostConverter_HDL/HDL Subsystem/HDL Algorithm/State Update/Multiply State', ... 
'SharingFactor', 1);

The HDL parameters that are saved indicate that the model has the native floating-point mode
enabled and uses an Oversampling factor of 60 and has Latency Strategy set to MIN. This default
combination of HDL parameters offers an optimal trade-off between oversampling factor and the
target FPGA clock frequency and improves the sampling frequency. If you want to further improve the
sampling frequency, you can reduce the number of iterations and the oversampling factor as
illustrated below.

Reducing Number of Solver Iterations
For each mode in the physical system, the switched linear workflow arrives at a state-space
representation. The solver method is iterative and performs multiple computations to determine the
correct mode for the next time step. After a certain number of iterations, the output value from the
next time step becomes the same as the value from the previous time step. This consistency in the
output value indicates the correct number of solver iterations.

To improve the sampling rate, you want to reduce the number of solver iterations. The number of
solver iterations depends on various factors such as the complexity of your design, the number of
modes in the design that the workflow must calculate, and so on.

In the Generate implementation model task of the Simscape HDL Workflow Advisor:

1 Start by reducing the Number of solver iterations to a value such as 3
2 Select Generate validation logic for the implementation model, and then generate the HDL

implementation model.
3 Simulate the HDL implementation model and open the Diagnostic Viewer to verify that the model

does not display warnings or assertions.

If you see warnings or assertions, it indicates a simulation mismatch because the number of solver
iterations that you specified is not adequate to compute the required number of modes in the state-
space design. To learn how to resolve the mismatch, see “Validate HDL Implementation Model to
Simscape Algorithm” on page 32-65.

Note  To resolve the mismatch, it is recommended that you do not change the Floating-point
precision to double. Double-precision operations have large latencies and require a large
Oversampling factor to allocate sufficient delays for the floating-point operations, which reduces
the sampling frequency.

Using Oversampling Factor and Latency Strategy
The Oversampling factor specifies the factor by which the FPGA clock rate is a multiple of the HDL
implementation model base sample rate. The HDL implementation model contains feedback loops and
performs multiplication of large matrices that have floating-point data types inside the feedback
loops. To accommodate the large latency introduced by these floating-point operations inside the
feedback loops, the code generator uses a large value of oversampling factor in conjunction with the
clock-rate pipelining optimization on the model. For more information, see “Strategy 1: Global
Oversampling” on page 10-37.
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You vary the oversampling factor and latency strategy of the floating-point operator in conjunction.
The default oversampling factor of 60 and minimum latency strategy gives an optimal sampling
frequency. To achieve the maximum FPGA clock frequency, use the maximum latency strategy. When
you specify this latency strategy, the floating-point operations introduce the maximum number of
delays. To allocate these delays, increase the oversampling factor. If the increase in FPGA clock
frequency outweighs the increase in oversampling factor, you achieve a higher sampling frequency.

To change the latency strategy and oversampling factor in conjunction from the Configuration
parameters dialog box:

1 On the HDL Code Generation > Floating Point pane, change the Latency Strategy to Max .
2 On the HDL Code Generation > Global Settings pane, increase the Oversampling factor to

a value such as 100 depending on the complexity of your HDL design.

For the boost converter model, the default settings of Number of solver iterations set to 5,
Oversampling factor set to 60, and Latency Strategy set to Min provides the optimal sampling
frequency.

See Also
Functions
simscape.findNonlinearBlocks | sschdladvisor

More About
• “Solvers for Real-Time Simulation” (Simscape)
• “Simscape HDL Workflow Advisor Tips and Guidelines” on page 33-6
• “Latency Considerations with Native Floating Point” on page 10-63
• “Deploy Simscape™ Plant Models to Speedgoat FPGA I/O Modules” on page 32-30
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Simscape HDL Workflow Advisor Tasks

• “Simscape HDL Workflow Advisor Tasks” on page 33-2
• “Simscape HDL Workflow Advisor Tips and Guidelines” on page 33-6
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Simscape HDL Workflow Advisor Tasks
By using the Simscape HDL Workflow Advisor, you can generate an HDL implementation model. You
can then generate HDL code for the implementation model and deploy the code onto FPGA platforms.
To open the Advisor, run the sschdladvisor function. For example:

sschdladvisor('sschdlexHalfWaveRectifierExample')

In the Simscape HDL Workflow Advisor, for summary information on each Simscape HDL Workflow
Advisor folder or task, right-click that folder or task and select What's This?.

Simscape HDL Workflow Advisor folder
The Simscape HDL Workflow Advisor consists of various tasks that you can use to convert your
Simscape model to an HDL implementation model. You can generate code for the HDL Subsystem in
this model. The Simscape HDL Workflow Advisor consists of folders that perform these tasks:

• The Code generation compatibility folder consists of tasks that check whether the model is a
switched linear system and uses the correct solver configuration settings.

• The State-space conversion folder consists of tasks that derive the state-space parameters from
your model for generating the implementation model.

• The Implementation model generation folder consists of a task that generates the HDL
implementation model from the state-space parameters.

To learn more about each folder or task, right-click that folder or task, and select What's This?.

Code generation compatibility folder
The tasks in the Code generation compatibility folder check whether:

• You have correctly specified the solver configuration settings and the settings are consistent
across Solver Configuration blocks inside each network into your Simscape model.

• Your model uses switched linear blocks.

Check solver configuration task
The Check solver configuration task checks whether you have specified the correct settings and
the settings are consistent across Solver Configuration blocks inside each network in your Simscape
model.

The Advisor checks whether you specified these settings for all Solver Configuration blocks:

• Use local solver is selected
• Solver type is set to Backward Euler
• A discrete sample time, Ts is specified
• Use fixed-cost runtime consistency iterations is either selected or cleared
• Nonlinear iterations value is the same when Use fixed-cost runtime consistency iterations

is selected
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If you did not specify these settings, the task provides a link to the Solver Configuration block in your
model and the settings to modify.

Check switched linear task
The Check switched linear task checks whether you use switched linear blocks in your Simscape
model.

For this task to pass, the model that you use must contain linear or switched linear blocks. Nonlinear
blocks and time-varying blocks (such as Variable Inductor and Variable Capacitor blocks) are not
supported.

Linear blocks are blocks that are defined by a linear relationship. For example, a resistor is a linear
block since it is defined by the equation V = IR. Similarly, an inductor is linear because it is defined
by V = d/dt I L. Switched linear blocks are blocks such as diodes or switches. These blocks are
defined by a linear relationship such as V = IR where R can switch between two or more values
depending on the state of the diodes or switches.

This task runs simscape.findNonlinearBlocks on your model to check for the presence of
nonlinear blocks. For example:

sschdladvisor('sschdlexHalfWaveRectifierExample')

If your model contains nonlinear blocks, running this task fails. In the Result log, you see links
provided to the nonlinear blocks in your model. To continue the workflow, replace the nonlinear
blocks with switched linear blocks, and rerun the task.

When this task passes, it displays:

• A message indicating that the model is switched linear.
• Number of Simscape networks present in the model.
• The number of algebraic and differential variables for each Simscape network with links to the

blocks in your Simscape model that are related to these variables.

Differential variables consume a quadratic amount of multiplier resources on the target FPGA
device. Algebraic variables consume a linear amount of multiplier resources. You can use this
information to determine how many multiplier resources your Simscape design consumes on the
FPGA device.

• A message with links to the Simulink-PS Converter and PS-Simulink Converter blocks in your
model if you use the default names for these blocks.

The input and output ports of the HDL Subsystem in the implementation model use the names
that you specify for the Simulink-PS Converter and PS-Simulink Converter blocks. To avoid this
message, use a meaningful name for these blocks.

State-space conversion folder
Before you can generate the HDL implementation model, run the task in this folder to derive the
state-space parameters from your model. The tasks in this model:

• Simulate the Simscape model to extract the differential algebraic equations.
• Discretize the differential algebraic equations to generate an abstract state space representation

that represents the model in the form of linear modes.
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Extract Equations
The Extract Equations task simulates your Simscape model to extract the differential algebraic
equations. This task derives the Simulation stop time value from the original Simscape model.

If this task passes, it displays the number of states, inputs, outputs, modes, and differential variables
for each Simscape network present in the model. The task also displays a message if the model is
purely linear and does not contain any nonlinear elements.

The number of modes is limited by the number of switches present in your Simscape model. The
maximum number of modes possible are 2^(number of switches). All the modes that the Advisor
generates are executed as per the input parameters by using a switching logic. A valid number of
modes are selected depending on the design of your Simscape model.

Discretize Equations
This task discretizes the differential algebraic equations and generates an abstract discrete state-
space representation. This task represents the model in the form of linear modes. Each mode is
represented by a set of state-space matrices. This task derives the Discrete sample time value from
the original Simscape model.

If this task passes, it displays the Discrete sample time and number of parameters and modes for
each Simscape network present in the model.

Implementation model generation folder
The task in the Implementation model generation folder generates an HDL implementation model
from the discrete state-space representation. The implementation model represents the Simscape
algorithm by using Simulink blocks that are compatible for HDL code generation. If the task
Generate implementation model in this folder passes, it provides a link to the implementation
model.
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Generate implementation model task
To generate an HDL implementation model from the discrete state-space representation, run this
task. The HDL implementation model contains a HDL Subsystem that models the state-space
equations by using the state-space parameters derived by running the Get state-space parameters
task. The HDL Subsystem block represents the DUT for which you can generate HDL code.

Before you run this task, you can:

• Specify a custom value for the Number of Solver iterations setting. To learn more, see “Using
Number of Solver Iterations” on page 33-9.

• Use the Floating-point precision setting to specify whether the HDL Subsystem in the
generated implementation model stores matrix types in single or double and computes the
results in single or double data types. To learn more, see “Floating-Point Precision and
Numerical Accuracy” on page 33-10.

• Use the Generate validation logic for the implementation model to generate the logic that
verifies whether the generated HDL implementation model is functionally equivalent to the
original Simscape model. The logic is generated for each Simscape network present in the model.
You can specify a tolerance for the numerical correctness by using the Validation logic
tolerance. The Validation logic tolerance is an absolute value. For example, you can specify a
tolerance value of 1e-12.

If the task passes, you see a link to the implementation model.

See Also

More About
• “Simscape HDL Workflow Advisor Tips and Guidelines” on page 33-6
• “Generate HDL Code for Simscape Models” on page 32-2
• “Deploy Simscape™ Plant Models to Speedgoat FPGA I/O Modules” on page 32-30
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Simscape HDL Workflow Advisor Tips and Guidelines
By using the Simscape HDL Workflow Advisor, you can generate an HDL implementation model. You
can generate HDL code for the implementation model and deploy the generated code onto FPGA
platforms. To open the Advisor, run the sschdladvisor function. For example:

sschdladvisor('sschdlexHalfWaveRectifierExample')

The Simscape HDL Workflow Advisor consists of various tasks that convert your Simscape model to
the HDL implementation model. When running various tasks in the Simscape HDL Workflow Advisor,
you can follow certain tips and guidelines. You see these tips in the UI window of a particular task.
For example, in the task that discretizes the equations to state-space parameters, the UI has a tip that
suggests how to change the sample time. This section contains more information about each tip in the
Simscape HDL Workflow Advisor UI.

Estimating Resource Consumption Using Algebraic and Differential
Variables
After you run the Check Switched Linear task, the task reports the number of differential and
algebraic variables for each Simscape network present in the model. For example, this figure
illustrates that there are two differential and two algebraic variables in the boost converter example
model sschdlexBoostConverterExample.

sschdladvisor('sschdlexHalfWaveRectifierExample')

Run the workflow to the Check Switched Linear task.

By viewing the number of algebraic and differential variables, you can determine how the design
consumes resources on the FPGA device. If Nd is the number of differential variables and Na is the
number of algebraic variables, the resource usage on the target hardware varies according to the
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relation Nd*(Nd+Na). Differential variables consume a quadratic amount of multiplier resources on
the target FPGA device. Algebraic variables consume a linear amount of multiplier resources. You can
use this information to determine how many multiplier resources your Simscape design consumes on
the FPGA device and whether your design is ready for conversion to state-space representation.

Setting Simulation Stop Time for Extracting Equations
Change Simulation Stop Time

When you run the Extract Equations task, the Simscape HDL Workflow Advisor reports the
simulation stop time. The simulation stop time corresponds to the amount of time that the Advisor
takes to run simulation on your Simscape model. The stop time must not be significantly large such
that the Advisor takes a long time to run this task. Use a stop time that is sufficient to reach the
required number of modes for your model. To change the stop time, navigate to the Simscape model,
and then specify the Stop Time.

Simulation Stop Time and Number of Modes

In the Extract Equations task, when you extract the differential algebraic equations, the Simscape
HDL Workflow Advisor simulates the model to cover the nonlinear range of Simscape blocks. This
task can take a long time depending on the number of switching elements in the Simscape model.

For a switched linear model, each switching element in the design has two modes. A switched linear
model with n switching elements has 2^n possible modes. For Simscape models with large number of
switching elements, the number of modes can become significantly large. For example, the Vienna
rectifier has 21 switching elements, which translates to 2^21 possible modes. The Simscape HDL
Workflow Advisor can take a long time to simulate such a large model and cover such a large number
of modes. In addition, the HDL implementation model that you generate for such a design can
consume a large amount of resources or may not even fit on the target FPGA device.

In most cases, while simulating the model, the Advisor does not have to reach the entire 2^n modes.
For example, consider this bridge rectifier model. To open this model, enter:

open_system('sschdlexBridgeRectifierExample')

Inside the Simscape_system Subsystem, you see the four diodes arranged in a bridge configuration.
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As each diode has two states, the Simscape design can have 2^4 = 16 possible states. In contrast,
the bridge rectifier has only three modes. The modes are:

• Diodes D1 and D2 are ON, D3 and D4 are OFF
• Diodes D1 and D2 are OFF, D3 and D4 are ON
• Diodes D1, D2, D3, and D4 are OFF

This example shows that, based on the Simscape algorithm and the input to the design, you can set
the simulation stop time to a minimum value that covers the number of modes to be reached.

Changing Sample Time for Discretizing Equations
Change Sample Time

When you run the Discretize Equations task, the Simscape HDL Workflow Advisor reports the
discrete sample time. The discrete sample time corresponds to the sample time that the Advisor uses
to discretize the differential algebraic equations to state-space parameters. To change the sample
time, in your Simscape model, open the Block Parameters dialog box for the Solver Configuration
block, and then specify the Sample time.

Sample Time and Discretizing Equations

In the Discretize Equations task, the Simscape HDL Workflow Advisor discretizes the differential
algebraic equations into state-space parameters. You extract the differential algebraic equations by
simulating the Simscape model in the previous task, Extract Equations. The Discretize Equations
task runs much faster than the Extract Equations task because the Advisor only has to discretize
the differential algebraic equations to state-space parameters.

The Discretize Equations task obtains the sample time information from the sample time that you
specify for the Solver Configuration block in your model. The Advisor then discretizes the equations
to state-space parameters based on this sample time information.

33 Simscape HDL Workflow Advisor Tasks

33-8



Using Number of Solver Iterations
What is Number of Solver Iterations?

In the Generate implementation model task, you can specify the Number of solver iterations.
The number of solver iterations refer to the number of times the state-space model is executed per
mode. The Simscape HDL Workflow Advisor generates the number of iterations that are required for
executing the state-space model, automatically. By default, the Number of Solver iterations is 5 for
switched linear models and 1 for linear models.

For each mode in the physical system, the switched linear workflow arrives at a state-space
representation. The solver method is iterative and performs multiple computations to determine the
correct mode for the next time step. After a certain number of iterations, the output value from the
next time step becomes the same as the value from the previous time step. This consistency in the
output value indicates the correct number of solver iterations.

Change Number of Solver Iterations

By default, you can change the number of solver iterations on this task. Increasing the number of
solver iterations improves the numerical accuracy of generated HDL implementation model. To
achieve higher sampling frequencies, reduce the number of solver iterations. Choose a value for
number of solver iterations that trades off numerical accuracy and sampling frequency.

On the Solver Configuration block, if you specify the Use fixed-cost runtime consistency
iterations setting, you cannot change the Number of solver iterations setting on this task. To
change the number of solver iterations, on the Solver Configuration block, change the Nonlinear
iterations parameter and rerun the Generate implementation model task.

Trading off Numerical Accuracy and Sampling Frequency

To verify whether the numeric results of the HDL implementation model matches the original
Simscape model, select Generate validation logic for the implementation model. If the numeric
results from the HDL implementation model do not match, you can increase the number of solver
iterations. To learn more, see “Increase Number of Solver Iterations” on page 32-67.

Changing the number of solver iterations trades off numerical accuracy for sampling frequency.
Increasing the number of solver iterations increases the sample time of the HDL implementation
model which can reduce the sampling frequency. See “Reducing Number of Solver Iterations” on
page 32-73.

Using Fixed-Cost Runtime Consistency Iterations

On the Solver Configuration block, the Use fixed-cost runtime consistency iterations check box is
cleared by default. If you select this check box, the Nonlinear iterations setting on the Solver
Configuration block becomes the same as the Number of solver iterations setting in the Generate
implementation model task.

By default, Nonlinear iterations is set to 2. When you run the Generate implementation model
task, the Advisor sets the Number of solver iterations to 2 and this setting cannot be modified. To
modify the Number of solver iterations, either:

• Change Nonlinear iterations.
• Clear Use fixed-cost runtime consistency iterations and then change the Number of solver

iterations.
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To learn more about the Use fixed-cost runtime consistency iterations setting, see Solver
Configuration. See also “Solvers for Real-Time Simulation” (Simscape).

Floating-Point Precision and Numerical Accuracy
Use the Floating-point precision setting to specify whether you want the algorithm inside the HDL
Subsystem in the generated implementation model to use single or double data types when
performing the matrix computations.

Floating-Point Precision Description
Double Using double floating-point precision increases the

numerical accuracy of the generated model and the maximum
achievable target frequency. However, the area consumption
and pipeline latency are also increased.

Single This is the default setting for floating-point precision.
Single coefficient, double
computation

This mode offers a tradeoff between Single and Double
modes of floating-point precision. To save memory usage, the
coefficients that are stored in single. The matrix
computations are then performed in double for improved
accuracy.

To learn more about the floating-point precision settings and tradeoffs, see “Use Larger Floating-
Point Precision” on page 32-68.

See Also

More About
• “Generate HDL Code for Simscape Models” on page 32-2
• “Deploy Simscape™ Plant Models to Speedgoat FPGA I/O Modules” on page 32-30
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Model Protection in HDL Coder

• “Create Protected Models to Conceal Contents and Generate HDL Code” on page 34-2
• “Test Protected Models” on page 34-9
• “Package and Share Protected Models” on page 34-11
• “Obfuscate Generated HDL Code from Simulink Models” on page 34-14
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Create Protected Models to Conceal Contents and Generate
HDL Code

When you want to share a model with a third-party without revealing intellectual property, protect
the model. When you create a protected model, you conceal the implementation details of the original
model by compiling it into a model reference. The protected model includes derived files to support
the optional functionalities that you specify, such as support for C code generation or HDL code
generation.

If you have a HDL Coder license, you can create a protected model with simulation and HDL code
generation support. The protected model user can then generate HDL code for models that reference
the protected model that you created. To enable C code generation support or specify additional
options such as code interface, you must have a Simulink Coder or Embedded Coder® license. To
learn more about that workflow, see “Protect Models to Conceal Contents” (Simulink Coder).

How Model Protection Works
When you protect a model, you can allow the user of the protected model to:

• Open a read-only web view of the model, including model contents and block parameters.
• Simulate the model in accelerator (default), rapid accelerator, and normal modes.
• Generate HDL code for a model that includes the protected model.
• Generate C code for a model that includes the protected model, if you have Simulink Coder.
• Generate code for the protected model through the standalone interface, if you have Embedded

Coder and specify an ERT-based system target file for the model.

You can optionally password-protect each option. If you choose-password protection for one of these
options, the software protects the supporting files by using AES-256 encryption.

How to Create a Protected Model
Create a protected model by using one of these options:

• The Model block context menu.
• The Simulink.ModelReference.protect function.
• The Simulink Toolstrip. To create a protected model from the current model:

• On the Apps tab, select HDL Coder. The HDL Code tab appears.
• Select the Model block and on the HDL Code > Share tab, select Generate Protected

Model.

When you create a protected model:

• By default, Simulink creates and stores a protected version of the model in the current working
folder. The protected model has the same name as the source model, with an .slxp extension.

• The original model file, with the .slx extension, does not change. If you protect the model
through a Model block, that Model block does not change.

• The protected model file consists of the model itself and supporting files, depending on the options
that you select when you create the protected model.
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If your protected model requires supporting files, such as base workspace definitions or a data
dictionary, include these files with the model when you share the protected model.

General Protected Model Requirements and Limitations
When you create a protected model, consider these requirements:

• You must have a HDL Coder license to create a protected model.
• The model must be available on the MATLAB path.
• The model cannot have unsaved changes.
• The model uses the configuration that is active during protection. You cannot change the
configuration of a protected model.

• If the model contains variants, the protected model includes only the variant that is active during
protection.

• The protected model name must not be modified. Renaming the model or changing the suffix
makes the model unusable until you restore its original name and suffix.

The model must also meet all requirements listed in “Model Reference Requirements and
Limitations” (Simulink).

Protected Model Restrictions for HDL Code Generation
These configurations are not supported when you create a protected model that has HDL code
generation support.

• The protected model must use the same configuration parameters as the top level that it is
referenced from.

• The solver settings that you specify in the Solver pane of the Configuration Parameters dialog box
must be Fixed-step and auto.

• You must not enable these settings in the Configuration Parameters dialog box:

• Generate parameterized HDL code from masked subsystem
• Module name prefix
• Use trigger signal as clock
• Minimize clock enables
• Scalarize vector ports
• Allow clock-rate pipelining at DUT output ports

• Models with multiple clock signals or the Clock inputs set to multiple in the Configuration
Parameters dialog box are not supported.

• Models that contain model arguments are not supported.
• HDL source code of the protected model cannot be obfuscated.
• Nested protected models are not supported.
• The protected model cannot have callbacks.

To learn more about limitations for C code generation, see “Code Generation Requirements and
Limitations” (Simulink Coder).
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Prepare the Parent Model
This example shows how you can protect a model that is referenced by a Model block in the parent
model. Open the parent model hdlcoder_protected_model_parent_harness.

open_system('hdlcoder_protected_model_parent_harness')
set_param('hdlcoder_protected_model_parent_harness','SimulationCommand','Update')

Navigate to the Model block in your parent model. If you double-click the DUT Subsystem, and then
open the mynested Subsystem, you see a Model block that references the model
hdlcoder_referenced_model_gain.

open_system('hdlcoder_protected_model_parent_harness/DUT/mynested')

Open the Model block and make sure that a modelname with the extension .slx is specified in the
Model name field. When both the referenced model and the protected model exist in the same
folder, the parent model references the protected model unless the extension is specified.

In this case, the Model block is referencing the model hdlcoder_referenced_model_gain.slx,
the model that you want to protect. Double-click the Model block or open the model
hdlcoder_referenced_model_gain in a separate window.

open_system('hdlcoder_referenced_model_gain')
set_param('hdlcoder_referenced_model_gain','SimulationCommand','Update')
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Protect the Referenced Model
In this example, you use the context menu to convert a Model block to a protected model.

1 Right-click the Model block and select Subsystem & Model Reference > Create Protected
Model for Selected Model Block.

2 In the Create Protected Model dialog box, select the Simulate dialog box. This option allows the
protected model user to simulate the model that references the protected model.

3 If you have Simulink Coder or Embedded Coder, you can specify additional settings such as
enable code generation support with password protection by using the Use generated code
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check box or specify a Code interface. To learn more about these options, see “Protect Models
to Conceal Contents” (Embedded Coder).

4 Select the Use generated HDL code check box to generate HDL code for a model that
references the protected model. If you want to password-protect this functionality of the
protected model, you must specify a minimum of eight characters. You can specify a unique
password for this option. You cannot obfuscate the HDL source code for a protected model.

5 In the Create protected model in field, specify the folder path for the protected model. The
default value is the current working folder.

6 To create a harness model for the protected model, select the Create harness model for
protected model check box. In this example, leave the check box cleared. Click Create.

HDL Coder then checks compatibility of the model for HDL code generation and then generates
code for the model. The generated code file contents are in the hdlsrc folder. To learn about the
files that are generated, see “Package and Share Protected Models” on page 34-11.

If you selected the check box when you created the protected model, the harness model opens as
a new, untitled model that contains only a Model block that references the protected model. To
use the protected model, reference it through a Model block such as the one included in the
harness model. The Simulation mode for the Model block is set to Accelerator. You cannot
change the mode. For more information, see “Reference Protected Models from Third Parties”
(Simulink).

To learn more about these UI options, see “Create Protected Model” (Simulink Coder).

To create a protected model when using the Simulink.ModelReference.protect function, set
the Mode to HDLCodeGeneration. For example, run this command to protect the referenced model
hdlcoder_referenced_model_gain:

Simulink.ModelReference.protect('hdlcoder_referenced_model_gain', ... 
                                    'Mode','HDLCodeGeneration')

Protected Model Report
When you create the protected model from the Simulink Editor, a protected model report is
generated and included as part of the protected model. For this example, to view the protected model
report, double-click the protected model or right-click the protected-model badge icon on the block in
the harness model and select Display Report.
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The report contains:

• A Summary, including the following tables:

• Environment, providing the Simulink version, the Simulink Coder version, the HDL Coder
version, and platform used to create the protected model.

• Supported functionality, reporting On, Off, or On with password protection for each
possible functionality that the protected model supports. If you configure your protected model
for multiple targets, this table includes a list of supported targets.
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• Licenses, listing licenses required to run the protected model.
• An Interface Report, including model interface information such as input and output
specifications, interface parameters, and data stores.

To generate a report when using the Simulink.ModelReference.protect function, set the
‘Report’ option to True.

Generate HDL Code for Models Referencing Protected Model
If the protected model created has simulation and HDL code generation support, the protected model
user can simulate and generate HDL code from a model that references the protected model. You
generate HDL code for a model that references a protected model in the same manner as how you
would generate code for a regular model.

If the protected model is password-protected, before you generate code, right-click the protected
model badge icon and select Authorize. You must then enter the password for each option. If the
entered password matches the password that you specified when creating the protected model, the
model is authorized. You can then generate HDL code for the model.

For example, to generate HDL code for the protected model
hdlcoder_referenced_model_gain.slxp that is referenced by the
hdlcoder_protected_model_parent_harness model:

1 Authorize the protected model hdlcoder_referenced_model_gain.slxp if you specified a
password when creating the protected model.

2 Generate HDL code for the DUT Subsystem from the context menu or by using the makehdl
function.

makehdl('hdlcoder_protected_model_parent_harness/DUT')

See Also
Functions
Simulink.ModelReference.modifyProtectedModel | Simulink.ModelReference.protect

More About
• “Test Protected Models” on page 34-9
• “Package and Share Protected Models” on page 34-11
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Test Protected Models
To test a protected model that you created, compare the simulation results of the protected model to
the output of the original model. As you supply the protected model from the original model, both the
original and the protected model might exist on the MATLAB path.

In the parent model, if the Model block Model name parameter names the model without providing a
suffix, the protected model takes precedence over the unprotected model. To override this default
when testing the output, in the Model block Model name parameter, specify the file name with the
extension of the unprotected model, .slx.

To compare the unprotected and protected versions of a Model block, you can use the Simulation
Data Inspector. This example uses hdlcoder_protected_model_parent_harness and the
protected model, hdlcoder_referenced_model_gain.slxp, which you created in “Create
Protected Models to Conceal Contents and Generate HDL Code” on page 34-2.

1 If it is not already open, open the model hdlcoder_protected_model_parent_harness.

open_system('hdlcoder_protected_model_parent_harness')
2 Make sure that the Model block in the hdlcoder_protected_model_parent_harness/DUT/

mynested Subsystem is referencing the original model
hdlcoder_referenced_model_gain.slx and not the protected model.

3 Enable logging for the output signals of the Model block. Right-click the output signals and select
Log Selected Signals.

4 Simulate the model and click the Simulation Data Inspector. In the Simulation Data Inspector,
select the signals that you logged to see the simulation results. Save this simulation run with a
name such as original_model_run.

5 Now, in the Block Parameters dialog box for the Model block, change the Model name to
hdlcoder_referenced_model_gain.slxp.

A badge icon appears on the Model block indicating that you are referencing the protected
model. If you haven't already created the protected model, follow the steps mentioned in “Create
Protected Models to Conceal Contents and Generate HDL Code” on page 34-2.

6 Simulate the model, which now refers to the protected model. When the simulation is complete, a
new run appears in the Simulation Data Inspector. Save this run as protected_model_run.

7 In the Simulation Data Inspector, click the Compare tab. From the Baseline and Compare To
lists, select the original_model_run and the protected_model_run. To compare the runs,
click Compare Runs.

This figure displays the comparison between the Baseline and Compare To lists. You see that the
simulation results match.
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See Also
Functions
Simulink.ModelReference.modifyProtectedModel | Simulink.ModelReference.protect

More About
• “Export Signal Data Using Signal Logging” (Simulink)
• “Compare Simulation Data” (Simulink)
• “Package and Share Protected Models” on page 34-11

34 Model Protection in HDL Coder

34-10



Package and Share Protected Models
In addition to the protected model file (.slxp), you can include additional files in the protected
model package. Some ways to deliver the protected model package are:

• Provide the .slxp file and other supporting files as separate files.
• Combine the files into a ZIP or other container file.
• Combine the files by using a manifest. For more information, see “Export Files in a Manifest”

(Simulink).
• Provide the files in some other standard or proprietary format specified by the receiver.

Whichever approach you use to deliver a protected model, include information on how to retrieve the
original files.

Harness Model
You can create a harness model when you create your protected model. The harness model contains a
Model block that references the protected model. A third-party can use the Model block to reference
your protected model.

MAT-File with Base Workspace Definitions
Referenced models can use object definitions or tunable parameters that are defined in the MATLAB
base workspace. These variables are not saved with the model. When you protect a model, you must
obtain the definitions of required base workspace entities and ship them with the model.

The following base workspace variables must be saved to a MAT-file:

• Global tunable parameter
• Global data store
• The following objects used by a signal that connects to a root-level model Inport or Outport:

• Simulink.Signal
• Simulink.Bus
• Simulink.Alias
• Simulink.NumericType that is an alias

To determine the required base workspace definitions and save them to a MAT-file, see “Protected
Models for Model Reference” (Simulink). Before executing the protected model as a part of a third-
party model, the receiver of the protected model must load the MAT-file.

Simulink Data Dictionary
Referenced models can use data definitions from a data dictionary, which are not saved with the
model. When you protect a model that uses a data dictionary, package and ship the data dictionary
with the protected model.
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Protected Model File Contents
A protected model file (.slxp) consists of the derived files that support the options that you selected
when you created the protected model. The derived files are unpacked when you or a third-party use
the protected model in simulation. You do not need to package these derived files with the protected
model.

The derived files that are unpacked depends on the support that you enabled when creating the
protected model. The slprj/sim/model/* files are deleted after they are used.

This table illustrates the files that are unpacked depending on the options that you specified. If you
specified the Use generated code or Code Interface options when creating the protected model,
additional files are unpacked in the derived folder. To learn about these files, see “Protected Model
File Contents” (Simulink Coder).
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Protected Model Derived Files

Supported Functionality Derived Files
Created a protected model
for simulation only and the
referencing model is in
Normal mode

The model.mexext file is placed in the build folder.

Created protected model for
simulation only and
referencing model is in
Accelerator or Rapid
Accelerator mode.

These files are unpacked in the slprj/sim/ folder:

• slprj/sim/model/*.h
• slprj/sim/model/modellib.a (or modellib.lib)
• slprj/sim/model/tmwinternal/*
• slprj/sim/_sharedutils/*

For the protected model report, these additional files are unpacked
(but not in the build folder):

• slprj/sim/model/html/*
• slprj/sim/model/buildinfo.mat

Created protected model
with HDL code generation
support.

The files are unpacked in the hdlsrc folder: (Additional files depend
on whether you enabled support for other options such as code
generation).

• hdlsrc/model/model.vhd (or model.v if you specified
Verilog as the Target language).

• hdlsrc/model/Subsystem.vhd (or Subsystem.v if you
specified Verilog as the Target language of the model that you
protected. The additional HDL files depend on how hierarchically
the referenced model was designed).

• hdlsrc/model/model_pkg.vhd (This file is not generated if you
specified Verilog as the Target language of the model that you
protected).

• hdlsrc/model/model_report.html
• hdlsrc/model/gm_model.slxp (This is a generated protected

model. If you use cosimulation, HDL Coder instantiates this
generated protected model).

See Also
Functions
Simulink.ModelReference.modifyProtectedModel | Simulink.ModelReference.protect

More About
• “Create Protected Models to Conceal Contents and Generate HDL Code” on page 34-2
• “Test Protected Models” on page 34-9

 Package and Share Protected Models

34-13



Obfuscate Generated HDL Code from Simulink Models
To share HDL code with a third party without revealing the intellectual property, you can generate
obfuscated HDL code from Simulink models. Obfuscation reduces readability of the code. The
generated HDL code does not have any comments, newlines, or spaces, and replaces identifier names
with random names.

How to Generate Obfuscated HDL Code
By default, the generated HDL code is not obfuscated. The HDL code contains newlines, comments,
and is readable.

To generate obfuscated HDL code for the DUT subsystem in your model:

1 In the Apps tab, select HDL Coder. The HDL Code tab appears.
2 Open the HDL Code Generation pane of the Configuration Parameters dialog box. In the HDL

Code tab, select Settings > HDL Code Generation Settings.
3 Specify generation of obfuscated HDL code. In the Configuration Parameters dialog box, on the

HDL Code Generation > Global Settings > Coding Style > RTL Style section, select the
Generate obfuscated HDL code check box.

4 Generate HDL code. Select the DUT subsystem as the Code for subsystem, and then click the
Generate HDL Code button.

Tip By default, HDL Coder generates obfuscated VHDL code. To generate obfuscated Verilog
code, in the HDL Code Generation pane, set Language to Verilog and then click the
Generate HDL Code button.

To generate obfuscated HDL code from the command line, use the ObfuscateGeneratedHDLCode
property with hdlset_param or makehdl. For example, to generate obfuscated HDL code for the
symmetric_fir subsystem in the sfir_fixed model:

makehdl('sfir_fixed/symmetric_fir', 'ObfuscateGeneratedHDLCode', 'on')

% To generate obfuscated Verilog code, set 'Targetlanguage' to 'Verilog'
makehdl('sfir_fixed/symmetric_fir', 'TargetLanguage', 'Verilog', ...
                                      'ObfuscateGeneratedHDLCode', 'on')

Generated HDL Code with Obfuscation
By default, the generated HDL code is not obfuscated. For example, this code shows the generated
VHDL code for the Complex Multiplier model template in Simulink. To learn more about this
template, see “Use Simulink Templates for HDL Code Generation” on page 10-7.
... 

-- -------------------------------------------------------------
-- 
-- Module: HDL_Complex_Multiplier
-- Source Path: untitled/HDL_Complex_Multiplier
-- Hierarchy Level: 0
-- 
-- -------------------------------------------------------------
LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
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USE IEEE.numeric_std.ALL;

ENTITY HDL_Complex_Multiplier IS
  PORT( ...
            

        X_re            :   IN    std_logic_vector(17 DOWNTO 0);  -- sfix18_En17
       

        ... );
END HDL_Complex_Multiplier;

...

To generate obfuscated HDL code, enable HDL code obfuscation and then generate code. For
example, this code shows entity names and port names that are obfuscated in the generated VHDL
code.
LIBRARY IEEE; ... ENTITY Q1LNc1j7NFXR IS PORT(EEY54qLw4C0j9uD:IN std_logic_vector(17 DOWNTO 0); ...

Code Obfuscation Report
When you specify generation of obfuscated HDL code, and then generate code, HDL Coder produces
a Code Obfuscation report. The Code Obfuscation report displays the status of HDL code obfuscation.
It also displays whether the model uses configuration parameters that are incompatible with code
obfuscation and provides a link to disable these parameters. These parameters are ignored during the
obfuscation process.

HDL Model Parameters Incompatible with Code Obfuscation
HDL code obfuscation is not compatible with certain Configuration Parameters and ignores these
parameters if they are enabled on the model. The parameters include:

• These parameters in the HDL Code Generation > Global Settings > General pane:

• “Enable prefix” on page 16-13, “Clocked process postfix” on page 16-6, and “Timing controller
postfix” on page 16-7

• “Split entity and architecture” on page 16-24
• “Complex Signals Postfix” on page 16-27
• “Pipeline postfix” on page 16-29
• “Instance prefix” on page 16-33 and “Instance postfix” on page 16-33
• “Language-Specific Identifiers” on page 16-21
• “Vector and Component Instances Labels” on page 16-33
• “Generate Statement Labels” on page 16-31

• These parameters in the HDL Code Generation > Global Settings > Coding Standards tab:

• “Choose Coding Standard and Report Options” on page 16-67
• “Basic Coding Practices” on page 16-69
• “RTL Description Rules for clock enables and resets” on page 16-74, “RTL Description Rules

for Conditionals” on page 16-77, and “Other RTL Description Rules” on page 16-80
• The “File Comment Customization” on page 16-65 parameters in the HDL Code Generation >

Global Settings > Coding Style tab.
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• The “Generate traceability report” on page 17-3 parameter in the HDL Code Generation >
Report pane.

Code Obfuscation Considerations and Restrictions
• Synthesizing the obfuscated HDL code might produce different synthesis results from the

synthesis results of the original HDL code. For best results, perform synthesis on the original code
instead of the obfuscated code.

• HDL code obfuscation replaces only names corresponding to HDL files, signals, blocks, variable
names, or ports with random names. Other identifier names are not replaced, such as names of
vectors or enumerations.

• For some interfaces that you use in your Simulink model, the interface information such as the
port names and interface names are preserved in the obfuscated HDL code. These names are not
obfuscated. The interfaces include:

• DUT
• Model reference
• Black box
• Xilinx or Intel floating-point target

• You cannot obfuscate the HDL code generated for these blocks:

• CIC Interpolation
• FIR Decimation
• FIR Interpolation

See Also
Functions
makehdl | makehdltb

Simulink Configuration Parameters
“Generate obfuscated HDL code” on page 16-47

More About
• “Create Simulink Model for HDL Code Generation”
• “Generate HDL Code from Simulink Model”
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HDL Test Bench

• “Test Bench Generation” on page 35-2
• “Test Bench Block Restrictions” on page 35-4
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Test Bench Generation
You can generate a HDL Testbench for a subsystem or model reference that you specify in your
Simulink model. The coder generates an HDL test bench by running a Simulink simulation to capture
input vectors and expected output data for your DUT.

In this section...
“How Test Bench Generation Works” on page 35-2
“Test Bench Data Files” on page 35-2
“Test Bench Data Type Limitations” on page 35-2
“Use Constants Instead of File I/O” on page 35-2

How Test Bench Generation Works
HDL Coder writes the DUT stimulus and reference data from your MATLAB or Simulink simulation to
data files (.dat).

During HDL simulation, the HDL test bench reads the saved stimulus from the .dat files. The test
bench compares the actual DUT output with the expected output, which is also saved in .dat files.
After you generate code, the message window displays links to the test bench data files.

Reference data is delayed by one clock cycle in the waveform viewer compared to default test bench
generation due to the delay in reading data from files.

Test Bench Data Files
The coder saves stimulus and reference data for each DUT input and output in a separate test bench
data file (.dat), with the following exceptions:

• Two files are generated for the real and imaginary parts of complex data.
• Constant DUT input data is written to the test bench as constants.

Vector input or output data is saved as a single file.

Test Bench Data Type Limitations
If you have double, single, or enumeration data types at the DUT inputs and outputs, the simulation
data is generated as constants in the test bench code, instead of writing the simulation data to files.

Use Constants Instead of File I/O
You can generate test bench stimulus and reference data as constants in the test bench code instead
of using file I/O. Simulating a long running test bench that uses constants requires more memory than
a test bench that uses file I/O.

If your DUT inputs or outputs use data types that are not supported for file I/O, test bench generation
automatically generates data as constants. For details, see “Test Bench Data Type Limitations” on
page 35-2.
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Using the HDL Workflow Advisor

To generate a test bench that uses constants:

1 In the HDL Code Generation > Set Code Generation Options > Set Testbench Options
task, clear Use file I/O to read/write test bench data and click Apply.

2 In the HDL Code Generation > Generate RTL Code and Testbench task, select Generate
RTL testbench and click Apply.

Using the Command Line

To generate a test bench that uses constants, use the UseFileIOInTestBench parameter with
makehdltb.

For example, to generate a Verilog test bench by using constants for a DUT subsystem, sfir_fixed/
symmetric_fir, enter:

makehdltb('sfir_fixed/symmetric_fir','TargetLanguage','Verilog',...
          'UseFileIOInTestBench','off');

See Also
makehdltb

More About
• “Test Bench Block Restrictions” on page 35-4
• “Choose a Test Bench for Generated HDL Code” on page 27-28
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Test Bench Block Restrictions
Blocks that belong to the blocksets and toolboxes in the following list should not be directly
connected to the DUT. Instead, place them in a subsystem, and connect the subsystem to the DUT.
This restriction applies to all blocks in the following products:

• RF Blockset™
• Simscape Driveline™
• SimEvents®

• Simscape Multibody™
• Simscape Electrical™ Power Systems
• Simscape
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FPGA Board Customization

• “FPGA Board Customization” on page 36-2
• “Create Custom FPGA Board Definition” on page 36-6
• “Create Xilinx KC705 Evaluation Board Definition File” on page 36-7
• “FPGA Board Manager” on page 36-18
• “New FPGA Board Wizard” on page 36-21
• “FPGA Board Editor” on page 36-32
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FPGA Board Customization
In this section...
“Feature Description” on page 36-2
“Custom Board Management” on page 36-2
“FPGA Board Requirements” on page 36-2

Feature Description
Both HDL Coder and HDL Verifier software include a set of predefined FPGA boards you can use with
the Turnkey or FPGA-in-the-loop (FIL) workflows. You can view the lists of these supported boards in
the HDL Workflow Advisor or in the FIL wizard. With the FPGA Board Manager, you can add
additional boards to use either of these workflows. To add a board, you need the relevant information
from the board specification documentation.

The FPGA Board Manager is the hub for accessing wizards and dialog boxes that take you through
the steps necessary to create a custom board configuration. You can also access options for:

• Importing a custom board
• Copying a board definition file for further modification
• Verifying a new board

Custom Board Management
You manage FPGA custom boards through the following user interfaces:

• “FPGA Board Manager” on page 36-18: portal to adding, importing, deleting, and otherwise
managing board definition files.

• “New FPGA Board Wizard” on page 36-21: This wizard guides you through creating a custom
board definition file with information you obtain from the board specification documentation.

• “FPGA Board Editor” on page 36-32: user interface for viewing or editing board information.

To begin, review the “FPGA Board Requirements” on page 36-2 and then follow the steps described
in “Create Custom FPGA Board Definition” on page 36-6.

FPGA Board Requirements
• “FPGA Device” on page 36-2
• “FPGA Design Software” on page 36-3
• “General Hardware Requirements” on page 36-3
• “Ethernet Connection Requirements for FPGA-in-the-Loop” on page 36-3
• “JTAG Connection Requirements for FPGA-in-the-Loop” on page 36-5

FPGA Device

Select one of the following links to view a current list of supported FPGA device families:
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• For use with FPGA-in-the-loop (FIL), see “Supported FPGA Device Families for Board
Customization” (HDL Verifier).

• For use with FPGA Turnkey, see “Supported FPGA Device Families for Board Customization”.

FPGA Design Software

Altera Quartus® II or Xilinx ISE is required. See product documentation for HDL Coder or HDL
Verifier for the specific software versions required.

The following MathWorks tools are required to use FIL or FPGA Turnkey.

Workflow Required Tools
FPGA-in-the-loop • HDL Verifier

• Fixed-Point Designer
FPGA Turnkey • HDL Coder

• Simulink
• Fixed-Point Designer

General Hardware Requirements

To use an FPGA development board, make sure that you have the following FPGA resources:

• Clock: An external clock connected to the FPGA is required. The clock can be differential or
single-ended. The accepted clock frequency is from 5 MHz to 300 MHz. When used with FIL, there
are additional requirements to the clock frequency (see “Ethernet Connection Requirements for
FPGA-in-the-Loop” on page 36-3).

• Reset: An external reset signal connected to the FPGA is optional. When supplied, this signal
functions as the global reset to the FPGA design.

• JTAG download cable: A JTAG download cable that connects host computer and FPGA board is
required for the FPGA programming. The FPGA must be programmable using Xilinx iMPACT or
Altera Quartus II.

Ethernet Connection Requirements for FPGA-in-the-Loop

• “Supported Ethernet PHY Device” on page 36-3
• “Ethernet PHY Interface” on page 36-4
• “Special Timing Considerations for RGMII” on page 36-4
• “Special Clock Frequency Requirement for GMII/RGMII/SGMII Interface” on page 36-4

Supported Ethernet PHY Device

On the FPGA board, the Ethernet MAC is implemented in FPGA. An Ethernet PHY chip is required to
be on the FPGA board to connect the physical medium to the Media Access (MAC) layer in the FPGA.

Note When programming the FPGA, HDL Verifier assumes that there is only one download cable
connected to the Host computer. It also assumes that the FPGA programming software automatically
recognizes the cable. If not, use FPGA programming software to program your FPGA with the correct
options.
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The FIL feature is tested with the following Ethernet PHY chips and may not work with other
Ethernet PHY devices.

Ethernet PHY Chip Test
Marvell® Alaska 88E1111 For GMII, RGMII, SGMII, and 100 Base-T MII

interfaces
National Semiconductor DP83848C For 100 Base-T MII interface only

Ethernet PHY Interface

The Ethernet PHY chip must be connected to the FPGA using one of the following interfaces:

Interface Note
Gigabit Media Independent Interface (GMII) Only 1000 Mbits/s speed is supported using this

interface.
Reduced Gigabit Media Independent Interface
(RGMII)

Only 1000 Mbits/s speed is supported using this
interface.

Serial Gigabit Media Independent Interface
(SGMII)

Only 1000 Mbits/s speed is supported using this
interface.

Media Independent Interface (MII) Only 100 Mbits/s speed is supported using this
interface.

Note For GMII, the TXCLK (clock signal for 10/100 Mbits signal) signal is not required because only
1000 Mbits/s speed is supported.

In addition to the standard GMII/RGMII/SGMII/MII interface signals, FPGA-in-the-loop also requires
an Ethernet PHY chip reset signal (ETH_RESET_n). This active-low reset signal performs the PHY
hardware reset by FPGA. It is active-low.

Special Timing Considerations for RGMII

When the RGMII interface is used, the MAC on the FPGA assumes that the data are aligned with the
edges of reference clock as specified in the original RGMII v1.3 standard. In this case, PC board
designs provide additional trace delay for clock signals.

The RGMII v2.0 standard allows the transmitter to integrate this delay so that PC board delay is not
required. Marvell Alaska 88E1111 has internal registers to add internal delays to RX and TX clocks.
The internal delays are not added by default, which means that you must use the MDIO module to
configure Marvell 88E1111 to add internal delays. For more information on the MDIO module, see
“FIL I/O” on page 36-25.

Special Clock Frequency Requirement for GMII/RGMII/SGMII Interface

When GMII/RGMII/SGMII interfaces are used, the FPGA requires an exact 125 MHz clock to drive the
1000 Mbits/s communication. This clock is derived from the user supplied external clock using the
clock module or PLL.

Not all external clock frequencies can derive an exact 125 MHz clock frequency. The acceptable clock
frequencies vary depending on the FPGA device family. The recommended clock frequencies are 50,
100, 125, and 200 MHz.
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JTAG Connection Requirements for FPGA-in-the-Loop

Vendor Required Hardware Required Software
Intel USB Blaster I or USB

Blaster II download cable
• USB Blaster I or II driver
• For Windows® operating systems: Quartus Prime

executable directory must be on system path.
• For Linux® operating systems: versions below Quartus

II 13.1 are not supported. Quartus II 14.1 is not
supported. Only 64-bit Quartus is supported. Quartus
library directory must be on LD_LIBRARY_PATH before
starting MATLAB. Prepend the Linux distribution
library path before the Quartus library on
LD_LIBRARY_PATH. For example, /lib/x86_64-
linux-gnu:$QUARTUS_PATH.

Xilinx Digilent® download cable.

• If your board has an
onboard Digilent USB-
JTAG module, use a
USB cable.

• If your board has a
standard Xilinx 14 pin
JTAG connector, use
with HS2 or HS3 cable
from Digilent.

• For Windows operating systems: Xilinx Vivado
executable directory must be on system path.

• For Linux operating systems: Digilent Adept2

FTDI USB-JTAG cable

• Supported for boards
with onboard FT4232H,
FT232H, or FT2232H
devices implementing
USB-to JTAG

Supported for Windows operating systems.

Note FTDI USB JTAG support is only available for
MATLAB as AXI Master and for FPGA Data Capture.

Microsemi JTAG connection not supported
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Create Custom FPGA Board Definition
1 Be ready with the following:

a Board specification document. Any format you are comfortable with is fine. However, if you
have it in an electronic version, you can search for the information as it is required.

b If you plan to validate (test) your board definition file, set up FPGA design software tools:

For validation, you must have Xilinx or Altera on your path. Use the hdlsetuptoolpath
function to configure the tool for use with MATLAB.

2 Open the FPGA Board Manager by typing fpgaBoardManager in the MATLAB command
window. Alternatively, if you are using the HDL Workflow Advisor, you can click Launch Board
Manager at Step 1.1.

3 Open the New FPGA Board wizard by clicking Create New Board. For a description of all the
tasks you can perform with the FPGA Board Manager, see “FPGA Board Manager” on page 36-
18.

4 The wizard guides you through entering all board information. At each page, fill in the required
fields. For assistance in entering board information, see “New FPGA Board Wizard” on page 36-
21.

5 Save the board definition file. This step is the last and is automatically instigated when you click
Finish in the New FPGA Board wizard. See “Save Board Definition File” on page 36-13.

Your custom board definition now appears in the list of available FPGA Boards in the FPGA Board
Manager. If you are using HDL Workflow Advisor, it also shows in the Target platform list.

Follow the example “Create Xilinx KC705 Evaluation Board Definition File” on page 36-7 for a
demonstration of adding a custom FPGA board with the New FPGA Board Manager.
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Create Xilinx KC705 Evaluation Board Definition File
In this section...
“Overview” on page 36-7
“What You Need to Know Before Starting” on page 36-7
“Start New FPGA Board Wizard” on page 36-7
“Provide Basic Board Information” on page 36-8
“Specify FPGA Interface Information” on page 36-9
“Enter FPGA Pin Numbers” on page 36-10
“Run Optional Validation Tests” on page 36-12
“Save Board Definition File” on page 36-13
“Use New FPGA Board” on page 36-14

Overview
For FPGA-in-the-loop, you can use your own qualified FPGA board, even if it is not in the pre-
registered FPGA board list supplied by MathWorks. Using the New FPGA Board wizard, you can
create a board definition file that describes your custom FPGA board.

In this example, you can follow the workflow of creating a board definition file for the Xilinx KC705
evaluation board to use with FIL simulation.

What You Need to Know Before Starting
• Check the board specification so that you have the following information ready:

• FPGA interface to the Ethernet PHY chip
• Clock pins names and numbers
• Reset pins names and numbers

In this example, the required information is supplied to you. In general, you can find this type of
information in the board specification file. This example uses the KC705 Evaluation Board for the
Kintex-7 FPGA User Guide, published by Xilinx.

• For validation, you must have Xilinx or Altera on your path. Use the hdlsetuptoolpath function
to configure the tool for use with MATLAB.

• To verify programming the FPGA board after you add its definition file, attach the custom board to
your computer. However, having the board connected is not necessary for creating the board
definition file.

Start New FPGA Board Wizard
1 Start the FPGA Board Manager by entering the following command at the MATLAB prompt:

>>fpgaBoardManager
2 Click Create Custom Board to open the New FPGA Board wizard.
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Provide Basic Board Information
1 In the Basic Information pane, enter the following information:

• Board Name: Enter "My Xilinx KC705 Board"
• Vendor: Select Xilinx
• Family: Select Kintex7
• Device: Select xc7k325t
• Package: Select ffg900
• Speed: Select -2
• JTAG Chain Position: Select 1
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The information you just entered can be found in the KC705 Evaluation Board for the Kintex-7
FPGA User Guide.

2 Click Next.

Specify FPGA Interface Information
1 In the Interfaces pane, perform the following tasks.

a Select FIL Interface. This option is required for using your board with FPGA-in-the-loop.
b Select GMII in the PHY Interface Type. This option indicates that the onboard FPGA is

connected to the Ethernet PHY chip via a GMII interface.
c Leave the User-defined I/O option in the FPGA Turnkey Interface section cleared. FPGA

Turnkey workflow is not the focus of this example.
d Clock Frequency: Enter 200. This Xilinx KC705 board has multiple clock sources. The 200

MHz clock is one of the recommended clock frequencies for use with Ethernet interface (50,
100, 125, and 200 MHz).

e Clock Type: Select Differential.
f Clock_P Pin Number: Enter AD12.
g Clock_N Pin Number: Enter AD11.
h Clock IO Standard — Leave blank.
i Reset Pin Number: Enter AB7. This value supplies a global reset to the FPGA.
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j Active Level: Select Active-High.
k Reset IO Standard — Leave blank.

You can obtain all necessary information from the board design specification.

2 Click Next.

Enter FPGA Pin Numbers
1 In the FILI/O pane, enter the numbers for each FPGA pin. This information is required.

Pin numbers for RXD and TXD signals are entered from the least significant digit (LSD) to the
most significant digit (MSB), separated by a comma.

For signal name... Enter FPGA pin number...
ETH_COL W19
ETH_CRS R30
ETH_GTXCLK K30
ETH_MDC R23
ETH_MDIO J21
ETH_RESET_n L20
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For signal name... Enter FPGA pin number...
ETH_RXCLK U27
ETH_RXD U30,U25,T25,U28,R19,T27,T26,T28
ETH_RXDV R28
ETH_RXER V26
ETH_TXD N27,N25,M29,L28,J26,K26,L30,J28
ETH_TXEN M27
ETH_TXER N29

2 Click Advanced Options to expand the section.
3 Check the Generate MDIO module to override PHY settings option.

This option is selected for the following reasons:

• There are jumpers on the Xilinx KC705 board that configure the Ethernet PHY device to MII,
GMII, RGMII, or SGMII mode. Since this example uses the GMII interfaces, the FPGA board
does not work if the PHY devices are set to the wrong mode. When the Generate MDIO
module to override PHY settings option is selected, the FPGA uses the Management Data
Input/Output (MDIO) bus to override the jumper settings and configure the PHY chip to the
correct GMII mode.

• This option currently only applies to Marvell Alaska PHY device 88E1111 and this KC705
board is using the Marvel device.

4 PHY address (0 – 31): Enter 7.
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5 Click Next.

Run Optional Validation Tests
This step provides a validation test for you to verify if the entered information is correct by
performing FPGA-in-the-loop cosimulation. You need Xilinx ISE 13.4 or higher versions installed on
the same computer. This step is optional and you can skip it, if you prefer.

Note For validation, you must have Xilinx or Altera on your path. Use the hdlsetuptoolpath
function to configure the tool for use with MATLAB.

To run this test, perform the following actions.

1 Check the Run FPGA-in-the-Loop test option.
2 If you have the board attached, check the Include FPGA board in the test option. You need to

supply the IP address of the FPGA Board. This example assumes that the Xilinx KC705 board is
attached to your host computer and it has an IP address of 192.168.0.2.

3 Click Run Selected Test(s). The tests take about 10 minutes to complete.
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Save Board Definition File
1 Click Finish to exit the New FPGA Board wizard. A Save As dialog box pops up and asks for the

location of the FPGA board definition file. For this example, save as C:\boardfiles
\KC705.xml.

 Create Xilinx KC705 Evaluation Board Definition File

36-13



2 Click Save to save the file and exit.

Use New FPGA Board
1 After you save the board definition file, you are returned to the FPGA Board Manager. In the

FPGA Board List, you can now see the new board you defined.
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Click OK to close the FPGA Board Manager.
2 You can view the new board in the board list from either the FIL wizard or the HDL Workflow

Advisor.

a Start the FIL wizard from the MATLAB prompt.

>>filWizard

The Xilinx KC705 board appears in the board list and you can select it for FPGA-in-the-loop
simulation.
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b Start HDL Workflow Advisor.

In step 1.1, select FPGA-in-the-Loop and click Launch Board Manager.

The Xilinx KC705 board appears in the board list and you can select it for FPGA-in-the-loop
simulation.
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FPGA Board Manager
In this section...
“Introduction” on page 36-18
“Filter” on page 36-19
“Search” on page 36-19
“FIL Enabled/Turnkey Enabled” on page 36-20
“Create Custom Board” on page 36-20
“Add Board from File” on page 36-20
“Get More Boards” on page 36-20
“View/Edit” on page 36-20
“Remove” on page 36-20
“Clone” on page 36-20
“Validate” on page 36-20

Introduction
The FPGA Board Manager is the portal to managing custom FPGA boards. You can create a board
definition file or edit an existing one. You can even import a custom board from an existing board
definition file.

You start the FPGA Board Manager by one of the following methods:

• By typing fpgaBoardManager in the MATLAB command window
• From the FIL wizard by clicking Launch Board Manager on the first page
• From the HDL Workflow Advisor (when using HDL Coder) at Step 1.1
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Filter
Choose one of the following views:

• All boards
• Only those boards that were preinstalled with HDL Verifier or HDL Coder
• Only custom boards

Search
Find a specific board in the list or those boards that fully or partially match your search string.
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FIL Enabled/Turnkey Enabled
These columns indicate whether the specified board is supported for FIL or Turnkey operations.

Create Custom Board
Start New FPGA Board wizard. See “New FPGA Board Wizard” on page 36-21. You can find the
process for creating a board definition file in “Create Custom FPGA Board Definition” on page 36-6.

Add Board from File
Import a board definition file (.xml).

Get More Boards
Download FPGA board support packages for use with FIL

1 Click Get more boards.
2 Follow the prompts in the Support Package Installer to download an FPGA board support

package.
3 When the download is complete, you can see the new boards in the board list in the FPGA Board

Manager.

Offline Support Package Installation You can install an FPGA board support package without an
internet connection. See “Install Support Package Offline” (HDL Verifier).

View/Edit
View board configurations and modify the information. You can view a read-only file but not edit it.
See “FPGA Board Editor” on page 36-32.

Remove
Remove custom board from the list. This action does not delete the board definition XML file.

Clone
Makes a copy of an existing custom board for further modification.

Validate
Runs the validation tests for FIL See “Run Optional Validation Tests” on page 36-12.
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New FPGA Board Wizard
Using the New FPGA Board wizard, you can enter all the required information to add a board to the
FPGA board list. This list applies to both FIL and Turnkey workflows. Review “FPGA Board
Requirements” on page 36-2 before adding an FPGA board to make sure that it is compatible with the
workflow for which you want to use it.

Several buttons in the New FPGA Board wizard help with navigation:

• Back: Go to a previous page to review or edit data already entered.
• Next: Go to next page when all requirements of current page have been satisfied.
• Help: Open Doc Center, and display this topic.
• Cancel: Exit New FPGA Board wizard. You can exit with or without saving the information from

your session.

Adding Boards Once for Multiple Users To add new boards globally, follow these instructions. To
access a board added globally, all users must be using the same MATLAB installation.

1 Create the following folder:

matlabroot/toolbox/shared/eda/board/boardfiles
2 Copy the board description XML file to the boardfiles folder.
3 After copying the XML file, restart MATLAB. The new board appears in the FPGA board list for

either or both the FIL and Turnkey workflows.

All boards under this folder show-up in the FPGA board list automatically for users with the same
MATLAB installation. You do not need to use FPGA Board Manager to add these boards again.

The workflow for adding an FPGA board contains these steps:

In this section...
“Basic Information” on page 36-22
“Interfaces” on page 36-22
“FIL I/O” on page 36-25
“Turnkey I/O” on page 36-27
“Validation” on page 36-30
“Finish” on page 36-31
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Basic Information

Board Name: Enter a unique board name.

Device Information:

• Vendor: Xilinx or Altera
• Family: Family depends on the specified vendor. See the board specification file for applicable

settings.
• Device: Use the board specification file to select the correct device.
• For Xilinx boards only:

• Package: Use the board specification file to select the correct package.
• Speed: Use the board specification file to select the correct speed.
• JTAG Chain Position: Value indicates the starting position for JTAG chain. Consult the board
specification file for this information.

Interfaces
• “FIL Interface for Altera Boards” on page 36-23
• “FIL Interface for Xilinx Boards” on page 36-24
• “FPGA Turnkey Interface” on page 36-24
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• “FPGA Input Clock and Reset” on page 36-25

FIL Interface for Altera Boards

1 FPGA-in-the-Loop: To use this board with FIL, select FIL Interface.
2 Select one of the following PHY Interface types:

• Gigabit Ethernet — GMII
• Gigabit Ethernet — RGMII
• Gigabit Ethernet — SGMII (the SGMII option appears if you select a board from the Stratix

V or Stratix IV device families)
• Ethernet — MII
• Altera JTAG (Altera boards only)

Note Not all interfaces are available for all boards. Availability depends on the board you
selected in Basic Information.
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FIL Interface for Xilinx Boards

1 FPGA-in-the-Loop Interface: To use this board with FIL, select FIL Interface.
2 Select one of the following PHY Interface types:

• JTAG (via Digilent cable) (Xilinx boards only)
• Ethernet — RMII

Note Not all interfaces are available for all boards. Availability depends on the board you
selected in Basic Information.

For more information on how to set up the JTAG connection for Xilinx boards, see “JTAG with Digilent
Cable Setup” on page 36-34.

Limitations

When you simulate your FPGA design through a Digilent JTAG cable, you cannot use any other
debugging feature that requires access to the JTAG; for example, the Vivado Logic Analyzer.

FPGA Turnkey Interface

FPGA Turnkey Interface: If you want to use with board with the HDL Coder FPGA Turnkey
workflow, select User-defined I/O.
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FPGA Input Clock and Reset

1 FPGA Input Clock — Clock details are required for both workflows. You can find all necessary
information in the board specification file.

• Clock Frequency — Must be from 5 through 300. For an Ethernet interface, the suggested
clock frequencies are 50, 100, 125, and 200 MHz.

• Clock Type — Single_Ended or Differential.
• Clock Pin Number (Single_Ended) — Must be specified. Example: N10.
• Clock_P Pin Number (Differential) — Must be specified. Example: E19.
• Clock_N Pin Number (Differential) — Must be specified. Example: E18.
• Clock IO Standard — The programmable I/O Standard to use to configure input, output, or

bi-directional ports. For example, LVDS.
2 Reset (Optional) — If you want to indicate a reset, find the pin number and active level in the

board specification file, and enter that information.

• Reset Pin Number — Leave empty if you do not have one.
• Active Level — Active-Low or Active-High.
• Reset IO Standard — The programmable I/O Standard to use to configure input, output, or

bi-directional ports. For example, LVCMOS33.

FIL I/O
When you select an Ethernet connection to your board, you must specify pins for the Ethernet signals
on the FPGA.
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Signal List: Provide all the FPGA pin numbers for the specified signals. You can find this information
in the board specification file. For vector signals, list all pin numbers on the same line, separated by
commas.

Note If your PHY chip does not have the optional TX_ER pin, tie ETH_TXER to one of the unused pins
on the FPGA.

Generate MDIO module to override PHY settings: See the next section on FPGA Board
Management Data Input/Output Bus (MDIO) to determine when to use this feature. If you do select
this option, enter the PHY address.

What Is the Management Data Input/Output Bus?

Management Data Input/Output (MDIO) is a serial bus, defined in the IEEE 802.3 standard, that
connects MAC devices and Ethernet PHY devices. The FPGA MAC uses the MDIO bus to set control
registers in the Ethernet PHY device on the board.

Currently only the Marvell 88E1111 PHY chip is supported by this MDIO module implementation. Do
not select this check box if you are not using Marvell 88E1111.

The generated MDIO module is used to perform the following operations:

• GMII mode: The PHY device can start up using other modes, such as RGMII/SGMII. The
generated MDIO module sets the PHY chip in GMII mode.

36 FPGA Board Customization

36-26



• RGMII mode: The PHY device can start up using other modes, such as GMII/SGMII. The
generated MDIO module sets the PHY device in RGMII mode. In addition, the module sets the
PHY chip to add internal delay for RX and TX clocks.

• SGMII mode: The PHY device can start up using other modes, such as RGMII/GMII. The
generated MDIO module sets the PHY chip in SGMII mode.

• MII mode: The generated MDIO module sets the PHY device in GMII compatible mode. The
module also sets the autonegotiation register to remove the 1000 Base-T capability advertisement.
This reset ensures that the autonegotiation process does not select 1000 Mbits/s speed, which is
not supported in MII mode.

When To Select MDIO: Select the Generate MDIO module to override PHY settings option
when both the following conditions are met:

• The onboard Ethernet PHY device is Marvell 88E1111.
• The PHY device startup settings are not compatible with the FPGA MAC. The MDIO modules for
different PHY modes must override these settings, as previously described.

Specifying the PHY Address: The PHY address is a 5-bit integer. The value is determined by the
CONFIG[0] and CONFIG[1] pin on Marvell 88E1111 PHY device. See the board manual for this value.

Turnkey I/O

Note Provide FIL I/O for an Ethernet connection only. Define at least one output port for the Turnkey
I/O interface.
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Signal List: Provide all the FPGA pin numbers for the specified signals. You can find this information
in the board specification file. For vector signals, list all pin numbers on the same line, separated by
commas. The number of pin numbers must match the bit width of the corresponding signal.

Add New: You are prompted to enter all entries in the signal list manually.

Add Using Template: The wizard prepopulates a new signal entry for UART, LED, GPIO, or DIP
Switch signals with the following:

• A generic signal name
• Description
• Direction
• Bit width

You can change the values in any of these prepopulated fields.

Delete: Delete the selected signal from list.

The following example demonstrates using the Add Using Template feature.

1 In the Turnkey I/O dialog box, click Add Using Template.
2 You can now view the template dialog box.

3 Pull down the I/O list and select from the following options:

4 Click OK.
5 The wizard adds the specified signal (or signals) to the I/O list.
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Validation

FPGA-in-the-Loop Test

• Run FPGA-in-the-Loop test: Select to generate an FPGA programming file.

• Include FPGA board in the test: (Optional) This selection program the FPGA with the
generated programming file, detects the Ethernet connection (if selected), and performs FPGA-
in-the-loop simulation.

• Board IP address: (Ethernet connection only) Use this option for setting the board IP address
if it is not the default IP address (192.168.0.2).

If necessary, change the computer IP address to a different subnet from 192.168.0.x when you
set up the network adapter. If the default board IP address 192.168.0.2 is in use by another
device, change the Board IP address according to the following guidelines:

• The subnet address, typically the first 3 bytes of board IP address, must be the same as the
host IP address.

• The last byte of the board IP address must be different from the host IP address.
• The board IP address must not conflict with the IP addresses of other computers.

For example, if the host IP address is 192.168.8.2, then you can use 192.168.8.3, if
available.

FPGA Turnkey Test
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• Run FPGA Turnkey test: Select to generate an FPGA programming file using an HDL design that
contains a counter. You must have a board attached.

• Select output LED: The counter’s output is connected with the LED you select. Skip this test if
you do not have an LED output.

Finish
When you have completed validation, click Finish. See “Save Board Definition File” on page 36-13.

 New FPGA Board Wizard

36-31



FPGA Board Editor

In this section...
“General Tab” on page 36-32
“Interface Tab” on page 36-34

To edit a board definition XML file, first make it writeable. If the file is read-only, the FPGA Board
Editor only lets you view the board configuration information. You cannot modify that information.

General Tab

Board Name: Unique board name

Device Information:

• Vendor: Xilinx or Altera
• Family: Family depends on the specified vendor. See the board specification file for applicable

settings.
• Device: Device depends on the specified vendor and family. See the board specification file for

applicable settings.
• For Xilinx boards only:
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• Package: Package depends on specified vendor, family, and device. See the board specification
file for applicable settings.

• Speed: Speed depends on package. See the board specification file for applicable settings.
• JTAG Chain Position: Value indicates the starting position for JTAG chain. Consult the board
specification file for this information.

• FPGA Input Clock. Clock details are required for both the FIL and Turnkey workflows. You can
find all necessary information in the board specification file.

• Clock Frequency. Must be from 5 through 300. For an Ethernet interface, the suggested clock
frequencies are 50, 100, 125, and 200 MHz.

• Clock Type: Single_Ended or Differential.
• Clock Pin Number (Single_Ended) — Must be specified. Example: N10.
• Clock_P Pin Number (Differential) — Must be specified. Example: E19.
• Clock_N Pin Number (Differential) — Must be specified. Example: E18.
• Clock IO Standard — The programmable I/O Standard to use to configure input, output, or bi-

directional ports. For example, LVDS.
• Reset (Optional). If you want to indicate a reset, find the pin number and active level in the

board specification file, and enter that information.

• Reset Pin Number. Leave empty if you do not have one.
• Active Level : Active-Low or Active-High.
• Reset IO Standard — The programmable I/O Standard to use to configure input, output, or bi-

directional ports. For example, LVCMOS33.
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Interface Tab

The Interface page describes the supported FPGA I/O Interfaces. Select any listed interface and click
View to see the Signal List. If the board definition file has write permission, you can also Add New
interface, Edit the interface, or Remove an interface.

JTAG with Digilent Cable Setup

Note Enter information for the JTAG cable setup carefully. If the settings are incorrect, the
simulation errors out and does not work. If you are still unsure about how to setup your JTAG cable
after reading these instructions, contact MathWorks technical support with detailed information
about your board.
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1 Signal/Parameter List — Provide the sum of the lengths of the instruction registers (IR) for all
devices before and after the FPGA in the chain.

• If the FPGA is the only item in the device chain, use zeros in both Sum of IR length before
and Sum of IR length after.

• If you are using a Zynq device, and it is the only item in the device chain, enter 4 in Sum of
IR length before and 0 in Sum of IR length after.

If your board does not meet either of those conditions, follow these instructions to obtain the IR
lengths:

a Connect the FPGA board to your computer using the JTAG cable. Turn on the board.
b Make sure that you installed the cable drivers during Vivado installation.
c Open Vivado Hardware Manager and select Open a new hardware target. In the dialog

box is a summary of the IR lengths for all devices for that target.
d Sum the IR lengths before the FPGA and enter the total in Sum of IR length before. Sum

the IR lengths after the FPGA and enter the total in Sum of IR length after.

Vivado Hardware Manager cannot recognize the IR length of less common devices. For these
devices, consult the device manual for instruction register length.

2 Advanced Options — If the default values are not the same as the most common settings for
many devices, set the User1 Instruction and JTAG Clock Frequency (MHz) parameters. The
most common settings are 000010 and 66, respectively.

• User1 Instruction — The JTAG USER1 Instruction defined in the Xilinx Bscane2 primitive.
This binary instruction number, defined by Xilinx, varies from device to device. For most of the
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7-series devices, this instruction is 000010. If your device has a different value, enter it in this
parameter.

To find this value, look at the bsd file for your specific device, found in your Vivado
installation. For example, for the XA7A32T-CPG236 device, the bsd file is located in Vivado
\2014.2\data\parts\xilinx\artix7\aartix7\xa7a35t\cpg236.

Open this file. The USER1 value is 000010. Enter this value at User1 Instruction.

  "USER1        (000010),"
• JTAG Clock Frequency (MHz) — Clock frequency used by the JTAG circuit. This value varies

by device. You can find this value in the same bsd file described under User1 Instruction.
For example, the JTAG clock frequency is 66 MHz for device XA7A32T-CPG236:

attribute TAP_SCAN_CLOCK of TCK : signal is (66.0e6, BOTH);
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HDL Workflow Advisor Tasks
In this section...
“HDL Workflow Advisor Tasks Overview” on page 37-3
“Set Target Overview” on page 37-4
“Set Target Device and Synthesis Tool” on page 37-4
“Set Target Reference Design” on page 37-5
“Set Target Interface” on page 37-5
“Set Target Frequency” on page 37-6
“Set Target Interface” on page 37-6
“Set Target Interface” on page 37-7
“Prepare Model For HDL Code Generation Overview” on page 37-8
“Check Global Settings” on page 37-8
“Check Algebraic Loops” on page 37-9
“Check Block Compatibility” on page 37-9
“Check Sample Times” on page 37-10
“Check FPGA-In-The-Loop Compatibility” on page 37-10
“HDL Code Generation Overview” on page 37-10
“Set Code Generation Options Overview” on page 37-11
“Set Basic Options” on page 37-11
“Set Report Options” on page 37-11
“Set Advanced Options” on page 37-11
“Set Optimization Options” on page 37-12
“Set Testbench Options” on page 37-12
“Generate RTL Code” on page 37-12
“Generate RTL Code and Testbench” on page 37-12
“Verify with HDL Cosimulation” on page 37-13
“Generate RTL Code and IP Core” on page 37-13
“FPGA Synthesis and Analysis Overview” on page 37-14
“Create Project” on page 37-14
“Perform Synthesis and P/R Overview” on page 37-15
“Perform Logic Synthesis” on page 37-15
“Perform Mapping” on page 37-16
“Perform Place and Route” on page 37-16
“Run Synthesis” on page 37-17
“Run Implementation” on page 37-17
“Annotate Model with Synthesis Result” on page 37-17
“Download to Target Overview” on page 37-18
“Generate Programming File” on page 37-18
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In this section...
“Program Target Device” on page 37-19
“Generate Simulink Real-Time Interface” on page 37-19
“Save and Restore HDL Workflow Advisor State” on page 37-19
“FPGA-In-The-Loop Implementation” on page 37-19
“Set FPGA-In-The-Loop Options” on page 37-19
“Build FPGA-In-The-Loop” on page 37-20
“Check USRP® Compatibility” on page 37-20
“Generate FPGA Implementation” on page 37-20
“Check SDR Compatibility” on page 37-20
“SDR FPGA Implementation” on page 37-21
“Set SDR Options” on page 37-21
“Build SDR” on page 37-22
“Embedded System Integration” on page 37-22
“Create Project” on page 37-22
“Generate Software Interface Model” on page 37-23
“Build FPGA Bitstream” on page 37-23
“Program Target Device” on page 37-23

HDL Workflow Advisor Tasks Overview
The HDL Workflow Advisor is a tool that supports a suite of tasks covering the stages of the FPGA
design process. Some tasks perform model validation or checking; others run the HDL code
generator or third-party tools. Each folder at the top level of the HDL Workflow Advisor contains a
group of related tasks that you can select and run.

For summary information on each HDL Workflow Advisor folder or task, select the folder or task icon
and then click the HDL Workflow Advisor Help button.

• Set Target: The tasks in this category enable you to select the desired target device and map its
I/O interface to the inputs and outputs of your model.

Prepare Model For HDL Code Generation: The tasks in this category check your model for
HDL code generation compatibility. The tasks also report on model settings, blocks, or other
conditions (such as algebraic loops) that would impede code generation, and provide advice on
how to fix such problems.

• HDL Code Generation: This category supports all HDL-related options of the Configuration
Parameters dialog, including setting HDL code and test bench generation parameters, and
generating code, test bench, or a cosimulation model.

• FPGA Synthesis and Analysis: The tasks in this category support:

• Synthesis and timing analysis through integration with third-party synthesis tools
• Back annotation of the model with critical path and other information obtained during

synthesis
• FPGA-in-the-Loop Implementation: This category implements the phases of FIL, including

providing block generation, synthesis, logical mapping, PAR (place-and-route), programming file
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generation, and a communications channel. These capabilities are designed for a particular board
and tailored to your RTL code. An HDL Verifier license is required for FIL.

• Download to Target: The tasks in this category depend on the selected target device and
potentially include:

• Generation of a target-specific FPGA programming file
• Programming the target device
• Generation of a model that contains a Simulink Real-Time interface subsystem

See Also

“Getting Started with the HDL Workflow Advisor” on page 31-2

Set Target Overview
The tasks in the Set Target folder enable you to select a target FPGA device and define the interface
generated for the device.

• Set Target Device and Synthesis Tool: Select a target FPGA device and synthesis tools.
• Set Target Reference Design: For IP Core Generation workflow, select a reference design

for your target device.
• Set Target Interface: For IP Core Generation, FPGA Turnkey, and Simulink Real—Time

FPGA I/O workflows, use the Target Platform Interface Table to assign each port on your DUT to
an I/O resource on the target device.

• Set Target Frequency: Select the target clock rate for the FPGA implementation of your design.

For summary information on each Set Target task, select the task icon and then click the HDL
Workflow Advisor Help button.

See Also

“Getting Started with the HDL Workflow Advisor” on page 31-2

Set Target Device and Synthesis Tool
The Set Target Device and Synthesis Tool task enables you to select an FPGA target device and an
associated synthesis tool from a pulldown menu that lists the devices that HDL Workflow Advisor
currently supports.

Description

This task displays the following options:

• Target Workflow: A pulldown menu that lists the possible workflows that HDL Workflow Advisor
supports. Choose from:

• Generic ASIC/FPGA
• FPGA-in-the-loop
• FPGA Turnkey
• Simulink Real-Time FPGA I/O
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• IP Core Generation
• Customization for the USRP(R) device
• Software Defined Radio

• Target platform: A pulldown menu that lists the devices the HDL Workflow Advisor currently
supports. Not available for the Generic ASIC/FPGA workflow.

• Synthesis tool: Select a synthesis tool, then select the Family, Device, Package, and Speed for
your synthesis target.

If your synthesis tool is not one of the Synthesis tool options, see “Synthesis Tool Path Setup”.
After you set up your synthesis tool path, click Refresh to make the tool available in the HDL
Workflow Advisor.

• Project folder: Specify the project folder name.
• Tool version: This check box displays the current synthesis tool version.

Note If you select Intel Quartus Pro or Microsemi Libero SoC as the Synthesis tool, you
can only run the Generic ASIC/FPGA workflow. When you use these tools, the Annotate Model
with Synthesis Result task is not available. In this case, you can run the workflow to synthesis and
then view the timing reports to see the critical path.

Set Target Reference Design
The Set Target Reference Design task displays the reference design input parameters and the tool
version. A Reference design parameters section displays any custom parameters that you specify
for the reference design.

Description

The task displays the following options:

• Reference design: A pulldown menu that lists the reference designs that HDL Coder supports
and any custom reference designs that you specify. To learn more about creating a custom board
and reference design, see “Board and Reference Design Registration System” on page 41-43.

• Reference design tool version: A text box that displays the current reference design tool
version. It is recommended to use a reference design tool version that is compatible with the
supported tool version. If there is a tool version mismatch, HDL Coder generates an error when
you run this task. The tool version mismatch can potentially cause the Create Project task to fail.

If you select the Ignore tool version mismatch check box, HDL Coder generates a warning
instead of an error. You can attempt to continue with creating the reference design project.

• Reference design parameters: Lists the parameters of the reference design. These can be
parameters available with the default reference designs that HDL Coder supports, or parameters
that you define for your custom reference design. For more information, see “Define Custom
Parameters and Callback Functions for Custom Reference Design” on page 41-52.

Set Target Interface
The Set Target Interface task displays properties of input and output ports on your DUT, and
enables you to map these ports to I/O resources on the target device.
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Description

Set Target Interface displays the Target Platform Interface Table, which shows:

• The name, port type (input or output), and data type for each port on your DUT.
• A pulldown menu listing the available I/O resources for the target device.

These resources are device-specific. For detailed information on each resource, see the
documentation for your FPGA development board.

Set Target Frequency
Specify the target frequency for these workflows:

• Generic ASIC/FPGA: To specify the target frequency that you want your design to achieve. HDL
Coder generates a timing constraint file for that clock frequency and adds the constraint to the
FPGA synthesis tool project that you create in the Create Project task. If the target frequency is
not achievable, the synthesis tool generates an error. Target frequency is not supported with
Microsemi Libero SoC.

• IP Core Generation: To specify the target frequency for HDL Coder to modify the clock
module setting in the reference design to produce the clock signal with that frequency. Enter a
target frequency value that is within the Frequency Range (MHz). If you do not specify the
target frequency, HDL Coder uses the Default (MHz) target frequency.

• Simulink Real-Time FPGA I/O: For Speedgoat boards that are supported with Xilinx ISE,
specify the target frequency to generate the clock module to produce the clock signal with that
frequency.

The Speedgoat boards that are supported with Xilinx Vivado use the IP Core Generation
workflow infrastructure. Specify the target frequency for HDL Coder to modify the clock module
setting in the reference design to produce the clock signal with that frequency. Enter a target
frequency value that is within the Frequency Range (MHz). If you do not specify the target
frequency, HDL Coder uses the Default (MHz) target frequency.

• FPGA Turnkey: To generate the clock module to produce the clock signal with that frequency
automatically.

See Also

“Target Frequency” on page 13-8

Set Target Interface
Select a processor-FPGA synchronization mode, and map your DUT input and output ports to I/O
resources on the target device.

Description

For Processor/FPGA synchronization, select:

• Free running if you do not want your processor and FPGA to be automatically synchronized.
• Coprocessing – blocking if you want HDL Coder to generate synchronization logic for the FPGA

automatically, so that the processor and FPGA run in tandem. Select this mode when FPGA
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execution time is short relative to the processor sample time, and you want the FPGA to complete
before the processor continues.

• Coprocessing – nonblocking with delay (not supported for IP Core Generation workflow) if
you want HDL Coder to generate synchronization logic for the FPGA automatically, so that the
processor and FPGA run in tandem. Select this mode when the FPGA processing time is long
relative to the processor sample time, or you do not want the processor to wait for the FPGA to
finish before the processor continues.

This setting is saved with the model as the ProcessorFPGASynchronization HDL block property
for the DUT block.

The Target Platform Interface Table shows:

• The name, port type (input or output), and data type for each port on your DUT.
• A pulldown menu listing the available I/O resources for the target device.

These resources are device-specific. For detailed information on each resource, see the
documentation for your FPGA development board.

See Also

• “Processor and FPGA Synchronization” on page 40-16
• “Custom IP Core Generation” on page 40-4
• “FPGA Programming and Configuration” on page 41-66

Set Target Interface
Select a processor-FPGA synchronization mode, and map your DUT input and output ports to I/O
resources on the target device. Optionally, specify a reference design.

Description

Reference design: Select the predefined embedded system integration project into which HDL
Coder inserts your generated IP core.

Reference design path: Enter the path to your downloaded reference design components. This field
is available only if the specified Reference design requires downloadable components.

For Processor/FPGA synchronization, select:

• Free running if you do not want your processor and FPGA to be automatically synchronized.
• Coprocessing – blocking if you want HDL Coder to generate synchronization logic for the FPGA

automatically, so that the processor and FPGA run in tandem. Select this mode when FPGA
execution time is short relative to the processor sample time, and you want the FPGA to complete
before the processor continues.

• Coprocessing – nonblocking with delay (not supported for IP Core Generation workflow) if
you want HDL Coder to generate synchronization logic for the FPGA automatically, so that the
processor and FPGA run in tandem. Select this mode when the FPGA processing time is long
relative to the processor sample time, or you do not want the processor to wait for the FPGA to
finish before the processor continues.

This setting is saved with the model as the ProcessorFPGASynchronization HDL block property
for the DUT block.
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The Target Platform Interface Table shows:

• The name, port type (input or output), and data type for each port on your DUT.
• A dropdown menu listing the available I/O resources for the target device.

These resources are device-specific. For detailed information on each resource, see the
documentation for your FPGA development board.

See Also

• “Processor and FPGA Synchronization” on page 40-16
• “Custom IP Core Generation” on page 40-4
• “FPGA Programming and Configuration” on page 41-66

Prepare Model For HDL Code Generation Overview
The tasks in the Prepare Model For HDL Code Generation folder check the model for
compatibility with HDL code generation. If a check encounters a condition that would raise a code
generation warning or error, the right pane of the HDL Workflow Advisor displays information about
the condition and how to fix it. The Prepare Model For HDL Code Generation folder contains the
following checks:

• Check Global Settings: Check model parameters for compatibility with HDL code generation.
• Check Algebraic Loops: Check the model for algebraic loops.
• Check Block Compatibility: Check that blocks in the model support HDL code generation.
• Check Sample Times: Check the solver options, tasking mode, and rate transition diagnostic

settings, given the model's sample times.
• Check FPGA-in-the-Loop Compatibility: Check model compatibility with FPGA-in-the-loop,
specifically:

• Not allowed: sink/source subsystems, single/double data types, zero sample time
• Must be present: HDL Verifier license

This option is available only if you select FPGA-in-the-Loop for Target workflow.
• Check USRP Compatibility: The model must have two input ports and two output ports of

signed 16-bit signals.

This option is available only if you select Customization for the USRP(TM) Device for
Target workflow.

For summary information on each Prepare Model For HDL Code Generation task, select the task
icon and then click the HDL Workflow Advisor Help button.

See Also

“Getting Started with the HDL Workflow Advisor” on page 31-2

Check Global Settings
Check Global Settings checks model-wide parameter settings for HDL code generation
compatibility.
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Description

This check examines the model parameters for compatibility with HDL code generation and flags
conditions that would raise an error or a warning during code generation. The HDL Workflow Advisor
displays a table with the following information about each condition detected:

• Block: Hyperlink to the model configuration dialog box page that contains the error or warning
condition

• Settings: Name of the model parameter that caused the error or warning condition
• Current: Current value of the setting
• Recommended: Recommended value of the setting
• Severity: Severity level of the warning or error condition. Minimally, you should fix settings that

are tagged as error.

Tip

To set reported settings to their recommended values, click the Modify All button. You can then run
the check again and proceed to the next check.

See Also

“Model configuration checks” on page 39-12

Check Algebraic Loops
Detect algebraic loops in the model.

Description

TheHDL Coder software does not support HDL code generation for models in which algebraic loop
conditions exist. Check Algebraic Loops examines the model and fails the check if it detects an
algebraic loop. Eliminate algebraic loops from your model before proceeding with further HDL
Workflow Advisor checks or code generation.

See Also

• “Algebraic Loop Concepts” (Simulink)
• “Check algebraic loops” on page 38-9

Check Block Compatibility
Check the DUT for unsupported blocks.

Description

Check Block Compatibility checks blocks within the DUT for compatibility with HDL code
generation. The check fails if it encounters blocks that HDL Coder does not support. The HDL
Workflow Advisor reports incompatible blocks, including the full path to each block.

See Also

• “View HDL-Specific Block Documentation” on page 21-2
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• “Check for unsupported blocks” on page 38-17
• “Check for unsupported blocks with Native Floating Point” on page 38-29

Check Sample Times
Check the solver, sample times, and tasking mode settings for the model.

Description

Check Sample Times checks the solver options, sample times, tasking mode, and rate transition
diagnostics for HDL code generation compatibility. Solver options that the HDL Coder software
requires or recommends are:

• Type: Fixed-step. (The coder currently supports variable-step solvers under limited conditions.
See hdlsetup for details.)

• Solver: Discrete (no continuous states). Other fixed-step solvers could be selected, but this option
is usually the best one for simulating discrete systems.

• Tasking mode: SingleTasking. The coder does not currently support models that execute in
multitasking mode. Do not set Tasking mode to Auto.

• Multitask rate transition and Single task rate transition diagnostic options: set to Error.

Check FPGA-In-The-Loop Compatibility
HDL Verifier checks model for compatibility with FPGA-in-the-loop processing.

See Also

“Prepare DUT For FIL Interface Generation” (HDL Verifier).

HDL Code Generation Overview
The tasks in the HDL Code Generation folder enable you to:

• Set and validate HDL code and test bench generation parameters. Most parameters of the HDL
Code Generation pane of the Configuration Parameters dialog box and the Model Explorer are
supported.

• Generate any or all of:

• RTL code
• RTL test bench
• Cosimulation model
• SystemVerilog DPI test bench

To run the tasks in the HDL Code Generation folder automatically, select the folder and click Run
All.

Tip After each task in this folder runs, HDL Coder updates the Configuration Parameters dialog box
and the Model Explorer.
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Set Code Generation Options Overview
The tasks in the Set Code Generation Options folder enable you to set and validate HDL code and
test bench generation parameters. Each task of the Set Code Generation Options folder supports
options of the HDL Code Generation pane of the Configuration Parameters dialog box and the
Model Explorer. The tasks are:

• Set Basic Options: Set parameters that affect overall code generation.
• Set Report Options: Set parameters that affect the code generation report.
• Set Advanced Options: Set parameters that specify detailed characteristics of the generated

code, such as HDL element naming and whether certain optimizations apply.
• Set Optimization Options: Set parameters that specify optimizations such as resource sharing

and pipelining to improve area and timing.
• Set Testbench Options: Set options that determine characteristics of generated test bench code.

To run the tasks in the Set Code Generation Options folder automatically, select the folder and
click Run All.

Set Basic Options
Set parameters that affect overall code generation.

Description

The Set Basic Options task sets options that are fundamental to HDL code generation. These
options include selecting the DUT and selecting the target language. The basic options are the same
as those found in the top-level HDL Code Generation pane of the Configuration Parameters dialog
box, except that the Code generation output group is omitted.

See Also

• “Target” on page 12-3
• “Code Generation Output” on page 16-98

Set Report Options
Set parameters that specify the sections that you want to see in the Code Generation Report.

The options are same as those found in the HDL Code Generation > Report pane of the
Configuration Parameters dialog box and the Model Explorer.

Set Advanced Options
Set parameters that specify detailed characteristics of the generated code.

Description

The advanced options are the same as those found in the HDL Code Generation > Global Settings
pane of the Configuration Parameters dialog box and the Model Explorer.
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Set Optimization Options
Set parameters that specify optimizations such as resource sharing and pipelining to improve area
and timing.

Description

The optimization options are the same as those found in the HDL Code Generation > Target and
Optimizations pane of the Configuration Parameters dialog box and the Model Explorer.

Set Testbench Options
Set options that determine characteristics of generated test bench code.

Description

The test bench options are the same as those found in the HDL Code Generation > Test Bench
pane of the Configuration Parameters dialog box and the Model Explorer.

Generate RTL Code
Generate RTL code and HDL top-level wrapper.

Description

The Generate RTL Code task generates RTL code and an HDL top-level wrapper for the DUT
subsystem. It also generates a constraint file that contains pin mapping information and clock
constraints.

Generate RTL Code and Testbench
Select and initiate generation of RTL code, RTL test bench, and cosimulation model.

Description

The Generate RTL Code and Testbench task enables choosing what type of code or model that you
want to generate. You can select any combination of the following:

• Generate RTL code: Generate RTL code in the target language.
• Generate test bench: Generate the test bench(es) selected in Set Testbench Options.
• Generate validation model: Generate a validation model that highlights generated delays and

other differences between your original model and the generated cosimulation model. With a
validation model, you can observe the effects of streaming, resource sharing, and delay balancing.

The validation model contains the DUT from the original model and the DUT from the generated
cosimulation model. Using the validation model, you can verify that the output of the optimized
DUT is bit-true to the results produced by the original DUT.

See Also

“Generating a Simulink Model for Cosimulation with an HDL Simulator” (Filter Design HDL Coder).
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Verify with HDL Cosimulation
Run this step to verify the generated HDL using cosimulation between the HDL Simulator and the
Simulink test bench. This step shows only if you selected Cosimulation model, and specified an
HDL simulator, in Set Testbench Options.

Generate RTL Code and IP Core
Select and initiate generation of RTL code and custom IP core.

Description

In the Generate RTL Code and IP Core task, specify characteristics of the generated IP core:

• IP core name: Enter the IP core name.

This setting is saved with the model as the IPCoreName HDL block property for the DUT block.
• IP core version: Enter the IP core version number. HDL Coder appends the version number to

the IP core name to generate the output folder name.

This setting is saved with the model as the IPCoreVersion HDL block property for the DUT
block.

• IP core folder (not editable): HDL Coder generates the IP core files in the output folder shown,
including the HTML documentation.

• IP repository: If you have an IP repository folder, enter its path manually or by using the Browse
button. The coder copies the generated IP core into the IP repository folder.

• Additional source files: If you are using a black box interface in your design to include existing
Verilog or VHDL code, enter the file names. Enter each file name manually, separated with a
semicolon (;), or by using the Add button. The source file language must match your target
language.

This setting is saved with the model as the IPCoreAdditionalFiles HDL block property for the
DUT block.

• FPGA Data Capture buffer size: The buffer size uses values that are 128*2^n, where n is an
integer. By default, the buffer size is 128 (n=0). The maximum value of n is 13, which means that
the maximum value for buffer size is 1048576 (=128*2^13).

This setting is saved with the model as the IPDataCaptureBufferSize HDL block property for
the DUT block.

• Generate IP core report: Leave this option selected to generate HTML documentation for the IP
core.

• Enable readback on AXI4 slave write registers: Select this option if you want to read back the
value that is written to the AXI4 slave registers by using the AXI4 slave interface. When you run
this task, the code generator adds a mux for each AXI4 register in the address decoder logic. This
mux compares the address that the data is written to when reading the values. If you are reading
from multiple AXI4 slave registers, the readback logic becomes a long mux chain that can affect
synthesis frequency.

This setting is saved with the model as the AXI4RegisterReadback HDL block property for the
DUT block.
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• Generate default AXI4 slave interface: Leave this option selected if you want to generate an
HDL IP core with the AXI4 slave interface for signals such as clock, reset, ready, timestamp, and
so on. If you want to generate a generic HDL IP core without any AXI4 slave interfaces, clear this
check box. In addition, make sure that you do not map any of the DUT ports to AXI4 or AXI4-Lite
interfaces. You can only map the ports to External or Internal IO interfaces, or AXI4-Stream
interface with TLAST mapping.

This setting is saved with the model as the GenerateDefaultAXI4Slave HDL block property for
the DUT block.

See Also

• “Custom IP Core Generation” on page 40-4
• “Generate Board-Independent HDL IP Core from Simulink Model” on page 40-12
• “Custom IP Core Report” on page 40-6

FPGA Synthesis and Analysis Overview
Create projects for supported FPGA synthesis tools, perform FPGA synthesis, mapping, and place/
route tasks, and annotate critical paths in the original model

Description

The tasks in the FPGA Synthesis and Analysis folder enable you to:

• Create FPGA synthesis projects for supported FPGA synthesis tools.
• Launch supported FPGA synthesis tools, using the project files to perform synthesis, mapping, and

place/route tasks.
• Annotate your original model with critical path information obtained from the synthesis tools.

For a list of supported third-party synthesis tools, see “Third-Party Synthesis Tools and Version
Support”.

The tasks in the folder are:

• Create Project
• Perform Synthesis and P/R
• Annotate Model with Synthesis Result

See Also

“HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow Advisor”

Create Project
Create FPGA synthesis project for supported FPGA synthesis tool.

Description

This task creates a synthesis project for the selected synthesis tool and loads the project with the
HDL code generated for your model.
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When the project creation completes, the HDL Workflow Advisor displays a link to the project in the
right pane. Click this link to view the project in the synthesis tool project window.

Synthesis objective
Select a synthesis objective to generate tool-specific optimization Tcl commands for your project.
If you specify None, no Tcl commands are generated.

To learn how the synthesis objectives map to Tcl commands, see “Synthesis Objective to Tcl
Command Mapping” on page 31-30.

Additional source files
Enter additional HDL source files you want included in your synthesis project. Enter each file
name manually, separated with a semicolon (;), or by using the Add Source button.

For example, you can include HDL source files (.vhd or .v) or a constraint file (.ucf or .sdc).
Additional project creation Tcl files

Enter additional project creation Tcl files you want to include in your synthesis project. Enter
each file name manually, separated with a semicolon (;), or by using the Add Tcl button.

For example, you can include a Tcl script (.tcl) to execute after creating the project.

See Also

• “Third-Party Synthesis Tools and Version Support”
• “HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow Advisor”
• “Synthesis Objective to Tcl Command Mapping” on page 31-30

Perform Synthesis and P/R Overview
Launch supported FPGA synthesis tools to perform synthesis, mapping, and place/route tasks.

Description

The tasks in the Perform Synthesis and P/R folder enable you to launch supported FPGA synthesis
tool and:

• Synthesize the generated HDL code.
• Perform mapping and timing analysis.
• Perform place and route functions.

For a list of supported third-party synthesis tools, see “Third-Party Synthesis Tools and Version
Support”.

See Also

“HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow Advisor”

Perform Logic Synthesis
Launch supported FPGA synthesis tool and synthesize the generated HDL code.
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Description

The Perform Logic Synthesis task:

• Launches the synthesis tool in the background.
• Opens the previously generated synthesis project, compiles HDL code, synthesizes the design, and

emits netlists and related files.
• Displays a synthesis log in the Result subpane.

See Also

“HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow Advisor”

Perform Mapping
Launches supported FPGA synthesis tool and maps the synthesized logic design to the target FPGA.

Description

The Perform Mapping task:

• Launches the synthesis tool in the background.
• Runs a mapping process that maps the synthesized logic design to the target FPGA.
• Emits a circuit description file for use in the place and route phase.
• Also emits pre-routing timing information for use in critical path analysis and back annotation of

your source model.
• Displays a log in the Result subpane.

Enable Skip pre-route timing analysis if your tool does not support early timing estimation. When
this option is enabled, the Annotate Model with Synthesis Result task sets Critical path source
to post-route.

See Also

“HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow Advisor”

Perform Place and Route
Launches the synthesis tool in the background and runs a Place and Route process.

Description

The Perform Place and Route task:

• Launches the synthesis tool in the background.
• Runs a Place and Route process that takes the circuit description produced by the previous

mapping process, and emits a circuit description suitable for programming an FPGA.
• Also emits post-routing timing information for use in critical path analysis and back annotation of

your source model.
• Displays a log in the Result subpane.
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Tips

If you select Skip this task , the HDL Workflow Advisor executes the workflow, but omits the
Perform Place and Route task, marking it Passed. You might want to select Skip this task if you
prefer to do place and route work manually.

If Perform Place and Route fails, but you want to use the post-mapping timing results to find
critical paths in your model, you can select Ignore place and route errors and continue to the
Annotate Model with Synthesis Result task.

See Also

“HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow Advisor”

Run Synthesis
Launches Xilinx Vivado and executes the Vivado Synthesis step.

Enable Skip pre-route timing analysis if you do not want to do early timing estimation.

Run Implementation
Launches Xilinx Vivado and executes the Vivado Implementation step.

If you select Skip this task , the HDL Workflow Advisor omits the Run Implementation task,
marking it Passed. Select Skip this task if you prefer to do place and route work manually.

If Run Implementation fails, you can select Ignore place and route errors and continue to the
Annotate Model with Synthesis Result task.

Check Timing Report

If there are timing failures during this task, the task does not fail. You must check the timing report
for timing failures.

Annotate Model with Synthesis Result
Analyzes pre- or post-routing timing information and visually highlights critical paths in your model

Description

The Annotate Model with Synthesis Result task helps you to identify critical paths in your model.
At your option, the task analyzes pre- or post-routing timing information produced by the Perform
Synthesis and P/R task group, and visually highlights one or more critical paths in your model.

Note If you select Intel Quartus Pro or Microsemi Libero SoC as the Synthesis tool, the
Annotate Model with Synthesis Result task is not available. In this case, you can run the workflow
to synthesis and then view the timing reports to see the critical path.

If Generate FPGA top level wrapper is selected in the Generate RTL Code and Testbench task,
Annotate Model with Synthesis Result is not available. To perform back-annotation analysis, clear
the check box for Generate FPGA top level wrapper.
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Input Parameters

Critical path source
Select pre-route or post-route.

The pre-route option is unavailable when Skip pre-route timing analysis is enabled in the
previous task group.

Critical path number
You can annotate up to 3 critical paths. Select the number of paths you want to annotate.

Show all paths
Show critical paths, including duplicate paths.

Show unique paths
Show only the first instance of a path that is duplicated.

Show delay data
Annotate the cumulative timing delay on each path.

Show ends only
Show the endpoints of each path, but omit the connecting signal lines.

Results and Recommended Actions

When the Annotate Model with Synthesis Result task runs to completion, HDL Coder displays the
DUT with critical path information highlighted.

See Also

“HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow Advisor”

Download to Target Overview
The Download to Target folder supports the following tasks:

• Generate Programming File: Generate an FPGA programming file.
• Program Target Device: Download generated programming file to the target development

board.
• Generate Simulink Real-Time Interface (for Speedgoat target devices only): Generate a model

that contains a Simulink Real-Time interface subsystem.

For summary information on each Download to Target task, select the task icon and then click the
HDL Workflow Advisor Help button.

See Also

“Getting Started with the HDL Workflow Advisor” on page 31-2

Generate Programming File
The Generate Programming File task generates an FPGA programming file that is compatible with
the selected target device.

37 HDL Workflow Advisor Tasks

37-18



Program Target Device
The Program Target Device task downloads the generated FPGA programming file to the selected
target device.

Before executing the Program Target Device task, make sure that your host PC is properly
connected to the target development board via the required programming cable.

Generate Simulink Real-Time Interface
The Generate Simulink Real-Time Interface task generates a model containing an interface
subsystem that you can plug in to a Simulink Real-Time model.

The naming convention for the generated model is:

gm_fpgamodelname_slrt

where fpgamodelname is the name of the original model.

Save and Restore HDL Workflow Advisor State
You can save the current settings of the HDL Workflow Advisor to a named restore point. Later, you
can restore the same settings by loading the restore point data into the HDL Workflow Advisor.

See Also

“Getting Started with the HDL Workflow Advisor” on page 31-2.

FPGA-In-The-Loop Implementation
Set FIL options and run FIL processing.

Set FPGA-In-The-Loop Options
Set connection type, board IP, and MAC addresses and select additional files, if required.

Connection

Select either JTAG (Altera boards only) or Ethernet.

Board IP Address

Use this option for setting the IP address of the board if it is not the default IP address (192.168.0.2).

Board MAC Address

Under most circumstances, you do not need to change the Board MAC address. You will need to do so
if you connect more than one FPGA development board to a single computer (for which you must
have a separate NIC for each board). You must change the Board MAC address for additional boards
so that each address is unique.
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Additional Source Files

Select additional source files for the HDL design that is to be verified on the FPGA board, if required.
HDL Workflow Advisor attempts to identify the file type; change the file type in the File Type column
if it is incorrect.

Build FPGA-In-The-Loop
During the build process, the following actions occur:

• FPGA-in-the-loop generates a FIL block named after the top-level module and places it in a new
model.

• After new model generation, FIL opens a command window. In this window, the FPGA design
software performs synthesis, fit, place-and-route, timing analysis, and FPGA programming file
generation. When the process completes, a message in the command prompts you to close the
window.

• FPGA-in-the-loop builds a testbench model around the generated FIL block.

Check USRP® Compatibility
The model must have two input ports and two output ports of signed 16-bit signals.

Generate FPGA Implementation
This step initiates FPGA programming file creation. For Input Parameters, enter the path to the Ettus
Research USRP® FPGA files you previously downloaded. If you have not yet downloaded these files,
see the Support Package for USRP® Radio documentation.

When this step completes, see the instructions for downloading the programming file to the FPGA
and running the simulation in the Support Package for USRP® Radio documentation for FPGA
Targeting.

Check SDR Compatibility
The DUT must adhere to certain signal interface requirements. During Check SDR Compatibility, the
following interface checks are performed (Inputs and Outputs go through the same checks).

• Must include single complex signal, two scalar signals, or single vectored signal of size 2
• Must have a bitwidth of 16
• Must be signed
• Must be single rate
• If have vectored ports must use Scalarize Vectors option
• If have multiple rates, must use Single clock
• Must use synchronous reset
• Must use active-high reset
• Must use a user overclocking factor of 1

All error checks are done for a given task run and reported in a table. This allows a single iteration to
fix all errors.
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SDR FPGA Implementation
The SDR FPGA integrates customer logic as generated in previous steps as well as SDR-specific code
to provide data and control paths between an RF board and the host.

This step consists of the following tasks:

• Set SDR Options: Choose customization options
• Build SDR: Generate FPGA programming file for an SDR target.

Set SDR Options
Choose customization options for the completion of the SDR FPGA implementation.

SDR FPGA Component Options

• RF board for target

Choose one of the following:

• Epic Bitshark FMC-1Rx RevB
• Epic Bitshark FMC-1Rx RevC

• Folder with vendor HDL source code

Specify the folder that contains the RF interface HDL downloaded from the vendor support site.
Use Browse to navigate to the correct folder.

• User logic synthesis frequency

Specify the maximum frequency at which you want to run your design. This value must be greater
than the sampling frequencies for ADC and DAC as specified in the ADI FMCOMMS or Epiq
Bitshark™ block.

• User logic data path

Select either the Receiver data path or the Transmitter data path.

Radio IP Addresses

• Board IP address

Set the board's IP address in this field if it is not the default IP address (192.168.10.1).
• Board MAC address

Under most circumstances, you do not need to change the Board MAC address. However, you
need to do so if you connect more than one FPGA development board to a single computer (for
which you must have a separate NIC for each board). You must change the Board MAC address for
additional boards so that each address is unique.

Additional Source and Project Files for the HDL Design

Specify files you want included in the ISE or Vivado project. You should include only file types
supported by ISE or Vivado. If an included file does not exist, the HDL Workflow Advisor cannot
create the project.
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• File: Name of file added to design (with Add).
• File Type: File type. The software will attempt to determine the file type automatically, but you

may override the selection. Options are VHDL, Verilog, EDIF netlist, VQM netlist, QSF
file, Constraints, and Others.

• Add: Add a new file to the list.
• Remove: Removes the currently selected file from the list.
• Up: Moves the currently selected file up the list.
• Down: Moves the currently selected file down the list.

Show full paths to source files (checkbox) triggers a full path display. Leaving this box unchecked
displays only the file name.

Build SDR
The HDL Workflow Advisor creates a new Xilinx ISE or Vivado project and adds the following:

• All the necessary files from the FPGA repository
• The generated HDL files for the selected subsystem and algorithm

If no errors are found during FPGA project generation and syntax checking, the FPGA programming
file generation process starts. You can view this process in an external command shell and monitor its
progress. When the process is finished, a message in the command window prompts you to close the
window.

Embedded System Integration
Tasks in this folder integrate your generated HDL IP core with the embedded processor.

Create Project
Create project for embedded system tool.

In the message window, after the project is generated, you can click the project link to open the
generated embedded system tool project.

Embedded system tool
Embedded design tool.

Project folder
Folder where your generated project files are saved.

Synthesis objective
Select a synthesis objective to generate tool-specific optimization Tcl commands for your project.
If you specify None, no Tcl commands are generated.

To learn how the synthesis objectives map to Tcl commands, see “Synthesis Objective to Tcl
Command Mapping” on page 31-30.
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Generate Software Interface Model
Generate a software interface model with IP core driver blocks for embedded C code generation.

After you generate the software interface model, you can generate C code from it using Embedded
Coder.

Skip this task: Select this option if you want to provide your own embedded C code, or do not have
an Embedded Coder license.

Operating system: Select your target operating system.

Build FPGA Bitstream
Generate bitstream for embedded system.

Run build process externally
Enable this option to run the build process in parallel with MATLAB. If this option is disabled, you
cannot use MATLAB until the build is finished.

Tcl file for synthesis build
To customize your synthesis build, save your custom Tcl commands in a file and select Custom.
Enter the file path manually or by using the Browse button. The contents of your custom Tcl file
are inserted between the Tcl commands that open and close the project.

If you select Custom and want to generate a bitstream, the bitstream generation Tcl command
must refer to the top file wrapper name and location either directly or implicitly. For example, the
following Xilinx Vivado Tcl command generates a bitstream and implicitly refers to the top file
name and location:

launch_runs impl_1 -to_step write_bitstream

Program Target Device
Program the connected target SoC device. Specify the Programming method for the target device:

• JTAG: Uses a JTAG cable to program the target SoC device.
• Download: This is the default Programming method. Copies the generated FPGA bistream,

device tree, and system initialization scripts to the SD card on the Zynq board, and keeps the
bitstream on the SD card persistently.

To define your own function to program the target device in your custom reference design, you can
use the Custom Programming method. To use the custom programming, register the function
handle of the custom programming function using the CallbackCustomProgrammingMethod
method of the hdlcoder.ReferenceDesign class. For example:

hRD.CallbackCustomProgrammingMethod = ...
    @parameter_callback.callback_CustomProgrammingMethod;

For more information, see “Program Target FPGA Boards or SoC Devices” on page 40-48.
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HDL Code Advisor

• “HDL Coder Checks in Model Advisor / HDL Code Advisor Overview” on page 38-3
• “Model configuration checks overview” on page 38-4
• “Check for safe model parameters” on page 38-5
• “Check for global reset setting for Xilinx and Altera devices” on page 38-7
• “Check inline configurations setting” on page 38-8
• “Check algebraic loops” on page 38-9
• “Check for visualization settings” on page 38-10
• “Check delay balancing setting” on page 38-11
• “Check for ports and subsystems overview” on page 38-12
• “Check for invalid top level subsystem” on page 38-13
• “Check initial conditions of enabled and triggered subsystems” on page 38-14
• “Check for blocks and block settings overview” on page 38-15
• “Check for infinite and continuous sample time sources” on page 38-16
• “Check for unsupported blocks” on page 38-17
• “Check for large matrix operations” on page 38-18
• “Check for MATLAB Function block settings” on page 38-19
• “Check for Stateflow chart settings” on page 38-20
• “Check for obsolete Unit Delay Enabled/Resettable Blocks” on page 38-21
• “Check for unsupported storage class for signal objects” on page 38-22
• “Native Floating Point Checks Overview” on page 38-23
• “Check for single datatypes in the model” on page 38-24
• “Check for double datatypes in the model with Native Floating Point” on page 38-25
• “Check for Data Type Conversion blocks with incompatible settings” on page 38-26
• “Check for HDL Reciprocal block usage” on page 38-27
• “Check for Relational Operator block usage” on page 38-28
• “Check for unsupported blocks with Native Floating Point” on page 38-29
• “Check for blocks with nonzero output latency” on page 38-30
• “Check blocks with nonzero ulp error” on page 38-31
• “Industry standard checks overview” on page 38-32
• “Check VHDL file extension” on page 38-33
• “Check naming conventions” on page 38-34
• “Check top-level subsystem/port names” on page 38-35
• “Check module/entity names” on page 38-36
• “Check signal and port names” on page 38-37
• “Check package file names” on page 38-38
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• “Check generics” on page 38-39
• “Check clock, reset, and enable signals” on page 38-40
• “Check architecture name” on page 38-41
• “Check entity and architecture” on page 38-42
• “Check clock settings” on page 38-43
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HDL Coder Checks in Model Advisor / HDL Code Advisor
Overview

The HDL Coder checks in the Model Advisor or the HDL Code Advisor verify and update your
Simulink model or subsystem for compatibility with HDL code generation. Running the checks
produces a report that lists suboptimal conditions or settings, and then proposes better model
configuration settings.

To learn about:

• HDL Code Advisor UI, see “Getting Started with the HDL Code Advisor” on page 39-2.
• Model Advisor, see “Run Model Advisor Checks for HDL Coder” on page 39-6.

The left pane displays folders that perform various checks:

• Model configuration checks: Prepare your model for compatibility with HDL code generation.
This folder contains checks that verify whether model parameters are HDL-compatible, whether
your design contains algebraic loops, and so on.

• Checks for ports and subsystems: Verify whether ports and subsystems in your model have
settings that are compatible for HDL code generation. The checks include whether you have a
valid top-level DUT Subsystem and whether you have specified an initial condition for Enabled
Subsystem and Triggered Subsystem blocks.

• Checks for blocks and block settings: Verify whether blocks in your model are supported for
HDL code generation, and whether the supported blocks have HDL-compatible settings. The
checks include whether source blocks in your model have a continuous sample time and whether
Stateflow Charts and MATLAB Function blocks have HDL-compatible settings, and so on.

• Native Floating Point checks: Verify whether the block is compatible for HDL code generation
in Native Floating Point mode. The checks include whether the blocks in your Simulink
model are supported for HDL code generation with Native Floating Point, and whether the
model uses single data types, and so on. Native floating-point support in HDL Coder generates
target-independent HDL code from your single-precision floating-point model. For more
information, see “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-
70.

• industry-standard checks: Verify whether your Simulink model conforms to the industry-
standard rules. Industry-standard rules recommend using certain HDL coding guidelines. When
generating code, HDL Coder displays an HDL coding standard report that shows how well the
generated code adheres to the industry-standard guidelines. For more information, see “HDL
Coding Standards” on page 26-4.

To learn more about each individual check, right-click that check, and select What's This?.

See also “HDL Code Advisor Checks” on page 39-11.
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Model configuration checks overview
Use the checks in this folder to prepare your model for compatibility with HDL code generation. This
folder contains checks that verify whether:

• The model parameters and visualization settings are compatible with HDL code generation.
• Your model uses foreign characters that are incompatible with the current encoding.
• The global reset setting is asynchronous for Altera devices and synchronous for Xilinx devices.
• The InlineConfigurations setting is enabled on the model.
• The design contains algebraic loops.

38 HDL Code Advisor
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Check for safe model parameters
Check ID: com.mathworks.HDL.ModelChecker.runModelParamsChecks

Check for model parameters set up for HDL code generation.

Description
This check verifies whether the model parameters that you specify are compatible for HDL code
generation. This check ensures that you use these settings in the Configuration Parameters dialog
box.

Command-Line Parameter Setting Configuration Parameter Setting
Set Solver to FixedStepDiscrete. Set Type to Fixed-step and Solver to Discrete

(no continuous states).
Set FixedStep to auto. Set Fixed-step size (fundamental sample time)

to auto.
Set EnableMultiTasking to off. Disable the Treat each discrete rate as a

separate task check box.
Set AlgebraicLoopMsg to error Set Algebraic loop to error.
Set SingleTaskRateTransMsg to error. Set Single task rate transition to error.
Set MultiTaskRateTransMsg to error. Set Multitask rate transition to error.
Set BlockReduction to off Disable the Block Reduction check box.
Set ConditionallyExecuteInputs to off. Disable Conditional input branch execution.
Set DefaultParameterBehaviour to
Inlined. You can set this parameter at the
command line by using set_param or
hdlsetup.

et Default parameter behavior to Inlined. If you
want to set this parameter in the Configuration
Parameters dialog box, you must have Simulink
Coder.

Note Enabling this parameter is the same as setting
the InlineParams property to on. Setting
InlineParams to off changes
DefaultParameterBehavior value to Tunable.

Set DataTypeOverride to off. No dialog box prompt.
Set ProdHWDeviceType to ASIC/FPGA-
>ASIC/FPGA.

Set Device vendor to ASIC/FPGA.

The check ensures that you use these settings in the Simulink Editor.

Command-Line Parameter Setting Simulink Editor Setting
Set ShowLineDimensions to on. In the Debug tab, on the Information Overlays >

Ports section, select Base data types.
Set SignalLoggingSaveFormat to
Dataset.

No dialog box prompt.

If there are incompatible model parameters, HDL Coder displays a warning and lists the model
parameters that have to be fixed.

 Check for safe model parameters
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Results and Recommended Actions
To fix this warning, click Modify Settings, and the code generator runs the hdlsetup command to
set up the model parameters for HDL code generation. You can then rerun the check.

See Also
• hdlsetup
• “Create Simulink Model for HDL Code Generation”
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Check for global reset setting for Xilinx and Altera devices
Check ID: com.mathworks.HDL.ModelChecker.runGlobalResetChecks

Check asynchronous reset setting for Altera devices and synchronous reset setting for Xilinx devices.

Description
This check verifies whether you use a global synchronous reset for a Xilinx device or a global
asynchronous reset for an Altera device. You can improve the performance of your design by adhering
to this recommended global reset setting depending on whether you target a Xilinx device or an
Altera device.

Note If you do not specify a target device, this check passes successfully.

Results and Recommended Actions
To fix this warning, click Modify Settings, and the code generator updates the Reset type setting to
Synchronous if you use a Xilinx device and Asynchronous if you use an Altera device. You can then
rerun the check.

See Also
“Reset type” on page 16-8
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Check inline configurations setting
Check ID: com.mathworks.HDL.ModelChecker.runInlineConfigurationsChecks

Check InlineConfigurations is enabled.

Description
This check verifies whether you have the InlineConfigurations property enabled. By default, this
property is enabled, and HDL Coder includes VHDL configurations for the model inline with the rest
of the VHDL code. If you disable this property, the code generator displays a warning.

Results and Recommended Actions
To fix this warning, click Modify Settings, and the code generator updates the
InlineConfigurations setting to on.
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Check algebraic loops
Check ID: com.mathworks.HDL.ModelChecker.runAlgebraicLoopChecks

Check model for algebraic loops.

Description
HDL Coder does not support code generation for models in which algebraic loop conditions exist.
This check examines the model and fails the check if it detects an algebraic loop.

Results and Recommended Actions
To fix this warning, eliminate algebraic loops from your model and then run this check again.

See Also
“Algebraic Loop Concepts” (Simulink)

 Check algebraic loops
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Check for visualization settings
Check ID: com.mathworks.HDL.ModelChecker.runVisualizationChecks

Check for display settings: port data types and sample time color coding.

Description
This check determines whether you have:

• Enabled the Port Data Types setting on the model.
• Set the Sample Time to Colors on the model.

This check displays a warning if your Simulink model violates either or both of these settings.

Results and Recommended Actions
To fix this warning, click Modify Settings, and the code generator:

• Enables the Port Data Types setting on the model.
• Sets the Sample Time to Colors.

You can then rerun the check.

See Also
• “Display Port Data Types” (Fixed-Point Designer)
• “View Sample Time Information” (Simulink)
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Check delay balancing setting
Check ID: com.mathworks.HDL.ModelChecker.runBalanceDelaysChecks

Check Balance Delays is enabled.

Description
This check reports a warning if the Balance delays setting is disabled on the model. When you
generate HDL code, certain optimizations or block implementations can introduce delays along some
signal paths in your model. If Balance delays is disabled, the code generator does not introduce
equivalent delays on other parallel signal paths, which can result in a numerical mismatch between
the original model and the generated model.

Results and Recommended Actions
To fix this warning, click Modify Settings, and the code generator enables the Balance delays
setting on the model. You can then rerun the check.

See Also
• “Delay Balancing” on page 24-27
• “Balance delays” on page 14-3
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Check for ports and subsystems overview
This folder contains checks that verify whether ports and subsystems in your model have settings that
are compatible for HDL code generation. You can verify whether:

• The subsystem in your Simulink model is a valid top level subsystem.
• The initial condition of Enabled Subsystem or Triggered Subsystem blocks in your model is zero.
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Check for invalid top level subsystem
Check ID: com.mathworks.HDL.ModelChecker.runInvalidDUTChecks

Check for subsystems that cannot be at the top level for HDL code generation.

Description
This check verifies whether your Subsystem is a valid DUT for generating HDL code. For example, if
you use an invalid DUT such as an Enabled Subsystem or a For Each Subsystem block, this check
displays a warning and provides a link to the Subsystem.

Results and Recommended Actions
To fix this warning, place this Subsystem inside another Subsystem, and then use that Subsystem as
the DUT. You can then rerun the check.

 Check for invalid top level subsystem
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Check initial conditions of enabled and triggered subsystems
Check ID: com.mathworks.HDL.ModelChecker.runEnTrigInitConChecks

Check for initial condition of enabled and triggered subsystems.

Description
This check verifies that any Enabled Subsystem blocks or Triggered Subsystem blocks in your
Simulink model have a zero initial condition. If you have output ports with a nonzero initial condition,
running this check displays a warning and provides links to the output ports.

Results and Recommended Actions
To fix this warning, click Modify Settings to set the initial condition of the output ports of the
Enabled and Triggered Subsystem blocks to zero. You can then rerun the check.

See Also
• Triggered Subsystem
• Enabled Subsystem
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Check for blocks and block settings overview
These checks verify whether blocks in your model are supported for HDL code generation, and
whether the supported blocks have HDL-compatible settings. You can verify whether:

• There are source blocks with infinite sample time in your model.
• The blocks in your Simulink model are compatible for HDL code generation.
• There are unconnected lines, input ports, or output ports in your model.
• There are unresolved or disabled library links.
• MATLAB Function and Stateflow Chart blocks in your model have HDL-compatible settings.
• There are Delay, Unit Delay, and Zero-Order Hold blocks in the model that perform rate transition

and replace them with Rate Transition blocks.

 Check for blocks and block settings overview
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Check for infinite and continuous sample time sources
Check ID: com.mathworks.HDL.ModelChecker.runSampleTimeChecks

Check source blocks with infinite or continuous sample time.

Description
By default, the sample time of a Constant block is inf. When you connect a Constant block with
sample time of inf to other blocks in your design, it hinders speed and area optimizations.
Optimizations such as retiming, sharing, and streaming use the clock rate information to improve the
speed and area of your design. For more details, see the “HDL Code Generation” (Simulink)section of
the Constant page.

This check reports a warning if your design contains source blocks that have an infinite or continuous
sample time.

Results and Recommended Actions
To fix this warning, click Modify Settings to update the Sample time of these source blocks to
inherit through back propagation. That is, HDL Coder sets Sample time of these blocks to -1. You
can then rerun the check.

See Also
• “What Is Sample Time?” (Simulink)
• “Usage of Rate Change and Constant Blocks” on page 20-82
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Check for unsupported blocks
Check ID: com.mathworks.HDL.ModelChecker.runBlockSupportChecks

Check for unsupported blocks for HDL code generation.

Description
This check displays a warning if your model uses blocks that are not supported for HDL code
generation.

Results and Recommended Actions
To fix this warning, update your design to use blocks that are supported with HDL Coder. You can
then rerun the check.

 Check for unsupported blocks
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Check for large matrix operations
Check ID: com.mathworks.HDL.ModelChecker.runMatrixSizesChecks

Check for large matrix operations.

Description
This check displays a warning if your design contains:

• Signals with matrix types that have more than two dimensions. HDL code generation supports
matrix types that have a maximum of two dimensions.

• Large matrix operations with Add, Sum, or Product blocks that result in a matrix output with more
than ten elements. Synthesizing the generated HDL code from such a design can result in the
utilization of large number of resources on the target FPGA. For more details, see the "HDL Code
Generation" sections of the block reference pages.

Results and Recommended Actions
To fix this warning, update your design so that there are no matrix types with more than two
dimensions and the result of a matrix operation does not produce an output with more than ten
elements. To verify that the check passes, compile the design and rerun the check.

See Also
• Product
• “Signal and Data Type Support” on page 10-2
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Check for MATLAB Function block settings
Check ID: com.mathworks.HDL.ModelChecker.runMLFcnBlkChecks

Check HDL compatible settings for MATLAB Function blocks.

Description
This check displays a warning if your model uses MATLAB Function blocks that have settings not
recommended for HDL code generation. The settings include checking whether the MATLAB
Function block has:

• fimath settings defined as per hdlfimath. The hdlfimath function uses fimath settings that
are compatible for HDL code generation.

• Saturate on integer overflow check box cleared.

Results and Recommended Actions
To fix this warning, click Modify Settings and the code generator updates the MATLAB Function
block settings to be compatible with HDL code generation.

See Also
“Design Guidelines for the MATLAB Function Block” on page 29-28
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Check for Stateflow chart settings
Check ID: com.mathworks.HDL.ModelChecker.runStateflowChartSettingsChecks

Check HDL compatible settings for Stateflow Chart blocks.

Description
This check displays a warning if your model uses Stateflow Chart blocks that have settings
incompatible for HDL code generation. The settings include checking whether the Stateflow Chart
has Execute (enter) Chart At Initialization set, whether the State Machine Type is Moore, and
so on.

Results and Recommended Actions
To fix this warning, click Modify Settings and the code generator updates the Stateflow Chart
settings to be compatible with HDL code generation.

See Also
Chart
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Check for obsolete Unit Delay Enabled/Resettable Blocks
Check ID: com.mathworks.HDL.ModelChecker.runObsoleteDelaysChecks

Check if the DUT contains obsolete Unit Delay Enabled/Resettable blocks

Description
This check displays a warning if the DUT Subsystem contains any of these blocks:

• Unit Delay Enabled
• Unit Delay Resettable
• Unit Delay Enabled Resettable

These blocks have been obsoleted. The code generator does not recommend usage of these blocks in
your Simulink model.

Results and Recommended Actions
To fix this warning, click Modify Settings and the code generator replaces these blocks with the
corresponding synchronous counterparts:

• Unit Delay Enabled is replaced by Unit Delay Enabled Synchronous.
• Unit Delay Resettable is replaced by Unit Delay Resettable Synchronous.
• Unit Delay Enabled Resettable is replaced by Unit Delay Enabled Resettable Synchronous.

These blocks are recommended because they use the State Control block for synchronous simulation
behavior and generate hardware-friendly HDL code. For more information, see “Synchronous
Subsystem Behavior with the State Control Block” on page 27-47.
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Check for unsupported storage class for signal objects
Check ID: com.mathworks.HDL.ModelChecker.runSignalObjectStorageClassChecks

Check whether signal object storage class is 'ExportedGlobal' or 'ImportedExtern' or
'ImportedExternPointer'

Description
This check displays a warning if your model contains signals that have the signal object storage class
set to 'ExportedGlobal', 'ImportedExtern', or 'ImportedExternPointer'. The warning
message also provides links to those signals that have the signal object storage class set to one of
these signal object storage class specifications.

HDL code generation ignores these storage class specifications that you specify in your design, which
may sometimes result in conflicting signal names. When you simulate the validation model, HDL
Coder may generate errors.

Results and Recommended Actions
To fix this warning, click Modify Settings and the code generator replaces those signals that have
the signal object storage class specified as ExportedGlobal, ImportedExtern, or
ImportedExternPointer to Auto.

See Also
coder.storageClass

More About
• “Choose Storage Class for Controlling Data Representation in Generated Code” (Embedded

Coder)
• “Storage Classes for Code Generation from MATLAB Code” (Embedded Coder)
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Native Floating Point Checks Overview
These checks verify whether the model is compatible for HDL code generation in Native Floating
Point mode. Native floating-point support in HDL Coder generates target-independent HDL code
from your single-precision floating-point model. For more information, see “Generate Target-
Independent HDL Code with Native Floating-Point” on page 10-70.

Use the checks in this folder to verify whether:

• You use the Native Floating Point mode when your design contains single data types.
• Your model uses double data types in Native Floating Point mode.
• Blocks in your model are supported for HDL code generation in Native Floating Point mode.
• Blocks in your model have a nonzero ulp error and a nonzero output latency.

 Native Floating Point Checks Overview
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Check for single datatypes in the model
Check ID: com.mathworks.HDL.ModelChecker.runNFPSuggestionChecks

Check for single data types in the model.

Description
This check detects whether your Simulinkmodel uses single data types and displays a warning if the
Floating Point IP Library is not set to Native Floating Point.

Results and Recommended Actions
To fix this warning, click Modify Settings and the code generator sets Native Floating Point as
the Floating Point IP Library. You can then rerun the check.

See Also
“Getting Started with HDL Coder Native Floating-Point Support” on page 10-49
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Check for double datatypes in the model with Native Floating
Point

Check ID: com.mathworks.HDL.ModelChecker.runDoubleDatatypeChecks

Check for double data types in the model.

Description
This check displays a warning when your Simulinkmodel uses double data types with Floating
Point IP Library set to Native Floating Point. The check passes when your model uses double
data types but does not have the Floating Point IP Library set to Native Floating Point.

Results and Recommended Actions
To fix this warning, update your design by converting double data types to single and then set the
Floating Point IP Library to Native Floating Point. You can then rerun the check.

Note The check passes when your model uses double data types but does not have the Floating
Point IP Library set to Native Floating Point. However, double data types in your model can
generate reals in the HDL code which is not synthesizable. To generate synthesizable HDL code,
convert double data types to single and set the Floating Point IP Library to Native Floating
Point.

See Also
“Getting Started with HDL Coder Native Floating-Point Support” on page 10-49
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Check for Data Type Conversion blocks with incompatible
settings

Check ID: com.mathworks.HDL.ModelChecker.runNFPDTCChecks

Check conversion mode of Data Type Conversion blocks.

Description
This check displays a warning when Data Type Conversion blocks in your model convert from a
floating-point data type to a fixed-point data type or vice-versa, and has Input and output to have
equal parameter set to Stored Integer (SI).

HDL Coder does not support Data Type Conversion blocks that use the Stored Integer (SI)
conversion mode and convert between floating point and fixed point data types. During this
conversion, the Stored Integer (SI) mode does not preserve the underlying stored integer bits
of the floating point input signal.

Results and Recommended Actions
To fix this warning, click Modify Settings and the code generator replaces Data Type Conversion
blocks in Stored Integer (SI) mode with Float Typecast blocks.

Using the Float Typecast block, you can access the stored integer bits of a floating point input signal
when converting between floating point and fixed point data types. The block works similar to the
typecast function.

See Also
“Getting Started with HDL Coder Native Floating-Point Support” on page 10-49
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Check for HDL Reciprocal block usage
Check ID: com.mathworks.HDL.ModelChecker.runNFPHDLRecipChecks

Check HDL Reciprocal blocks are not using floating point types

Description
This check displays a warning if your Simulink model contains HDL Reciprocal blocks that use
floating-point data types. HDL Reciprocal blocks with floating point data types can have potential
numerical mismatches with the Simulink simulation results, and can use more resources on the
target hardware.

Results and Recommended Actions
To fix this warning, click Modify Settings and the code generator replaces the HDL Reciprocal
blocks with Math Reciprocal blocks.

See Also
HDL Reciprocal
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Check for Relational Operator block usage
Check ID: com.mathworks.HDL.ModelChecker.runNFPRelopChecks

Check Relational Operator blocks which use floating point types have boolean outputs.

Description
This check displays a warning if your Simulink model contains Relational Operator blocks that
compare floating-point data types and produce a nonboolean output. IBy default, the Output data
type of the block is boolean. If you specify a nonboolean output, the block implementation after HDL
code generation is not optimal, and can increase the resource usage on the target hardware device.

Results and Recommended Actions
To fix this warning, click Modify Settings and the code generator changes the Output data type of
the block to boolean.

See Also
Relational Operator
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Check for unsupported blocks with Native Floating Point
Check ID: com.mathworks.HDL.ModelChecker.runNFPSupportedBlocksChecks

Check for unsupported blocks with Native Floating Point.

Description
This check displays a warning if your Simulink model contains blocks that use single data types,
and are not supported for HDL code generation in the native floating-point mode.

Results and Recommended Actions
To fix this warning, make sure that your design uses blocks that are supported for HDL code
generation with Native Floating Point.

See Also
“Simulink Blocks Supported with Native Floating-Point” on page 10-80

 Check for unsupported blocks with Native Floating Point

38-29



Check for blocks with nonzero output latency
Check ID: com.mathworks.HDL.ModelChecker.runNFPLatencyChecks

Check for blocks that have nonzero output latency with Native Floating Point.

Description
This check detects blocks in your Simulink model that have a nonzero output latency with Native
Floating Point. When you run the check, the Result subpane displays hyperlinks to the blocks that
have nonzero output latency, and the minimum and maximum latency values of the blocks.

Results and Recommended Actions
Native floating point operators are computation-intensive and can have nonzero output latency. When
you generate code, HDL Coder figures out this latency.

For blocks with nonzero latency that are reported by this check, consider the effect this latency has in
the validation model. In the generated model and validation model, you see the additional delays that
the code generator added to account for the latency. If your design contains parallel paths, delay
balancing adds matching delays to balance those paths. You can use this information to customize
your algorithm for latency considerations.

See Also
“Latency Considerations with Native Floating Point” on page 10-63
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Check blocks with nonzero ulp error
Check ID: com.mathworks.HDL.ModelChecker.runNFPULPErrorChecks

Check for blocks that have nonzero ulp error with Native Floating Point.

Description
This check detects blocks in your Simulink model that have a nonzero ULP error in native floating-
point mode. When you run the check, the Result subpane displays hyperlinks to the blocks that have
nonzero ULP error, and the ulp values.

Results and Recommended Actions
To fix this warning, look for instances of blocks that have nonzero ULP error and specify a Tolerance
Value by setting Floating point tolerance check based on the ulp error. You can then rerun the
check.

Note Fixing warnings that are reported by this check does not guarantee that your Simulink model
has a zero ulp error. Make sure that you verify the ulp of your design by using multiple methods, such
as by generating HDL code and test benches.

See Also
“Numeric Considerations with Native Floating-Point” on page 10-52
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Industry standard checks overview
These checks verify whether your Simulink model conforms to the industry-standard rules. industry-
standard rules recommend using certain HDL coding guidelines. When generating code, HDL Coder
displays an HDL coding standard report that shows how well the generated code adheres to the
industry-standard guidelines. For more information, see “HDL Coding Standards” on page 26-4

Use the checks in this folder to verify whether:

• Names in your design adhere to the standard naming conventions.
• Subsystem names, top-level subsystem and port names, and signal and port names have the

recommended number of characters in length.
• The generated VHDL code from your design follows recommended guidelines. The guidelines

recommend that the file name extension is .vhd, the architecture name is rtl, the package file
postfix is _pkg, and that the generated code does not use generics at the top level.

• Clock settings adhere to the industry-standard guidelines, and whether clock, reset, and enable
signals adhere to the naming conventions.
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Check VHDL file extension
Check ID: com.mathworks.HDL.ModelChecker.runFileExtensionChecks

Check file extensions of VHDL files containing entities.

Description
This check detects whether the file extension is .vhd when you generate code with VHDL as the
target language. This check corresponds to rule 1.A.A.1 of the industry-standard rules.

Results and Recommended Actions
To fix this warning, click Modify Settings and the code generator updates the file name extension
to .vhd.

See Also
Rule 1.A.A.1 of “Basic Coding Practices” on page 26-9.

 Check VHDL file extension

38-33



Check naming conventions
Check ID: com.mathworks.HDL.ModelChecker.runNameConventionChecks

Check standard keywords used by EDA tools.

Description
This check detects whether names in the design are adhering to the standard naming convention and
not using names starting with VDD, VSS, and so on. This check corresponds to rule 1.A.A.4 of the
industry-standard rules.

Results and Recommended Actions
To fix this warning, click Modify Settings and the code generator updates the names by replacing
the reserved keywords with rsvd to adhere to the industry-standard rule.

See Also
Rule 1.A.A.4 of “Basic Coding Practices” on page 26-9.
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Check top-level subsystem/port names
Check ID: com.mathworks.HDL.ModelChecker.runToplevelNameChecks

Check top-level module/entity and port names.

Description
This check verifies whether top-level module/entity and port names are of the same case and less
than or equal to 16 characters in length. This check corresponds to rule 1.A.A.9 of the industry-
standard rules.

Results and Recommended Actions
To fix this warning, click Modify Settings and the code generator updates the top-level module/
entity and port names to be of the same case and less than or equal to 16 characters. Names longer
than 16 characters are truncated to fit within 16 characters in length.

See Also
Rule 1.A.A.9 of “Basic Coding Practices” on page 26-9.
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Check module/entity names
Check ID: com.mathworks.HDL.ModelChecker.runSubsystemNameChecks

Check module/entity names.

Description
This check verifies whether subsystems in your model have names between 2 and 32 characters in
length. This check corresponds to rule 1.A.B.1 of the industry-standard rules.

Results and Recommended Actions
To fix this warning, click Modify Settings and the code generator updates the Subsystem names
such that the module/entity and port names are between 2 and 32 characters.

See Also
Rule 1.A.B.1 of “Basic Coding Practices” on page 26-9.
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Check signal and port names
Check ID: com.mathworks.HDL.ModelChecker.runPortSignalNameChecks

Check signal and port name lengths.

Description
This check verifies whether ports and signals from the blocks have names between 2 and 40
characters in length. This check corresponds to rule 1.A.C.3 of the industry-standard rules.

Results and Recommended Actions
To fix this warning, click Modify Settings and the code generator updates the signal and port names
to be between 2 and 40 characters in length.

See Also
Rule 1.A.C.3 of “Basic Coding Practices” on page 26-9.
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Check package file names
Check ID: com.mathworks.HDL.ModelChecker.runPackageNameChecks

Check file name containing packages.

Description
This check verifies whether the package file postfix is _pac when you generate code with VHDL as
the target language. By default, the generated package file postfix is _pkg. This check corresponds to
rule 1.A.D.1 of the industry-standard rules.

Results and Recommended Actions
To fix this warning, click Modify Settings and the code generator updates the package file name to
_pac.

See Also
Rule 1.A.D.1 of “Basic Coding Practices” on page 26-9.
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Check generics
Check ID: com.mathworks.HDL.ModelChecker.runGenericChecks

Check generics at top level subsystem.

Description
This check verifies whether you have generics at the top-level subsystem. If your design uses mask
parameters and has the MaskParameterAsGeneric setting enabled, then the top-level subsystem
can have generics. This check corresponds to rule 1.A.D.9 of the industry-standard rules.

Results and Recommended Actions
To fix this warning, click Modify Settings and the code generator disables the
MaskParameterAsGeneric setting so that there are no generics at the top-level subsystem.

See Also
Rule 1.A.D.9 of “Basic Coding Practices” on page 26-9.
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Check clock, reset, and enable signals
Check ID: com.mathworks.HDL.ModelChecker.runClockResetEnableChecks

Check naming convention for clock, reset, and enable signals.

Description
This check verifies whether clock, reset, and clock enable signals follow the recommended naming
convention. Clock signal names must contain clk or ck, reset signal names must contain rstx,
resetx, rst_x, or reset_x, and clock enable signal names must contain en. This check
corresponds to rule 1.A.E.2 of the industry-standard rules.

Results and Recommended Actions
To fix this warning, click Modify Settings and the code generator updates the clock, reset, and
enable signals to adhere to the naming conventions.

See Also
Rule 1.A.E.2 of “Basic Coding Practices” on page 26-9.
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Check architecture name
Check ID: com.mathworks.HDL.ModelChecker.runArchitectureNameChecks

Check VHDL architecture name in the generated HDL code.

Description
This check verifies whether the architecture name is rtl when you generate code with VHDL as the
target language. This check corresponds to rule 1.A.F.1 of the industry-standard rules.

Results and Recommended Actions
To fix this warning, click Modify Settings and the code generator updates the
VHDLArchitectureName setting to rtl to adhere to the industry-standard rule.

See Also
Rule 1.A.F.1 of “Basic Coding Practices” on page 26-9.

 Check architecture name
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Check entity and architecture
Check ID: com.mathworks.HDL.ModelChecker.runSplitEntityArchitectureChecks

Check whether the VHDL entity and architecture are described in the same file.

Description
This check detects when you have the entity and architecture descriptions in separate files when you
generate code with VHDL as the target language. The entity and architecture descriptions can be in
separate files if you enable the SplitEntityArch setting. This check corresponds to rule 1.A.F.4 of
the industry-standard rules.

Results and Recommended Actions
To fix this warning, click Modify Settings and the code generator disables the SplitEntityArch
setting so that the entity and architecture descriptions are in the same file.

See Also
Rule 1.A.F.4 of “Basic Coding Practices” on page 26-9.
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Check clock settings
Check ID: com.mathworks.HDL.ModelChecker.runClockChecks

Check constraints on clock signals.

Description
This check detects multiple constraints on clock signals that correspond to these industry-standard
rules:

• Rule 1.B.A.1: Design should have only a single clock and use only one edge of the clock. This rule
may be violated if you have the ClockInputs property set to Multiple.

• Rule 1.D.C.6: Do not use flip-flops with inverted edges.
• Rule 1.D.D.2: One hierarchical level should have a single clock only. This rule can be violated if

you set ClockInputs to Multiple, or your design uses trigger signals and enabling
TriggerAsClock can result in clock signals at various levels in the hierarchy.

Results and Recommended Actions
To fix this warning, click Modify Settings and the code generator:

• Updates the ClockInputs property to Single.
• Disables the TriggerAsClock setting.

See Also
Rules 1.B.A.1, 1.D.C.6, and 1.D.D.2 of “Basic Coding Practices” on page 26-9.

 Check clock settings

38-43





Using the HDL Code Advisor

• “Getting Started with the HDL Code Advisor” on page 39-2
• “Run Model Advisor Checks for HDL Coder” on page 39-6
• “HDL Code Advisor Checks” on page 39-11

39



Getting Started with the HDL Code Advisor
In this section...
“Open the HDL Code Advisor” on page 39-2
“Run Checks In the HDL Code Advisor” on page 39-3
“Fix HDL Code Advisor Warnings or Failures” on page 39-3
“View and Save HDL Code Advisor Reports” on page 39-4

The HDL Code Advisor verifies and updates your Simulink model or subsystem for compatibility with
HDL code generation. The Model Checker checks for model configuration settings, ports and
subsystem settings, block settings, support for native floating point, and conformance to the industry-
standard rules. The Code Advisor produces a report that lists suboptimal conditions or settings, and
then proposes better model configuration settings.

The HDL Code Advisor has these caveats:

• If you reference one model in another by using a Model block, the HDL Code Advisor checks the
model configurations or settings of the parent model. To check whether the referenced model is
compatible with HDL code generation, open the HDL Code Advisor for the referenced model, and
then run the checks.

• If you run the checks on masked library blocks in your Simulink model, the Code Advisor cannot
verify whether the blocks inside the library blocks have HDL-compatible settings.

• When you apply Model Advisor checks to your model, it increases the likelihood that your model
does not violate certain modeling standards or guidelines. However, it does not guarantee that the
design is ready for HDL code generation. Make sure that you verify the design by using multiple
methods for HDL code generation readiness.

Open the HDL Code Advisor
To open the HDL Code Advisor:

• From the UI, in the Apps tab, select HDL Coder. The HDL Code tab appears. Select the DUT
Subsystem and then click HDL Code Advisor.

• To run the checks for the Subsystem you want to analyze, right-click that Subsystem, and in the
context menu, select HDL Code > Check Model Compatibility.

• At the command line, enter hdlmodelchecker('system'). system is a handle or name of the
model or subsystem that you want to check. For more information, see hdlmodelchecker.

In the HDL Code Advisor, the left pane lists the folders in the hierarchy. Each folder represents a
group or category of related checks. Expanding the folders shows available checks in each folder.
From the left pane, you can select a folder or an individual check. The HDL Code Advisor displays
information about the selected folder or check in the right pane. The content of the right pane
depends on the selected folder or check. The right pane has a Result subpane that contains a display
area for status messages and other task results.

To learn more about each individual check, right-click that check, and select What's This?.
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Run Checks In the HDL Code Advisor
In the HDL Code Advisor window, you can run individual checks or a group of checks. To run a check,
Select that check and then click Run This Check. For example, to run the Check for safe model
parameters, select the check box, and then click Run This Check.

In the HDL Code Advisor window, you can run a group of checks within a folder.

1 Select the checks that you want to run.
2 Select the folder that contains these checks and then click Run Selected Checks.

This example shows how to run selected checks in the Model configuration checks folder.

Fix HDL Code Advisor Warnings or Failures
In the HDL Code Advisor, if a check fails, the right pane shows the warning or failure information in a
Result subpane. The Result subpane displays model settings that are not compliant. For some tasks,
use the Action subpane to apply the Code Advisor recommended settings. This example displays the
incorrect model settings that caused the Check for safe model parameters to fail.
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To apply the correct model configuration settings that the code generator reported in the Result
subpane, click the Modify Settings button. After you click Modify Settings, the Result subpane
reports the changes that were applied. You can now run this check.

View and Save HDL Code Advisor Reports
When you run checks in the HDL Code Advisor, HDL Coder generates an HTML report of the check
results. Each folder in the HDL Code Advisor contains a report for the checks within that folder and
its subfolders. To access reports, select a folder such as Model configuration checks, and in the
Report subpane, click Save As. If you rerun the HDL Code Advisor, the report is updated in the
working folder, not in the save location.

This report shows typical results for a run of the Model configuration checks folder.
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As you run the checks, the HDL Code Advisor updates the reports with the latest information for each
check in the folder. When you run the checks at different times, timestamps appear at the top right of
the report to indicate when checks have been run. Checks that occurred during previous runs have a
timestamp following the check name. You can filter checks in the report such that tasks that are Not
Run do not appear or show tasks that Passed, and so on. To view the report for a folder each time
the tasks for the folder have been run, select Show report after run.

See Also

More About
• “HDL Code Advisor Checks” on page 39-11
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Run Model Advisor Checks for HDL Coder
The Model Advisor checks a model or subsystem for conditions and configuration settings that can
result in inaccurate or inefficient simulation. The Model Advisor produces a report that lists the
suboptimal conditions or settings that it finds, and proposes better model configuration settings
where appropriate. HDL Coder integrates the checks in the HDL Code Advisor with the Model
Advisor.

Open the Model Advisor Checks
You can open the Model Advisor in either of these ways:

• In the Modeling tab, select Model Advisor. In the System Selector dialog box, select the model
or Subsystem that you want to analyze, and click OK.

• To run the model advisor checks for the Subsystem that you want to analyze, right-click that
Subsystem, and select Model Advisor > Open Model Advisor.

• At the command line, enter modeladvisor('system'). system is the name of the model or
Subsystem that you want to analyze. For more information, see modeladvisor.

When you open the Model Advisor in Simulink, you see the checks in the HDL Coder subfolder of the
By Product folder. Each subfolder in the HDL Coder folder represents a group or category of
related checks. Expanding the folders display available checks in each folder. From the left pane, you
can select a folder or an individual check. The Model Advisor displays information about the selected
folder or check in the right pane. The content of the right pane depends on the selected folder or
check. The right pane has a Result subpane that contains a display area for status messages and
other task results.

To learn more about each individual check, right-click that check, and select What's This?.

Run Checks in the Model Advisor
In the Model Advisor window, you can run individual checks or a group of checks. To run a check,
Select that check, and then click Run This Check.

To run a group of checks within a folder:

1 Select the checks that you want to run.
2 Select the folder that contains these checks and then click Run Selected Checks

For example, to run all the checks in the Checks for blocks and block settings folder, select the
folder, and then click Run Selected Checks.
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You can also click the  button to run the selected checks in the Model Advisor.

Run Checks In Background
If you have Parallel Computing Toolbox™, you can run the checks in the background. You can
continue working on the model during analysis. The analysis does not reflect changes that you make
to your model while Model Advisor is running in the background.

To run the Model Advisor checks in background, before you select and run the checks, click the Run

checks in background toggle, .

When you run the checks, the Model Advisor starts an analysis on a parallel processor. To stop
running checks in the background, in the Model Advisor Window, click Stop background run, .

Display Check Results in the Model Advisor Report
To display an HTML report of the check results, before you run the checks, select Show report after
run. You can specify this setting to generate a report for all the checks in the HDL Coder folder, or
for all checks within a subfolder, such as the Checks for blocks and block settings.
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If you did not select Show report after run, you can generate a report after you run the checks by
selecting Generate Report. Specify the Directory, Filename, and Format of the HTML report that
want to generate.

This report shows typical results for a run of the Checks for blocks and block settings folder.

The report displays a run summary of the checks in the folder that you generated the report for. As
you run the checks, the Model Advisor updates the reports with the latest information for each check
in the folder. When you run the checks at different times, timestamps appear at the top right of the
report to indicate when checks have been run. Checks that occurred during previous runs have a
timestamp following the check name. You can filter checks in the report to show checks that display a
Warning, or show checks that Passed, and so on.

Fix Warnings or Failures
When a model or referenced model has a suboptimal condition, checks can fail. After you run a Model

Advisor analysis,  indicates checks that have warnings. A warning result is informational. You can
fix the reported issue or move on to the next task.

You can also use the Model Advisor highlighting capability to color-highlight Simulink blocks and
Stateflow charts in your model, which indicates the analysis results. To highlight blocks, in the Model
Advisor window, select Highlighting > Enable Highlighting.

To fix warnings or failures, in the Result subpane, review the recommended actions to make changes
to your model. When you fix a warning or failure, to verify that the check passes, rerun the check.

Some checks have an Action subpane. This example displays the incorrect MATLAB Function block
settings that caused the check to display a warning.
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When you select Modify Settings, the Result subpane shows the changes that were applied. To
verify that the check passes, rerun the check. If you use the Model Advisor dashboard, you see that
the analysis is faster when you rerun the check because the Model Advisor does not reload the checks
before executing them.

Save and Restore Model Advisor State
By default, the Simulink software saves the state of the most recent Model Advisor session. The next
time that you activate the Model Advisor, it returns to that state. You can also save the current
settings of the Model Advisor to a named restore point. A restore point is a snapshot in time of the
model, base workspace, and Model Advisor. Later, you can restore the same settings by loading the
restore point data into the Model Advisor.

You can use this data restore point to revert changes to your model in response to recommendations
from the Model Advisor. For example, you can save a model and restore point to undo your changes if
the Model Advisor reports a warning after running a certain check. You can also restore the default
configuration of the Model Advisor. In the Model Advisor window, select Settings > Restore Default
Configuration.

To save the Model Advisor state, in the Model Advisor Window, select File > Save Restore Point As.
Enter a Name and Description, and then click Save. You can save more than one restore point.

 Run Model Advisor Checks for HDL Coder

39-9



To restore a Model Advisor state, in the Model Advisor Window, select File > Load Restore Point.
Select the restore point and click Load. When you load a restore point, the Model Advisor warns that
the restoration overwrites the current settings.

See Also

More About
• “HDL Code Advisor Checks” on page 39-11
• “Run Model Advisor Checks” (Simulink)
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HDL Code Advisor Checks
In this section...
“Model configuration checks” on page 39-12
“Checks for ports and subsystems” on page 39-12
“Checks for blocks and block settings” on page 39-12
“Native Floating Point checks” on page 39-13
“industry standard checks” on page 39-14

The HDL Code Advisor and the Model Advisor checks in HDL Coder verify and update your Simulink
model or subsystem for compatibility with HDL code generation. The Code Advisor has checks for:

• Model configuration settings
• Ports and Subsystem settings
• Blocks and block settings
• Native Floating Point support
• Industry standard guidelines

When you run a check, the Code Advisor displays the result as a pass or a failure. You can fix
warnings or failures by using the Model Advisor recommended settings.
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Model configuration checks
Use the checks in this folder to prepare your model for compatibility with HDL code generation. This
folder contains checks that verify whether model parameters are HDL-compatible, whether your
design contains algebraic loops, and so on.

Check Name Description
“Check for safe model parameters” on page 38-5 Check for model parameters set up for HDL code

generation.
“Check model for foreign characters” (Simulink) Search the model for unresolved library links,

where the specified library block cannot be
found.

“Check for global reset setting for Xilinx and
Altera devices” on page 38-7

Check asynchronous reset setting for Altera
devices and synchronous reset setting for Xilinx
devices.

“Check inline configurations setting” on page 38-
8

Check whether you have
InlineConfigurations enabled.

“Check algebraic loops” on page 38-9 Check model for algebraic loops.
“Check for visualization settings” on page 38-10 Check model for display settings: port data types

and sample time color coding.
“Check delay balancing setting” on page 38-11 Check Balance Delays is enabled.

Note If you use the Model Advisor, you see the “Check model for foreign characters” (Simulink) in
the Simulink folder.

Checks for ports and subsystems
This folder contains checks that verify whether ports and subsystems in your model have settings that
are compatible for HDL code generation. The checks include whether you have a valid top-level DUT
Subsystem and whether you have specified an initial condition for Enabled Subsystem and Triggered
Subsystem blocks.

Check Name Description
“Check for invalid top level subsystem” on page
38-13

Check for subsystems that cannot be at the top
level for HDL code generation.

“Check initial conditions of enabled and triggered
subsystems” on page 38-14

Check for initial condition of enabled and
triggered subsystems.

Checks for blocks and block settings
These checks verify whether blocks in your model are supported for HDL code generation, and
whether the supported blocks have HDL-compatible settings. The checks include whether source
blocks in your model have a continuous sample time and whether Stateflow Charts and MATLAB
Function blocks have HDL-compatible settings, and so on.
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Check Name Description
“Check for infinite and continuous sample time
sources” on page 38-16

Check source blocks with continuous sample
time.

“Check for unsupported blocks” on page 38-17 Check for unsupported blocks for HDL code
generation.

“Check for large matrix operations” on page 38-
18

Check for large matrix operations.

“Identify unconnected lines, input ports, and
output ports” (Simulink)

Check for unconnected lines or ports.

“Identify disabled library links” (Simulink) Search model for disabled library links.
“Identify unresolved library links” (Simulink) Search the model for unresolved library links,

where the specified library block cannot be
found.

“Check for MATLAB Function block settings” on
page 38-19

Check HDL compatible settings for MATLAB
Function blocks.

“Check for Stateflow chart settings” on page 38-
20

Check HDL compatible settings for Stateflow
Chart blocks.

“Check Delay, Unit Delay and Zero-Order Hold
blocks for rate transition” (Simulink)

Identify Delay, Unit Delay, or Zero-Order Hold
blocks that are used for rate transition. Replace
these blocks with actual Rate Transition blocks.

“Check for unsupported storage class for signal
objects” on page 38-22

Check whether signal object storage class is
'ExportedGlobal' or 'ImportedExtern' or
'ImportedExternPointer'

Note If you use the Model Advisor, you see the “Identify unconnected lines, input ports, and output
ports” (Simulink), “Identify disabled library links” (Simulink), “Identify unresolved library links”
(Simulink), and “Check Delay, Unit Delay and Zero-Order Hold blocks for rate transition” (Simulink)
in the Simulink folder.

Native Floating Point checks
These checks verify whether the model is compatible for HDL code generation in Native Floating
Point mode. The checks include whether the blocks in your Simulink model are supported for HDL
code generation with Native Floating Point, and whether the model uses single data types, and
so on. Native floating-point support in HDL Coder generates target-independent HDL code from your
single-precision floating-point model. For more information, see “Generate Target-Independent HDL
Code with Native Floating-Point” on page 10-70.

Check Name Description
“Check for single datatypes in the model” on
page 38-24

Check for single data types in the model.

“Check for double datatypes in the model with
Native Floating Point” on page 38-25

Check for double data types in the model.

“Check for Data Type Conversion blocks with
incompatible settings” on page 38-26

Check conversion mode of Data Type Conversion
blocks.
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Check Name Description
“Check for HDL Reciprocal block usage” on page
38-27

Check HDL Reciprocal blocks are not using
floating point types.

“Check for Relational Operator block usage” on
page 38-28

Check Relational Operator blocks which use
floating point types have boolean outputs.

“Check for unsupported blocks with Native
Floating Point” on page 38-29

Check for unsupported blocks with native
floating-point.

“Check for blocks with nonzero output latency”
on page 38-30

Check for blocks that have nonzero output
latency with native floating-point.

“Check blocks with nonzero ulp error” on page
38-31

Check for blocks that have nonzero ulp error with
native floating-point.

industry standard checks
These checks verify whether your Simulink model conforms to the industry-standard rules. industry-
standard rules recommend using certain HDL coding guidelines. When generating code, HDL Coder
displays an HDL coding standard report that shows how well the generated code adheres to the
industry-standard guidelines.

Check Name Description
“Check VHDL file extension” on page 38-33 Check file extensions of VHDL files containing

entities.
“Check naming conventions” on page 38-34 Check standard keywords used by EDA tools.
“Check top-level subsystem/port names” on page
38-35

Check top-level module/entity and port names.

“Check module/entity names” on page 38-36 Check module/entity names.
“Check signal and port names” on page 38-37 Check signal and port name lengths.
“Check package file names” on page 38-38 Check file name containing packages.
“Check generics” on page 38-39 Check generics at top-level subsystem.
“Check clock, reset, and enable signals” on page
38-40

Check naming convention for clock, reset, and
enable signals.

“Check architecture name” on page 38-41 Check VHDL architecture name in the generated
HDL code.

“Check entity and architecture” on page 38-42 Check whether the VHDL entity and architecture
are described in the same file.

“Check clock settings” on page 38-43 Check constraints on clock signals.

For more information, see:

• “HDL Coding Standards” on page 26-4
• “Basic Coding Practices” on page 26-9
• “RTL Description Techniques” on page 26-18
• “RTL Design Methodology Guidelines” on page 26-41
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See Also
hdlmodelchecker

More About
• “Getting Started with the HDL Code Advisor” on page 39-2
• “Run Model Advisor Checks for HDL Coder” on page 39-6
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Hardware-Software Co-Design Basics

• “Speedgoat FPGA Support with HDL Workflow Advisor” on page 40-2
• “Custom IP Core Generation” on page 40-4
• “Custom IP Core Report” on page 40-6
• “Generate Board-Independent HDL IP Core from Simulink Model” on page 40-12
• “Processor and FPGA Synchronization” on page 40-16
• “Synchronization of Global Reset Signal to IP Core Clock Domain” on page 40-18
• “IP Caching for Faster Reference Design Synthesis” on page 40-22
• “Resolve Timing Failures in IP Core Generation and Simulink Real-Time FPGA I/O Workflows”

on page 40-27
• “Define Multiple AXI Master Interfaces in Reference Designs to access DUT AXI4 Slave Interface”

on page 40-38
• “Meet Timing Requirements Using Enable-Based Multicycle Path Constraints” on page 40-42
• “Program Target FPGA Boards or SoC Devices” on page 40-48
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Speedgoat FPGA Support with HDL Workflow Advisor

Introduction
Simulink Real-Time and HDL Coder enable you to implement Simulink algorithms and configure I/O
functionality on Speedgoat field programmable gate array (FPGA) boards. For an example that shows
the development workflow for FPGA I/O boards, see “FPGA Programming and Configuration”
(Simulink Real-Time). You do not use these blocks outside of HDL Coder HDL Workflow Advisor.

To use these blocks, open HDL Coder HDL Workflow Advisor and use it to generate a Simulink Real-
Time interface subsystem. See “FPGA Programming and Configuration” (Simulink Real-Time).

The subsystem mask controls the block parameters. Do not edit the parameters directly. The FPGA
I/O board block descriptions are for informational purposes only.

Speedgoat FPGA IO Module Support
Speedgoat I/O FPGA boards are sold as part of Speedgoat target computer systems. Simulink Real-
Time supports the following Speedgoat (www.speedgoat.com) FPGA IO modules.

IO Module Name Description Remarks
Speedgoat IO331 The Speedgoat IO331 is a

field-programmable gate array
(FPGA) board that provides 64
bidirectional LVCMOS or 32
bidirectional LVDS I/O lines.
This board is based on a Xilinx
Spartan® 6 chip with 147,333
logic cells.

The Speedgoat IO331 is the
base board. The Speedgoat
IO331-6 is the AXM-A75 A/D
converter, an add-on to the
Speedgoat IO331.

Warning Speedgoat IO331
and its variant Speedgoat
IO331-6 will no longer be
supported in R2020b with the
Simulink Real-Time FPGA
I/O workflow. You can still
run the workflow for these IO
modules in R2020a. In
R2020b, use Speedgoat
IO333-325K or a later
Speedgoat IO module that is
based on Xilinx Vivado.

Speedgoat IO333 The Speedgoat IO333 is a
field-programmable gate array
(FPGA) board based on a
Xilinx Kintex® 7 chip with
325k logic cells.

HDL Coder HDL Workflow
Advisor supports the
Speedgoat IO333-325K-06
configuration. For more
information, see Speedgoat
HDL Coder Integration
Package for the IO333-325K
at www.speedgoat.com/help.

–
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Workflow
To work with FPGAs in the Simulink Real-Time environment, you must:

• Install HDL Coder and Xilinx design tools. For the specific tool and version required, see the board
reference topic and the HDL Coder documentation.

• Install the Speedgoat FPGA I/O board in the Speedgoat target machine.
• Be familiar with FPGA technology. In particular, you must know the clock frequency and the I/O

connector pin and channel configuration of your FPGA board.
• Have experience using data type conversion and designing Simulink fixed-point algorithms.

To generate HDL code for your FPGA target, you do not need to have HDL programming experience.

See Also

More About
• “HDL Language Support and Supported Third-Party Tools and Hardware”
• “Tool Setup”
• “FPGA Programming and Configuration” (Simulink Real-Time)
• “Digital I/O with Speedgoat FPGA Board” (Simulink Real-Time)
• “PLL-Based Interrupt Generation from FPGA Input” (Simulink Real-Time)

External Websites
• www.speedgoat.com/help
• www.speedgoat.com
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Custom IP Core Generation
In this section...
“Custom IP Core Architectures” on page 40-4
“Target Platform Interfaces” on page 40-4
“Processor/FPGA Synchronization” on page 40-5
“Custom IP Core Generated Files” on page 40-5

Using the HDL Workflow Advisor, you can generate a custom IP core from a model or algorithm. The
generated IP core is sharable and reusable. You can integrate it with a larger design by adding it in
an embedded system integration environment, such as Intel Qsys, Xilinx EDK, or Xilinx IP Integrator.

To learn how to generate a custom IP core, see:

• “Generate Board-Independent HDL IP Core from Simulink Model” on page 40-12
• “Generate Board-Independent IP Core from MATLAB Algorithm” on page 5-41

Custom IP Core Architectures
You can generate an IP core:

• With an AXI4 or AXI4-Lite interface.

• With an AXI4 or AXI4-Lite interface and AXI4-Stream Video interfaces.

• Without any AXI4 or AXI4-Lite interfaces. To learn more, see “Generate Board-Independent HDL
IP Core from Simulink Model” on page 40-12.

The Algorithm from MATLAB/Simulink block represents your DUT. HDL Coder generates the rest of
the IP core based on your target platform interface settings and processor/FPGA synchronization
mode.

Target Platform Interfaces
You can map each port in your DUT to one of the following target platform interfaces in the IP core:

• AXI4-Lite: Use this slave interface to access control registers or for lightweight data transfer. HDL
Coder generates memory-mapped registers and allocates address offsets for the ports you map to
this interface.

• AXI4: Use this slave interface to connect to components that support burst data transmission.
HDL Coder generates memory-mapped registers and allocates address offsets for the ports you
map to this interface.
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• AXI4-Stream Video: Use this interface to send or receive a 32-bit scalar video data stream.
• External ports: Use external ports to connect to FPGA external IO pins, or to other IP cores with

external ports.

To learn more about the AXI4, AXI4-Lite and AXI4-Stream Video protocols, refer to your target
hardware documentation.

Processor/FPGA Synchronization
HDL Coder generates synchronization logic in the IP core based on the processor/FPGA
synchronization mode you choose.

When generating a custom IP core, the following processor/FPGA synchronization options are
available:

• Free running (default)
• Coprocessing – blocking

To learn more about the processor/FPGA synchronization modes, see “Processor and FPGA
Synchronization” on page 40-16.

Custom IP Core Generated Files
After you generate a custom IP core, the IP core files are in the ipcore folder within your project
folder. In the HDL Workflow Advisor, you can view the IP core folder name in the IP core folder field
of the HDL Code Generation > Generate RTL Code and IP Core task.

The IP core folder contains the following generated files:

• IP core definition files.
• HDL source files (.vhd or .v).
• A C header file with the register address map.
• (Optional) An HTML report with instructions for using the core and integrating the IP core in your

embedded system project.

See Also

Related Examples
• “”
• “IP Core Generation Workflow Without an Embedded ARM Processor: Arrow DECA MAX 10

FPGA Evaluation Kit”

More About
• “Multirate IP Core Generation” on page 41-39
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Custom IP Core Report
In this section...
“Summary” on page 40-6
“Target Interface Configuration” on page 40-6
“Register Address Mapping” on page 40-7
“IP Core User Guide” on page 40-8
“IP Core File List” on page 40-11

You generate an HTML custom IP core report by default when you generate a custom IP core. The
report describes the behavior and contents of the generated custom IP core.

Summary
The Summary section shows your coder settings when you generated the custom IP core.

The following figure is an example of a Summary section.

Target Interface Configuration
The Target Interface Configuration section shows how your DUT ports map to the target hardware
interface and the processor/FPGA synchronization mode.

The following figure is an example of a Target Interface Configuration section.
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To learn more about processor/FPGA synchronization modes, see “Processor and FPGA
Synchronization” on page 40-16.

To learn more about target platform interfaces, see “Custom IP Core Generation” on page 40-4.

Register Address Mapping
The Register Address Mapping section shows the address offsets for AXI4-Lite bus accessible
registers in your custom IP core, and the name of the C header file that contains the same address
offsets.

The following figure is an example of a Register Address Mapping section.
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IP Core User Guide
The IP Core User Guide section gives a high-level overview of the system architecture, describes the
processor and FPGA synchronization mode, and gives instructions for integrating the IP core in your
embedded system integration environment.

The following figure is an example of an IP Core User Guide system architecture description.
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The following figure is an example of a processor/FPGA synchronization description.

If you use vector data signals at the DUT interface, the IP core report displays this section that shows
how the code generator synchronizes vector data across the AXI4 interface.

 Custom IP Core Report
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The following figure is an example of instructions for integrating the IP core into your embedded
system integration environment on the Xilinx platform. If you are targeting an Altera platform, the
report displays similar instructions for integrating the IP core into the Altera Qsys environment.
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IP Core File List
The IP Core File List section lists the files and file folders that comprise your custom IP core.

The following figure is an example of an IP core file list.

See Also

More About
• “Custom IP Core Generation” on page 40-4
• “Hardware-Software Co-Design Workflow for SoC Platforms” on page 41-2
• “Multirate IP Core Generation” on page 41-39
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Generate Board-Independent HDL IP Core from Simulink Model
In this section...
“Generate Board-Independent IP Core” on page 40-12
“IP Core without AXI4 Slave Interfaces” on page 40-14
“Requirements and Limitations for IP Core Generation” on page 40-15

When you open the HDL Workflow Advisor and run the IP Core Generation workflow for your
Simulink model, you can specify a generic Xilinx platform or a generic Intel platform. The workflow
then generates a generic IP core that you can integrate into any target platform of your choice. For IP
core integration, define and register a custom reference design for your target board by using the
hdlcoder.ReferenceDesign class. To learn more, see:

• “Define Custom Board and Reference Design for Zynq Workflow”
• “Define Custom Board and Reference Design for Intel SoC Workflow”

Generate Board-Independent IP Core
To generate a board-independent custom IP core to use in an embedded system integration
environment, such as Intel Qsys, Xilinx EDK, or Xilinx IP Integrator:

1 Select your DUT in your Simulink model and open the HDL Workflow Advisor. For example, open
the model hdlcoder_led_blinking.

open_system('hdlcoder_led_blinking')
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2 Set the path to the installed synthesis tool for the target device by using the hdlsetuptoolpath
function. For example, if your synthesis tool is Xilinx Vivado, enter this command:

hdlsetuptoolpath('ToolName','Xilinx Vivado','ToolPath',...
             'C:\Xilinx\Vivado\2018.2\bin\vivado.bat');

See “HDL Language Support and Supported Third-Party Tools and Hardware” for latest
supported version of the synthesis tool.

3 Open the HDL Workflow Advisor for the DUT Subsystem. For the LED blinking model, the
led_counter Subsystem is the DUT. In the Set Target > Set Target Device and Synthesis
Tool task:

• For Target workflow, select IP Core Generation.
• For Target platform, depending on the synthesis tool and device that you are targeting,

select Generic Altera Platform or Generic Xilinx Platform. Click Run This Task.
4 In the Set Target > Set Target Interface task, select a Target Platform Interface for each

port, then click Apply. You can map each DUT port to one of AXI4-Lite, AXI4, AXI4-Stream,
AXI4-Stream Video, or External Port interfaces. To learn more about these interfaces, see
“Target Platform Interfaces” on page 40-4.

You can also map the ports to multiple target platform interfaces. To learn more, see “Generate
HDL IP Core with Multiple AXI4-Stream and AXI4 Master Interfaces” on page 41-21.

If you do not want to map the DUT ports to AXI4 slave interfaces, you can map them to
External Port interfaces.

5 Expand the Set Code Generation Options task. Right-click the Set Optimization Options
task and select Run to Selected Task.

6 In the HDL Code Generation > Generate RTL Code and IP Core task, you can specify:

• Whether you want to connect the DUT IP core to multiple AXI Master interfaces. By default,
the AXI4 Slave ID Width value is 12, which enables you to connect the HDL IP core to one
AXI Master interface. To connect the DUT IP core to multiple AXI Master interfaces, you may
want to increase the AXI4 Slave ID Width. When you run this task, this setting is saved on
the DUT as the HDL block property AXI4SlaveIDWidth.

To learn more, see “Define Multiple AXI Master Interfaces in Reference Designs to access
DUT AXI4 Slave Interface” on page 40-38.

• Whether you want to generate the default AXI4 slave interface. By default, HDL Coder
generates AXI4 slave interfaces for signals such as clock, reset, ready, timestamp, and so on.
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If you do not want to generate any AXI4 slave interfaces, clear the Generate default AXI4
slave interface check box. Click Run This Task.

Note If you mapped any of the DUT ports to AXI4 slave interfaces in the Set Target
Interface task, even if you clear this check box, the code generator ignores this setting and
maps the ports to AXI4 slave interfaces.

When you clear the check box and run the task, the code generator saves this setting on the DUT
Subsystem as the HDL block property GenerateDefaultAXI4Slave.

After running the task, HDL Coder generates the IP core files in the output folder shown the IP core
folder field, including the HTML documentation. To view the IP core report, click the link in the
message window.

IP Core without AXI4 Slave Interfaces
When you run the IP Core Generation workflow, you can also generate an HDL IP core without
any AXI4 slave interfaces in your reference design.

To run this workflow, open the HDL Workflow Advisor, specify Generic Xilinx Platform or
Generic Altera Platform as the target platform, and make sure that you map the DUT ports to
only External Port, or AXI4-Stream interface with TLAST mapping. In addition, when you generate
the HDL IP core, in the Generate RTL Code and IP Core task, clear the Generate default AXI4
slave interface check box, and then select Run This Task.

Use this capability when:

• You do not want to tune the IP core parameters by using the AXI4 slave interfaces.
• You want to create a custom reference design without AXI4 slave interfaces, such as standalone

FPGA boards.

In addition, avoiding generation of the AXI4 slave interfaces in such cases reduces hardware resource
usage and design complexity.

Note External IO and internal IO interfaces connect your HDL IP core to other existing IPs in your
custom reference design. To define these interfaces, you use the addInternalIOInterface and
addExternalIOInterface methods of the hdlcoder.ReferenceDesign class.

To integrate the HDL IP core, you can create a custom reference design without AXI4 slave
interfaces. In the custom reference design, you can only use External IO, Internal IO or AXI4-Stream
interface with TLAST mapping. For examples of such reference designs, see:

• “”
• “IP Core Generation Workflow Without an Embedded ARM Processor: Arrow DECA MAX 10 FPGA

Evaluation Kit”

When you generate an HDL IP core without AXI4 slave interfaces, certain restrictions apply. See “IP
Core without AXI4 Slave Interface Restrictions” on page 40-15.
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Requirements and Limitations for IP Core Generation
Custom IP Core Generation Limitations

• The DUT must be an atomic system.
• The same IP core cannot use both an AXI4 interface and an AXI4-Lite interface.
• The DUT cannot contain Xilinx System Generator blocks or Intel DSP Builder Advanced blocks.
• If your target language is VHDL, and your synthesis tool is Xilinx ISE or Intel Quartus Prime, the

DUT cannot contain a model reference.

AXI4-Lite Interface Restrictions

• The input and output ports must have a bit width less than or equal to 32 bits.
• The input and output ports must be scalar.

AXI4-Stream Video Interface Restrictions

• Ports must have a 32-bit width.
• Ports must be scalar.
• You can have a maximum of one input video port and one output video port.
• The AXI4-Stream Video interface is not supported in Coprocessing – blocking mode.

Processor/FPGA synchronization must be set to Free running mode. Coprocessing –
blocking mode is not supported.

IP Core without AXI4 Slave Interface Restrictions

• You can only map the ports to External or Internal IO interfaces, or AXI4-Stream interface with
TLAST mapping. Other interfaces that require AXI4 slave interfaces such as AXI4 Master, AXI4-
Stream, and AXI4-Stream Video are not supported.

• You must use the Free running mode for Processor/FPGA synchronization. Coprocessing
– blocking mode is not supported.

See Also
Classes
hdlcoder.Board | hdlcoder.ReferenceDesign

More About
• “Custom IP Core Generation” on page 40-4
• “Generate Board-Independent IP Core from MATLAB Algorithm” on page 5-41
• “Board and Reference Design Registration System” on page 41-43
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Processor and FPGA Synchronization
In the HDL Workflow Advisor, you can choose a Processor/FPGA synchronization mode for your
processor and FPGA when you:

• Generate a custom IP core to use in an embedded system integration project.
• Use the Simulink Real-Time FPGA I/O workflow.

The following synchronization modes are available:

• Free running (default)
• Coprocessing – blocking
• Coprocessing – nonblocking with delay (available only for the Simulink Real-Time

FPGA I/O workflow)

Free Running Mode
In free running mode, the processor and FPGA each run nonsynchronized, continuously, and in
parallel.

Select Free running as the Processor/FPGA synchronization mode when you do not want your
processor and FPGA to be automatically synchronized.

The following diagram shows how the processor and FPGA can communicate in free running mode.
The shaded areas indicate that the processor and FPGA are running continuously.

Coprocessing – Blocking Mode
In blocking coprocessor mode, HDL Coder automatically generates synchronization logic for the
FPGA so that the processor and FPGA run in tandem.

Select Coprocessing – blocking as the Processor/FPGA synchronization mode when FPGA
execution time is short relative to the processor sample time, and you want the FPGA to complete
before the processor continues.

The following diagram shows how the processor and FPGA run in blocking coprocessing mode.
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The shaded areas indicate when the processor and FPGA are running. During each sample time, the
processor writes to the FPGA, then stops and waits for an indication that the FPGA has finished
processing before continuing to run. Each time the FPGA runs, it executes the logic generated for one
DUT subsystem sample time.

Coprocessing – Nonblocking With Delay Mode
In delayed nonblocking coprocessor mode, HDL Coder automatically generates synchronization logic
for the FPGA so that the processor and FPGA run in tandem. This mode is only available to Speedgoat
IO modules that use Xilinx ISE with the Simulink Real-Time FPGA I/O workflow.

Select Coprocessing – nonblocking with delay as the Processor/FPGA synchronization mode
when the FPGA processing time is long relative to the processor sample time, or you do not want the
processor to wait for the FPGA to finish before the processor continues to run.

The following diagram shows how the processor and FPGA run in delayed nonblocking coprocessor
mode.

The shaded areas indicate when the processor and FPGA are running. During each sample time, the
processor reads FPGA data from the previous sample time, then writes to the FPGA and continues to
run without waiting for the FPGA to finish. Each time the FPGA runs, it executes the logic generated
for one DUT subsystem sample time.

 Processor and FPGA Synchronization

40-17



Synchronization of Global Reset Signal to IP Core Clock Domain
The HDL DUT IP core and the Address Decoder logic in the AXI4 Slave interface wrapper of the HDL
IP core are driven by a global reset signal. If you generate an HDL IP core without any AXI4 slave
interfaces, HDL Coder does not generate the AXI4 slave interface wrapper. The global reset signal
becomes the same as the IP core reset signal and drives the HDL IP core for the DUT. To learn how
you can generate an IP core without AXI4 slave interfaces, see “Generate Board-Independent HDL IP
Core from Simulink Model” on page 40-12.

When you generate the AXI4 slave interfaces in the HDL IP core, the global reset signal is driven by
three reset signals: the IP core external reset, the reset signal of the AXI interconnect, and the soft
reset for the ARM processor core. The global reset signal in this case drives the HDL IP core for the
DUT and the Address Decoder logic in the AXI4 slave wrapper.
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The IPCore_Clk and AXILite_ACLK must be connected to the same clock source. The
IPCore_RESETN and AXILite_ARESETN must be connected to the same reset source.

These reset signals can be either synchronous or asynchronous. Using asynchronous reset signals can
be problematic and result in potential metastability issues in flipflops when the reset de-asserts
within the latching window of the clock. To avoid generation of possible metastable values when
combining the reset signals, HDL Coder automatically inserts a reset synchronization logic, as
indicated by the Reset Sync block. The reset synchronization logic synchronizes the global reset
signal to the IP core clock domain. This logic is inserted when you open the HDL Workflow Advisor
and run the Generate RTL Code and IP Core task of the IP Core Generation workflow.

The reset synchronization logic contains two back-to-back flipflops that are synchronous to the
IPCore_CLK signal. The flipflops make sure that de-assertion of the reset signal occurs after two
clock cycles of when the IPCore_CLK signal becomes high. This synchronous de-assertion avoids
generation of a global reset signal that has possible metastable values.

 Synchronization of Global Reset Signal to IP Core Clock Domain

40-19



The logic works differently depending on whether you specify the Reset type as Synchronous or
Asynchronous on the model. If your Reset type is Asynchronous, the synchronization logic asserts
the reset signal asynchronously and de-asserts the reset signal synchronously. For example, this code
illustrates the generated Verilog code for the reset synchronization logic when you generate the IP
core with asynchronous reset.

... 

...

reg_reset_pipe_process : PROCESS (clk, reset_in)
  BEGIN
    IF reset_in = '1' THEN
      reset_pipe <= '1';
    ELSIF clk'EVENT AND clk = '1' THEN
      IF enb = '1' THEN
        reset_pipe <= const_0;
      END IF;
    END IF;
  END PROCESS reg_reset_pipe_process;

  reg_reset_delay_process : PROCESS (clk, reset_in)
  BEGIN
    IF reset_in = '1' THEN
      reset_out <= '1';
    ELSIF clk'EVENT AND clk = '1' THEN
      IF enb = '1' THEN
        reset_out <= reset_pipe;
      END IF;
    END IF;
  END PROCESS reg_reset_delay_process;
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END rtl;

If your Reset type is Synchronous, the synchronization logic asserts and de-asserts the reset signal
synchronously. For example, this code illustrates the generated Verilog code for the reset
synchronization logic when you generate the IP core with synchronous reset.

...

...

reg_reset_pipe_process : PROCESS (clk)
  BEGIN
    IF clk'EVENT AND clk = '1' THEN
      IF reset_in = '1' THEN
        reset_pipe <= '1';
      ELSIF enb = '1' THEN
        reset_pipe <= const_0;
      END IF;
    END IF;
  END PROCESS reg_reset_pipe_process;

  reg_reset_delay_process : PROCESS (clk)
  BEGIN
    IF clk'EVENT AND clk = '1' THEN
      IF reset_in = '1' THEN
        reset_out <= '1';
      ELSIF enb = '1' THEN
        reset_out <= reset_pipe;
      END IF;
    END IF;
  END PROCESS reg_reset_delay_process;

END rtl;

See Also

More About
• “Custom IP Core Generation” on page 40-4
• “Custom IP Core Report” on page 40-6
• “Processor and FPGA Synchronization” on page 40-16

 Synchronization of Global Reset Signal to IP Core Clock Domain

40-21



IP Caching for Faster Reference Design Synthesis

In this section...
“Requirements for Using IP Caching” on page 40-22
“What Is an IP Cache?” on page 40-22
“How IP Caching Works” on page 40-23
“Enable IP Caching” on page 40-23
“IP Caching in HDL Coder Reference Designs” on page 40-24
“IP Caching in Custom Reference Designs” on page 40-25

For target platforms that support the IP Core Generation workflow with Xilinx Vivado, you can
use IP caching. IP caching reduces the synthesis time of reference designs that have many IP
modules or that have IP modules with a significant synthesis run time. When you enable IP caching,
the Vivado project uses an out-of-context (OOC) workflow. This workflow synthesizes the IP in the
reference design out of context from the top-level design. The OOC workflow accelerates project runs
because the synthesis tool reuses the IP cache, and does not have to resynthesize the IP when you
run the workflow.

If you do not enable IP caching, by default, the Vivado project uses the global synthesis flow. This flow
synthesizes the IP modules in the reference design along with the top-level design. In subsequent
project runs, this workflow resynthesizes the IP modules in the reference design.

Requirements for Using IP Caching
• Target workflow:

• IP Core Generation
• Simulink Real-Time FPGA I/O for Speedgoat boards that use Xilinx Vivado

• Synthesis tool: Xilinx Vivado

What Is an IP Cache?
An IP cache is a folder that consists of subfolders corresponding to IP modules in the reference
design. Each subfolder is organized by a hash index that corresponds to the file name. For each IP
module, the subfolder consists of Xilinx Core Instance (XCI) files, Design Checkpoint (DCP) files, and
synthesis log files. The DCP is a container file that contains synthesized netlists, black box HDL stub
files, and the output clock constraints.

To reuse the IP cache when you run the workflow, the IP synthesis has to match the hash index in the
IP cache. The hash index match corresponds to a hit in the IP cache. To hit the IP cache in
subsequent runs, use the same:

• Part, language, and target platform settings
• Reference design version
• Target frequency
• hdl_prj folder when you created the IP cache

40 Hardware-Software Co-Design Basics

40-22



How IP Caching Works
When you enable IP caching, the Xilinx Vivado project uses an out-of-context (OOC) workflow. The
OOC design flow is a bottom-up workflow that:

1 Synthesizes the IP modules in the reference design separately from the top-level design. The
synthesis output is the Design Checkpoint (DCP) file.

2 Synthesizes your top-level design while treating the IP in the reference design as a black box by
using the HDL stub files provided with the DCP.

3 Implements your design on the target device by linking the netlists from the IP design checkpoint
files with your top-level netlist.

For large reference designs, the OOC flow improves synthesis run time, because you do not have to
resynthesize the IP when you modify your design and run the workflow. To learn more about the OOC
workflow and IP synthesis options, refer to the Xilinx documentation.

Enable IP Caching
Before you enable IP caching, specify IP Core Generation as the target workflow, and then
specify the target platform settings. To enable IP caching:

• From the HDL Workflow Advisor, in the Create Project task, select the Enable IP caching check
box.
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• From the command line, use the EnableIPCaching property of the
hdlcoder.WorkflowConfig class. To use this property, create an object of the
hdlcoder.WorkflowConfig class, or export the HDL Workflow Advisor settings to a script.

hWC = hdlcoder.WorkflowConfig('SynthesisTool','Xilinx Vivado','TargetWorkflow','IP Core Generation');
% ...
% ...
hWC.EnableIPCaching = true;

IP Caching in HDL Coder Reference Designs
Use IP caching for large reference designs that have a significant synthesis time. For example, the
HDL Coder reference design Default video system (requires HDMI FMC module) is a
potential candidate for IP caching.

Note The Speedgoat IO333-325K board that you use with the Simulink Real-Time FPGA I/O
workflow comes with an IP cache. The first time that you run the workflow, the code generator reuses
this IP cache, which improves reference design synthesis time.

To enable IP caching, in the HDL Workflow Advisor, specify IP Core Generation as the target
workflow, and then specify the target platform settings. Before you run the workflow for the first
time:

1 In the Create Project task, select the Enable IP caching check box.

When you run this task, the workflow creates an empty IP cache folder. You can see the ipcache
folder in the hdl_prj/vivado_ip_prj path.

2 Run the Build FPGA Bitstream task.

This task populates the IP cache folder with synthesis logs and design checkpoint files generated
for the HDL IP core and other IP blocks in the reference design. When this task has run
successfully, you can see the generated files in the ipcache folder.

When you run the IP Core Generation workflow a second time, in the Build FPGA Bitstream
task, you can see an improvement in the task run time. Make sure that you use the same IP settings
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and hdl_prj folder as the first time that you ran the workflow. When this task has run successfully,
to see if your workflow reused the IP cache, open the workflow_task_buildFPGABitstream.log
file.

This code snippet shows that the Vivado project launches a maximum number of jobs to synthesize
the design and reuse the IP modules in the IP cache folder. You can see that the cacheID of the IP
modules match the file names of the subfolders in the ipcache folder.

...
# reset_run impl_1
# reset_run synth_1
# launch_runs -jobs 4 synth_1
...
...
...
INFO: [IP_Flow 19-4760] Using cached IP synthesis design for IP system_top_RGBtoYCbCr_0_0, cacheID = 3575924730488800
INFO: [IP_Flow 19-4760] Using cached IP synthesis design for IP system_top_YCbCrtoRGB_0_0, cacheID = e71459f41e26e141
INFO: [IP_Flow 19-4760] Using cached IP synthesis design for IP system_top_xbar_0, cacheID = d0f0971cb77bcaed
INFO: [IP_Flow 19-4760] Using cached IP synthesis design for IP system_top_axis2hdmi_0_0, cacheID = 7601a322f9fd0ec4
...

IP Caching in Custom Reference Designs
If you are using your own custom reference design, IP caching can accelerate reference design
synthesis when you run the workflow for the first time. To reuse the IP cache, create an IP cache zip
file, and then make sure that the reference design definition file points to this zip file.

To create an IP cache zip file:

1 Open the HDL Workflow Advisor for any Simulink model that has a DUT subsystem, and then run
the IP Core Generation workflow to the Generate RTL Code and IP Core task.
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2 In the Create Project task, select the Enable IP caching check box, and then click Run This
Task. This task creates an empty IP cache folder.

3 Run the workflow to the Build FPGA Bitstream task. This task populates the IP cache with the
HDL IP core and the reference design IP modules.

4 In the IP cache folder, delete the IP core files generated for the DUT. Extract the remaining files
from this folder into a zip file, name it ipcache.zip, and then save the file in the reference
design folder.

To reuse the IP cache, in the reference design definition file plugin_rd.m, use the
IPCacheZipFile property of the hdlcoder.ReferenceDesign class. By using that property, you
add the ipcache.zip file to the Xilinx Vivado project.

function hRD = plugin_rd()
% Reference design definition

hRD = hdlcoder.ReferenceDesign('SynthesisTool', 'Xilinx Vivado');
% ...
% ...
hRD.IPCacheZipFile = 'ipcache.zip';

When you use the workflow to target your custom reference design, the code generator selects the
Enable IP caching check box. To see the improvement in synthesis time, run the Build FPGA
Bitstream task.

See Also
hdlcoder.Board | hdlcoder.ReferenceDesign

More About
• “Custom IP Core Generation” on page 40-4
• “Custom IP Core Report” on page 40-6
• “Board and Reference Design Registration System” on page 41-43
• “Run HDL Workflow with a Script” on page 31-32
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Resolve Timing Failures in IP Core Generation and Simulink
Real-Time FPGA I/O Workflows

In this section...
“Step 1: Identify the Timing Failure” on page 40-27
“Step 2: Find the Critical Path” on page 40-30
“Step 3: Resolve Timing Failures” on page 40-34

Synchronous circuits require that data propagates from a source register to a destination register
within one clock cycle. For the synthesis tools, the Delay blocks that you add to your Simulink model
run at the clock rate. The tools require data to travel between the blocks within one clock cycle. If the
tool is unable to propagate the data between the registers for one or more signal paths in your model
within one clock cycle, a timing failure occurs.

The tools report a slack information for each signal path, which corresponds to the difference
between the required time and the arrival time. Required time is the expected time at which a signal
must arrive at the destination register. Arrival time is the time elapsed for a signal to arrive at that
point. A positive slack indicates that the signal arrived much faster than the required time, and the
path passes the timing requirement. A negative slack indicates that the signal path is slower than the
required time, and the path fails the timing requirement. To make sure that your design meets the
timing requirements, speed up all signal paths that have a negative slack.

To identify if your design meets the timing requirements and how you can resolve timing failures,
perform these steps.

Step 1: Identify the Timing Failure
When you run the IP Core Generation workflow or the Simulink Real-Time FPGA I/O
workflow for Vivado-based boards, if your Simulink model does not meet the timing requirements,
HDL Coder generates an error in the Build FPGA Bitstream step of the workflow. See:

• “Getting Started with Targeting Xilinx Zynq Platform” for information about how to run the IP
Core Generation workflow.

• “FPGA Programming and Configuration” on page 41-66 for information about how to run the
Simulink Real-Time FPGA I/O workflow. When you run this workflow, use a Speedgoat board
that supports Xilinx Vivado as the synthesis tool.

When you run the Build FPGA Bitstream task, if you left the Run build process externally check
box selected by default, whether or not there is a timing failure, HDL Coder displays the results as
Passed and provides warning messages. View the build log in the external console to identify if there
is a potential timing failure.
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In the external console, if there is a timing failure, you see the worst slack and this message: Timing
constraints NOT met!

When you clear the Run build process externally check box, and then run the Build FPGA
Bitstream task, if a timing failure occurs, the task fails, and you see these messages in the Result
subpane.
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In both cases, when there is a timing failure, the code generator replaces the previous bitstream with
a bitstream that has the same name and the postfix _timingfailure.bit or
_timingfailure.sof depending on whether you created a project by using Vivado or Quartus. For
example, if the previous generated bitstream was called system_top_wrapper.bit, and if there is
a timing failure, HDL Coder renames this bitstream to
system_top_wrapper_timingfailure.bit.

If you run the Program Target Device task, the task fails.

Report Timing Failures as Warnings

If you have already implemented the custom logic to resolve the timing failures, you can specify the
timing failures to be reported as warnings instead of errors. You can then continue the workflow and
generate the FPGA bitstream. Before programming the target SoC device, it is recommended that
you have resolved the timing failures.

After you have resolved the timing failures, to verify that the failures have been resolved, you can use
the HDL Coder software. Change the timing failures to be reported as errors and then rerun the IP
Core Generation workflow to ensure that the Build FPGA Bitstream task passes. If the Build
FPGA Bitstream task still fails, perform the steps in the preceding sections to identify and resolve
the timing failures.

To specify timing failures to be reported as warnings:

• After you run the Build FPGA Bitstream task, export the HDL Workflow Advisor to a script. In
the script, to report timing failures as warnings, use the ReportTimingFailure property of the
hdlcoder.WorkflowConfig class. You can then run the script or import the script to the HDL
Workflow Advisor and then run the workflow.

hWC.ReportTimingFailure = hdlcoder.ReportTiming.Warning; 
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• If you are targeting a custom reference design that you have already defined for the board, to
report timing failures as warnings, use the ReportTimingFailure property of the
hdlcoder.ReferenceDesign class.

hRD.ReportTimingFailure = hdlcoder.ReportTiming.Warning; 

To learn how you can identify the critical path and resolve the timing failures, perform the steps in
the preceding sections.

Step 2: Find the Critical Path
Critical path is a combinational path between the input and the output that has the maximum delay.
This path corresponds to the signal path that has the worst negative slack. By identifying and
optimizing the critical path, you can resolve timing failures and improve the timing of your design.
You can identify the critical path in your design by using either of these strategies.

Strategy 1: Check the Timing Report

In the Result subpane, to open the timing report that is generated by the synthesis tool, select the
timing_report link. You can use the report to identify the critical path in your design. In the report, if
you search for Worst Slack, you can identify the worst setup slack. Then, use the Source and
Destination points to identify the critical path. For example, this report for the LED blinking model
hdlcoder_led_blinking shows that the critical path is inside the HDL Counter block.
-----------------------------------------------------------------------------------------
From Clock:  clk_out1_system_top_clk_wiz_0_0
  To Clock:  clk_out1_system_top_clk_wiz_0_0

Setup :   1193  Failing Endpoints,  Worst Slack   -2.478ns,  Total Violation  -1226.784ns
Hold  :      0  Failing Endpoints,  Worst Slack    0.034ns,  Total Violation      0.000ns
PW    :      2  Failing Endpoints,  Worst Slack   -0.576ns,  Total Violation     -0.731ns
-----------------------------------------------------------------------------------------

Max Delay Paths
-----------------------------------------------------------------------------------------
Slack (VIOLATED) : -2.478ns  (required time - arrival time)
  Source:     system_top_i/led_count_ip_0/U0/u_led_count_ip_dut_inst/
                   u_led_count_ip_src_led_counter/HDL_Counter1_out1_reg[0]/C
              (rising edge-triggered cell FDRE clocked by clk_out1_system_top_clk_wiz_0_0  
                                               {rise@0.000ns fall@1.000ns period=2.000ns})
 Destination:  system_top_i/led_count_ip_0/U0/u_led_count_ip_dut_inst/
                    u_led_count_ip_src_led_counter/HDL_Counter1_out1_reg[20]/R
               (rising edge-triggered cell FDRE clocked by clk_out1_system_top_clk_wiz_0_0  
                                                {rise@0.000ns fall@1.000ns period=2.000ns})
  Path Group:       clk_out1_system_top_clk_wiz_0_0
  Path Type:        Setup (Max at Slow Process Corner)
  Requirement:      2.000ns  (clk_out1_system_top_clk_wiz_0_0 rise@2.000ns - 
                                            clk_out1_system_top_clk_wiz_0_0 rise@0.000ns)
  Data Path Delay:  3.899ns  (logic 1.412ns (36.211%)  route 2.487ns (63.789%))

Strategy 2: Estimate Critical Path Without Running Synthesis

Use HDL Coder to estimate and highlight the critical path in your model without synthesizing your
design. Critical path estimation identifies the critical path by performing static timing analysis with
timing data from target-specific databases. Estimating the critical path without using synthesis tools
can lead to inaccurate timing results. Critical path estimation speeds up the process of identifying
and optimizing the critical path in your design. It is an alternative to performing FPGA Synthesis
and Analysis with the HDL Workflow Advisor. To learn more, see “Critical Path Estimation Without
Running Synthesis” on page 24-63.
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To estimate the critical path, in the Set Report Options task, select the Generate high-level
timing critical path report check box. Run the workflow to the Generate RTL Code and IP Core
task.

HDL Coder generates a critical path estimation section in the Code Generation Report. On this
section, when you select the link to the criticalpathestimated script, the code generator
highlights the critical path in the generated model. This figure shows a section of the the
hdlcoder_sfir_fixed_stream model with the critical path highlighted.
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Strategy 3: Annotate Critical Path By Using Backannotation

For more accurate critical path information and highlighting of critical path in your design, use
backannotation. To use backannotation, you have to leave the current Workflow Advisor session, and
then run the Generic ASIC/FPGA workflow to annotate the model with the synthesis results.

Before you use backannotation, it is recommended that you export the current HDL Workflow Advisor
settings to a script. By exporting the settings to a script, you can iterate on the critical path and
customize various settings to optimize your design until you meet the timing requirements. You can
import the Workflow Advisor script to the HDL Workflow Advisor and then run the workflow. See also
“Run HDL Workflow with a Script” on page 31-32.

To use backannotation:

1 In the Set Target Device and Synthesis Tool task, select Generic ASIC/FPGA as the Target
workflow. For Synthesis tool, specify the same tool that you used to run the IP Core
Generation workflow.

When you specify these settings, HDL Coder resets this task and all tasks that follow it.
2 Select Run This Task.
3 In the Set Target Frequency task, specify the same target frequency that you used to run the

IP Core Generation workflow. Select Run This Task.
4 Right-click the Annotate Model with Synthesis Result task and select Run to Selected Task.
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When you run the link to the Annotate Model with Synthesis Result task, the code generator
highlights the critical path in the generated model. This figure shows that the critical path in the
hdlcoder_led_blinking model is inside the HDL Counter block.
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Step 3: Resolve Timing Failures
To resolve timing failures, you can use any of these recommendations or a combination of the
recommendations until your design meets the target frequency.

Recommendation 1: Use Speed Optimizations

You can use speed optimizations such as distributed pipelining and clock-rate pipelining to break the
critical path by adding pipeline registers while preserving the functional behavior. By reducing the
critical path, you can achieve higher clock frequencies and increase the arrival time of the signal until
it equals the required time and the slack becomes zero.

Distributed pipelining and hierarchical distributed pipelining optimizations move the existing delays
you have in your design across the subsystem hierarchy. When you use hierarchical distributed
pipelining enabled, make sure that all Subsystem blocks have DistributedPipelining enabled. If your
design does not meet the timing requirements, you can add more pipelines by using InputPipeline
or OutputPipeline block properties. You can specify these properties in the HDL Block Properties
dialog box of the Subsystem.
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If distributed pipelining is unable to move the registers, you can add Delay blocks to your model, and
then enable the Preserve design delays setting. Reset the Check Global Settings task and run the
workflow to the Build FPGA Bitstream task. You can iterate on this approach and use other
optimizations such as clock-rate pipelining with a large value for the Oversampling factor if the
design does not meet the timing requirements. To specify these settings, use the Pipelining tab of
the Set Optimization Options task in the HDL Workflow Advisor. For more information, see “Speed
Optimization”.

Recommendation 2: Specify Enable-Based Multicycle Path Constraints

If your design contains multiple sample rates or uses certain HDL block implementations or speed
optimizations that insert pipeline registers at a faster rate after code generation, your design can
have multicycle paths. By default, HDL Coder uses a single clock mode that generates a master clock
at the fastest sample rate and creates a timing controller entity. The timing controller generates a set
of clock enables with the required rate and phase information to sample the clock signal for blocks
that operate at a slower sample time.

If your critical path is on a slower signal rate, synthesis tools can fail to meet the timing
requirements. A timing failure occurs because the tools cannot infer the sample rates from the
generated HDL code and assume that these paths have to run at the fastest rate. You can use enable-
based multicycle path constraints to generate a constraints file that enables the synthesis tool to ease
the clock constraint on the multicycle paths. To specify generation of multicycle path constraints, in
the Set Optimization Options task, select the Enable-based constraints check box. Run the
workflow to the Build FPGA Bitstream task. For an example, see “Use Multicycle Path Constraints
to Meet Timing for Slow Paths”.
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Recommendation 3: Reduce the Target Frequency

Use the Target Frequency (MHz) setting to specify the target frequency for HDL Coder to modify
the clock module setting in the reference design to produce the clock signal with that frequency. See
also “Target Frequency” on page 13-8.

To resolve timing failures, reduce the Target Frequency (MHz) setting so that the synthesis tool can
meet the timing constraint. To see what target frequency you can specify, use the slack and the
critical path information from the synthesis tool timing report. Because slack is equal to the
difference between the required time and arrival time, you can add the slack to the required time,
and then use this sum as the New required time. Use the reciprocal of this New required time
as the target frequency value to meet the timing requirements because the New required time
equals the arrival time. To compute the target frequency, in the MATLAB Command Window, run this
script.

% Specify the required time (ns) and slack (ns) using timing report
required_time = 2;
slack = 2.2;

% Slack is difference between required_time and arrival_time
% By adding slack to required_time you can resolve 
New_required_time = required_time + slack;
Target_frequency = 1 / (New_required_time);

% Since we computed the new time in nanoseconds
Target_frequency_MHz = Target_frequency * 10^3;
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In the Set Target Frequency task, specify this value for Target Frequency (MHz), and then run
the workflow to the Build FPGA Bitstream task. If you see a timing failure, you can use this
approach to iterate on the target frequency value until your design meets the timing requirements
and the slack becomes zero.

You can also export the HDL Worflow Advisor settings to a script and keep iterating on the target
frequency value by specifying Target_frequency_MHz as the value for the TargetFrequency
property. Then, run the script.

% Set this frequency as the new target frequency
hdlset_param('hdlcoder_led_blinking', 'TargetFrequency', Target_frequency_MHz);

See Also
hdlcoder.Board | hdlcoder.ReferenceDesign

More About
• “Hardware-Software Co-Design Workflow for SoC Platforms” on page 41-2
• “Custom IP Core Generation” on page 40-4
• “IP Core Generation Workflow for Speedgoat I/O Modules” on page 41-98
• “Program Target FPGA Boards or SoC Devices” on page 40-48
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Define Multiple AXI Master Interfaces in Reference Designs to
access DUT AXI4 Slave Interface

In this section...
“Vivado-Based Reference Designs” on page 40-38
“Qsys-Based Reference Designs” on page 40-40

You can define multiple AXI Master interfaces in your custom reference design and access the AXI4
slave interfaces in the generated HDL DUT IP core for the DUT. This capability enables you to
simultaneously connect the HDL DUT IP core to two or more AXI Master IP in the reference design,
such as the HDL Verifier JTAG AXI Master IP and the ARM® processor in the Zynq processing system.

Vivado-Based Reference Designs
To define multiple AXI Master interfaces, you specify the BaseAddressSpace and
MasterAddressSpace for each AXI Master instance, and also the IDWidth property.
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IDWidth is the width of all ID signals, such as AWID, WID, ARID, and RID, specified as a positive
integer. By default, the IDWidth is 12, which enables you to specify one AXI Master interface
connection to the DUT IP core. To connect the DUT IP core to multiple AXI Master interfaces, you
may have to increase the IDWidth. The IDWidth value is tool-specific. To see the value that you must
use when specifying more than one AXI Master interface, refer to the documentation for that tool. If
you use an incorrect ID width, the synthesis tool generates an error, and reports the correct IDWidth
that you must use.

This code is the syntax for the MasterAddressSpace field when specifying multiple AXI Master
interfaces in Vivado-based reference designs:

'MasterAddressSpace', ...
   {'AXI Master Instance Name1/Address Space of Instance Name1', ...
    'AXI Master Instance Name2/Address_Space of Instance Name2',...};

For example, this code illustrates how you can modify the plugin_rd file to define two AXI Master
interfaces.

% ...

%% Add custom design files
% add custom Vivado design
hRD.addCustomVivadoDesign( ...
    'CustomBlockDesignTcl', 'system_top.tcl', ...
    'VivadoBoardPart',      'xilinx.com:zc706:part0:1.0');

% ...
% ...

% The DUT IP core in this reference design is connected 
% to both Zynq Processing System and the MATLAB as AXI 
% Master IP. Because of 2 AXI Master, ID width 
% has to be increased from 12 to 13. 
hRD.addAXI4SlaveInterface( ...
    'InterfaceConnection', 'axi_interconnect_0/M00_AXI', ...
    'BaseAddress',         {'0x40010000', '0x40010000'}, ...
    'MasterAddressSpace',  {'processing_system7_0/Data', 'hdlverifier_axi_master_0/axi4m'}, ...
    'IDWidth',             13);

% ...

In this example, the two AXI Master IP are the HDL Verifier MATLAB as AXI Master IP and the ARM
processor. Based on the syntax of the MasterAddressSpace, for the HDL Verifier MATLAB as AXI
Master IP, the AXI Master Instance Name is hdlverifier_axi_master_0 and the
Address_Space of Instance Name is axi4m.

The AXI4 slave interfaces in the HDL DUT IP core connect to the Xilinx AXI Interconnect IP that is
defined by the InterfaceConnection property of the addAXI4SlaveInterface method. The
AXI4 slave interfaces have a BaseAddress. This BaseAddress must map to the
MasterAddressSpace for the two AXI Master IP, which is specified as a cell array of character
vectors.

You must make sure that the AXI Master IPs have already been included in the Vivado reference
design project. system_top.tcl is the TCL file that is defined by the CustomBlockDesignTcl
property of the addCustomVivadoDesign method. In this TCL file, you must make sure that the two
AXI Master IP are connected to the same Xilinx AXI Interconnect IP. The interconnects then connect
the AXI Master IPs to the AXI4 slave interfaces in the HDL IP core.

After you run the IP Core Generation workflow and create the Vivado project, open the project.
In the Vivado project, if you open the block design, you see the two AXI Master IP connected to the
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HDL DUT IP core. If you select the Address Editor tab, you see the AXI Master instance names and
the corresponding address spaces.

Qsys-Based Reference Designs
To define multiple AXI Master interfaces, you specify the InterfaceConnection and
BaseAddressSpace for each AXI Master instance, and also the IDWidth property. This code is the
syntax for the InterfaceConnection field when specifying multiple AXI Master interfaces in Qsys-
based reference designs:

'InterfaceConnection', ...
   {'AXI Master Instance Name1/Port name of Instance Name1', ...
    'AXI Master Instance Name2/Port name of Instance Name1', ...};

For example, this code illustrates how you can modify the plugin_rd file to define three AXI Master
interfaces.
% ...

%% Add custom design files
% add custom Qsys design
hRD.addCustomQsysDesign('CustomQsysPrjFile', 'system_soc.qsys');
hRD.CustomConstraints = {'system_soc.sdc','system_setup.tcl'};

% ... 

% add AXI4 slave interfaces
hRD.addAXI4SlaveInterface( ...
    'InterfaceConnection', {'hps_0.h2f_axi_master','master_0.master','MATLAB_as_AXI_Master_0.axm_m0'}, ... 
    'BaseAddress',         {'0x0000_0000','0x0000_0000','0x0000_0000'},...
    'InterfaceType',       'AXI4'...
    'IDWidth',             14); 

% ...

Based on the syntax of the InterfaceConnection option, for the HDL Verifier MATLAB as AXI
Master IP, the AXI Master Instance Name is MATLAB_as_AXI_Master_0 and the Port name is
axm_m0. For each AXI Master IP, the BaseAddress of the HDL IP core and InterfaceConnection
must be specified as a cell array of character vectors.

You must make sure that the AXI Master IPs have already been included in the Qsys reference design
project. system_soc.qsys is the file that is defined by the CustomQsysPrjFile property of the
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addCustomQsysDesign method. In this file, you must make sure that the two AXI Master IP are
connected to the same Qsys AXI Interconnect IP.

The interconnects then connect the AXI Master IPs to the AXI4 slave interfaces in the HDL IP core.

After you run the IP Core Generation workflow and create the Quartus project, open the project.
In the Quartus project, you see the three AXI Master IP and the AXI Master interfaces connected to
the HDL IP core for the DUT. If you select the Address Map tab, you see the AXI Master instance
names, the port names, and the corresponding address spaces.

See Also
hdlcoder.Board | hdlcoder.ReferenceDesign

Related Examples
• “Define Custom Board and Reference Design for Zynq Workflow”
• “Define Custom Board and Reference Design for Intel SoC Workflow”

More About
• “Board and Reference Design Registration System” on page 41-43
• “Register a Custom Board” on page 41-46
• “Register a Custom Reference Design” on page 41-49
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Meet Timing Requirements Using Enable-Based Multicycle Path
Constraints

In this section...
“How Enable-Based Multicycle Path Constraints Work” on page 40-42
“Specify Enable-Based Constraints” on page 40-43
“Benefits of Using Enable-Based Constraints” on page 40-44
“Modeling Guidelines” on page 40-45
“Multicycle Path Constraints for Various Synthesis Tools” on page 40-45
“Caveats and Limitations” on page 40-46

If your Simulink model contains multiple sample rates or uses speed and area optimizations that
insert pipeline registers, your design can have multicycle paths. Multicycle paths are data paths
between two registers that operate at a sample rate slower than the FPGA clock rate and therefore
take multiple clock cycles to complete their execution. To synchronize the clock rate to the sample
rates of various paths in your design, you can use a single clock mode or a multiple clock mode. By
default, HDL Coder uses a single clock mode that generates a single master clock at the fastest
sample rate and creates a timing controller entity to control the clock rate to the multicycle paths.
The timing controller generates a set of clock enables with the required rate and phase information
to control the sequential elements such as Delay blocks that operate at different sample rates.

When you synthesize the generated HDL code, synthesis tools can fail to meet the timing
requirements of multicycle paths. The timing failure occurs because synthesis tools cannot infer the
various sample rates in your design from the generated HDL code. The synthesis tools assume that
the registers in your design run at the master clock rate and requires data to travel between the
registers within one clock cycle. However, the multicycle paths are not required to complete their
execution within one clock cycle and therefore cannot meet the timing requirements. To meet the
timing requirements, specify generation of enable-based multicycle path constraints.

How Enable-Based Multicycle Path Constraints Work
Synthesis tools require that data propagates from a source register to a destination register within
one clock cycle. Multicycle path constraints relax this timing requirement by allowing multiple clock
cycles for data to propagate between the registers. The code generator uses the timing controller
enable signals to create enable-based register groups, with registers in each group driven by the
same clock enable. When you apply the enable-based constraints and generate HDL code, the code
generator outputs a constraints file with the naming convention dutname_constraints. The file
defines the timing requirements of multicycle paths and contains information about the setup and
hold constraints that needs to be met.
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This figure shows a multicycle path that takes a certain number of clock cycles, say N, for the data to
propagate from REGA to REGB. By default, the synthesis tools define the setup edge at the next active
clock edge and the hold edge at the same active clock edge with respect to the destination clock
signal. For a multicycle path that takes N clock cycles, the constraints redefine the setup and hold
edge to allow for the longer data propagation time.

For example, consider a multicycle path takes two clock cycles for data top propagate from the
source to the destination register. This waveform shows how applying enable-based constraints
redefines the setup and hold edges. This code snippet shows this setup and hold requirement in the
constraints file that gets generated when you enable multicycle path constraints.

Specify Enable-Based Constraints
Before you generate the enable-based constraints, you must:

• Preserve the multicycle paths in your design. Before you enable generation of multicycle path
constraints, make sure that you disable optimizations such as clock rate pipelining and adaptive
pipelining in those regions where you want to apply multicycle path constraints.
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• Make sure that the region that operates at a slower clock rate is bounded by timing controller
based clock enable signals operating at zero phase.

• Specify the Synthesis tool. The format of the multicycle path constraints file that gets generated
depends on the Synthesis tool that you specify. If you do not specify the synthesis tool and the
Generate EDA Scripts check box is selected, HDL Coder does not generate multicycle path
constraints.

• Use the single clock mode. In the HDL Code Generation > Global Settings pane, set Clock
Inputs to Single.

You can specify generation of multicycle constraints in the Configuration Parameters dialog box, or in
the HDL Workflow Advisor UI, or at the command line.

• In the Configuration Parameters dialog box, on the HDL Code Generation > Target and
Optimizations pane, select the Enable based constraints check box.

• In the HDL Workflow Advisor, on the HDL Code Generation > Set Code Generation Options >
Set Optimization Options task, select the Enable based constraints check box.

• At the command line, use the MulticyclePathConstraints property with hdlset_param or
makehdl.

Benefits of Using Enable-Based Constraints
If the synthesis tools identify the multicycle path constraints, you can:

• Realize higher clock rates and improve the timing of your design.
• Reduce the area footprint on the target FPGA device because multicycle path constraints do not

introduce any pipeline registers.
• Reduce HDL code generation time because the code generator does not have to run many

optimization settings.
• Reduce synthesis time since multicycle path constraints relax the timing requirements on the

synthesis tool.
• Skip verification of your design after generating HDL code as the generated model with the

constraints is identical to the original model.

When you specify the multicycle path information to the synthesis tool, it is not recommended to use
the Register-to-register path info setting in the Target and Optimizations pane. If you use this
setting, the code generator outputs a text file that describes the multicycle path information in a
format that is not native to a particular synthesis tool. You must convert this information to the
multicycle path constraints format required by your synthesis tool.

When you use the enable-based constraints setting:

• The generated constraints are more robust to name changes in synthesis tools.
• HDL code generation is faster than when you use the Register-to-register path info setting.
• The Target workflow can be Generic ASIC/FPGA, FPGA Turnkey, IP Core Generation,

and Simulink Real-Time FPGA I/O.
• The constraint file format is supported with Xilinx ISE, Xilinx Vivado, and Altera

QUARTUS II.

40 Hardware-Software Co-Design Basics

40-44



Modeling Guidelines
When you specify generation of enable-based constraints, use these modeling patterns in your design.
If your model contains slow-rate regions that are not bounded by registers, then add delays at the
same slow rate to the input and output of the slow-rate regions. For example, if you enter
hdlcoder_clockdemo at the command line in MATLAB, you see a multirate CIC Interpolation filter
implemented in single clock mode. This figure shows how to bound the input and output of the slow-
rate region annotated by the slow sample time D2 in the model with Unit Delay blocks so that the
enable-based constraints can identify the slow-rate path.

Note You can use Rate Transition blocks to introduce the input and output registers but make sure
that the registers are slow rate and have zero phase.

Multicycle Path Constraints for Various Synthesis Tools
Enable-based multicycle path constraints have various file formats that depend on the Synthesis tool
that you specify.

Altera Quartus II

HDL Coder generates the constraints in the form of an SDC file. This code snippet shows the SDC file
generated for Altera Quartus II.

# Multicycle constraints for clock enable: DUT_tc.u1_d4_o0
set enbreg [get_registers *u_DUT_tc|phase_0]
set_multicycle_path 4 -to [get_fanouts $enbreg -through [get_pins -hier *|ena]] -end -setup
set_multicycle_path 3 -to [get_fanouts $enbreg -through [get_pins -hier *|ena]] -end -hold

Xilinx Vivado

HDL Coder generates the constraints in the form of an XDC file. This code snippet shows the XDC file
generated for Xilinx Vivado.

# Multicycle constraints for clock enable: DUT_tc.u1_d4_o0
set enbregcell [get_cells -hier -filter {mcp_info=="DUT_tc.u1_d4_o0"}]
set enbregnet [get_nets -of_objects [get_pins -of_objects $enbregcell -filter {DIRECTION == OUT}]]
set reglist [get_cells -of [filter [all_fanout -flat -endpoints_only $enbregnet] IS_ENABLE]]
set_multicycle_path 4 -setup -from $reglist -to $reglist -quiet
set_multicycle_path 3 -hold  -from $reglist -to $reglist -quiet

The multicycle path constraints form enable-based register groups by querying the synthesis netlist
for the ATTRIBUTE keyword. This code snippet shows this keyword in the synthesis netlist when you
run any of the supported target workflows.
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...
ATTRIBUTE mcp_info: string

ATTRIBUTE mcp_info OF phase_0 : SIGNAL IS "DUT_tc.u1_d4_o0";
...

The constraints file that is generated for Xilinx Vivado is more robust than pattern matching on
module or signal names.

Xilinx ISE

HDL Coder generates the constraints in the form of a UCF file. This code snippet shows the UCF file
generated for a model that has one slow-rate region controlled by a clock enable signal and has a
target frequency of 300MHz. The snippet shows that the multicycle path constraints depend on the
Target Frequency that you specify.

# Multicycle constraints for clock enable: DUT_tc.u1_d4_o0
NET "*u_DUT_tc/phase_0" TNM_NET = FFS "TN_u_DUT_tc_phase_0";
TIMESPEC "TS_u_DUT_tc_phase_0" = FROM "TN_u_DUT_tc_phase_0" TO "TN_u_DUT_tc_phase_0" TS_FPGA_CLK/4;

This code snippet shows the clock constraints that get generated when you run the Generic ASIC/
FPGA, FPGA Turnkey, or the Simulink Real-Time FPGA I/O workflow with Xilinx ISE.

# Timing Specification Constraints

NET "clk" TNM_NET = "TN_clk";
TIMESPEC "TS_FPGA_CLK" = PERIOD "TN_clk" 300 MHz;

To use the multicycle path constraints when you generate HDL code by using the makehdl function,
make sure that you add a TS_FPGA_CLK constraint to the UCF file.

Caveats and Limitations
• The multicycle path constraints file is not supported with the FPGA-in-the-Loop workflow.
• The IP Core Generation workflow does not generate a clock constraint and therefore does not

support multicycle path constraints generation with Xilinx ISE.
• If the slow-rate region is not bounded by registers, multicycle path constraints requires you to add

two Delay blocks at the slow rate, which increases the latency of your design.
• The code generator does not add constraints on paths between registers that have a nonzero

phase value for the timing controller based enable signals. For the code generator to add
constraints, use registers that derive from phase 0 clock enable signals, such as Delay blocks.

• The generated multicycle constraints can be less effective if you apply the constraints in regions
that have optimizations such as clock-rate pipelining and adaptive pipelining enabled. With clock-
rate pipelining, the registers operate at the faster clock rate and therefore may not retain the
slow-rate registers in your design.

• HDL Coder does not generate multicycle path constraints for single-rate models.
• The code generator does not output the multicycle path constraints file if you use the multiple

clock mode.
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See Also

Related Examples
• “Use Multicycle Path Constraints to Meet Timing for Slow Paths”

More About
• “Multicycle Path Constraints” on page 14-30
• “Clock-Rate Pipelining” on page 24-52
• “Adaptive Pipelining” on page 24-56
• “Generate Multicycle Path Information Files” on page 22-16
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Program Target FPGA Boards or SoC Devices

In this section...
“How to Program Target Device” on page 40-48
“Programming Methods” on page 40-49

To configure or program the connected target SoC device or FPGA board, use the IP Core
Generation workflow in the HDL Workflow Advisor.

How to Program Target Device
Using the Workflow Advisor UI

1 Open the HDL Workflow Advisor. Right-click the DUT Subsystem that contains the algorithm to
be deployed on the target FPGA, and select HDL Code > HDL Workflow Advisor.

2 In the Set Target Device and Synthesis Tool task, specify IP Core Generation as the
Target workflow, and specify a Target platform other than the Generic Xilinx Platform
or Generic Altera Platform.

3 Right-click the Program Target Device task and select Run to Selected Task.
4 In the Program Target Device task, specify the Programming method, and run this task.

To learn more about the HDL Workflow Advisor, see “Getting Started with the HDL Workflow Advisor”
on page 31-2.

Using the Workflow Advisor Script

To program the target device at the command line, after you specify the target workflow and target
platform in the Set Target Device and Synthesis Tool task, export the HDL Workflow Advisor
settings to a script. In the HDL Workflow Advisor window, select File > Export to Script. The script
creates and configures an hdlcoder.WorkflowConfig object that is denoted by hWC.

Before you run the script, you can specify how to program the target hardware by using the
ProgrammingMethod property of the WorkflowConfig object.This code snippet shows an example
script that is exported from the HDL Workflow Advisor when you use the default Download
Programming method. To run the Program Target Device task, customize this script by setting
the RunTaskProgramTargetDevice attribute of the WorkflowConfig object to true.

% This script was generated using the following parameter values:

% ...

% Set properties related to 'RunTaskProgramTargetDevice' Task
hWC.RunTaskProgramTargetDevice = true;
hWC.ProgrammingMethod = hdlcoder.ProgrammingMethod.Download;

% Validate the Workflow Configuration Object
hWC.validate;

%% Run the workflow
hdlcoder.runWorkflow('hdlcoder_led_blinking/led_counter', hWC);
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After you run the Build FPGA Bitstream task, the Workflow Advisor provides you a link to generate
a Workflow script that programs the target device without rerunning the previous tasks in the
Workflow Advisor.

Click the link to open the script in the MATLAB Editor. This code snippet shows an example script
that is generated by the HDL Workflow Advisor. If close the HDL Workflow Advisor, you can run the
script to program the target hardware without running other workflow tasks.

% Load the Model

% ...

% Set Workflow tasks to run
hWC.RunTaskGenerateRTLCodeAndIPCore = false;
hWC.RunTaskCreateProject = false;
hWC.RunTaskGenerateSoftwareInterfaceModel = false;
hWC.RunTaskBuildFPGABitstream = false;
hWC.RunTaskProgramTargetDevice = true;

% Set properties related to 'RunTaskProgramTargetDevice' Task
hWC.ProgrammingMethod = hdlcoder.ProgrammingMethod.Download;

% Validate the Workflow Configuration Object
hWC.validate;

To learn more about the script-based workflow, see “Run HDL Workflow with a Script” on page 31-32.

Programming Methods
Download

If you have Embedded Coder, and use the reference designs for Xilinx Zynq and Intel SoC hardware
platforms, the code generator uses Download as the default Programming method.

When you use Download as the Programming method and run the Program Target Device task,
HDL Coder copies the generated FPGA bitstream, Linux devicetree, and system initialization scripts
to the SD card on the Zynqboard, and then keeps the bitstream on the SD card persistently.

It is recommended that you use the Download method, because this method programs the FPGA
bitstream and loads the corresponding Linux devicetree before booting the Linux system. Therefore,
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the Download method is more robust and does not result in a kernel panic or kernel hang on boot up.
During the Linux reboot, the FPGA bitstream is reprogrammed from the SD card automatically.

To specify Download as the Programming method when you run the workflow using the Workflow
Advisor script, before you run the script, make sure that the ProgrammingMethod property of the
WorkflowConfig object, hWC, is set to Download.

hWC.ProgrammingMethod = hdlcoder.ProgrammingMethod.Download;

JTAG

When you specify JTAG as the Programming method and run the Program Target Device task,
HDL Coder uses a JTAG cable to program the target SoC device. Use this method to program Intel
and Xilinx SoC devices and standalone FPGA boards.

For programming SoC devices, it is recommended that you use the Download method. The JTAG
mode does not involve the ARM processor and programs the onboard FPGA directly. This mode does
not update the Linux devicetree, and can crash the Linux system or result in a kernel panic when the
bitstream does not match the devicetree. To avoid this situation, use the Download method to
program the SoC device.

The standalone Intel and Xilinx FPGA boards do not have an embedded ARM processor. JTAG is the
default method that you use to program the FPGA boards.

To specify JTAG as the Programming method when you run the workflow using the Workflow
Advisor script, before you run the script, change the ProgrammingMethod property of the
WorkflowConfig object, hWC, to JTAG.

hWC.ProgrammingMethod = hdlcoder.ProgrammingMethod.JTAG;

Custom

To program the target device, you can specify a custom programming method when you create your
own custom reference design. Use the CallbackCustomProgrammingMethod of the
hdlcoder.ReferenceDesign class to register a function handle for the callback function that gets
executed when running the Program Target Device task. To define your callback function, create a
file that defines a MATLAB function and add the file to your MATLAB path.

This example code snippet shows a reference design definition file that uses a custom programming
method. To learn more, see CallbackCustomProgrammingMethod.

unction hRD = plugin_rd()
% Reference design definition

% ...

% Construct reference design object
hRD = hdlcoder.ReferenceDesign('SynthesisTool', 'Xilinx Vivado');

hRD.ReferenceDesignName = 'Parameter Callback Custom';
hRD.BoardName = 'ZedBoard';

% Tool information
hRD.SupportedToolVersion = {'2017.2'};

% ...
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hRD.CallbackCustomProgrammingMethod = 
            @my_reference_design.callback_CustomProgrammingMethod;

See Also

Related Examples
• “Define Custom Board and Reference Design for Zynq Workflow”
• “Define Custom Board and Reference Design for Intel SoC Workflow”

More About
• “Program Target Device” on page 37-23
• “IP Core Generation Workflow for Standalone FPGA Devices” on page 41-95
• “Hardware-Software Co-Design Workflow for SoC Platforms” on page 41-2
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Target SoC Platforms and Speedgoat
Boards

• “Hardware-Software Co-Design Workflow for SoC Platforms” on page 41-2
• “Model Design for AXI4 Slave Interface Generation” on page 41-8
• “Model Design for AXI4-Stream Interface Generation” on page 41-14
• “Generate HDL IP Core with Multiple AXI4-Stream and AXI4 Master Interfaces” on page 41-21
• “Running Audio Filter with Multiple AXI4-Stream Channels on ZedBoard” on page 41-26
• “Multirate IP Core Generation” on page 41-39
• “Board and Reference Design Registration System” on page 41-43
• “Register a Custom Board” on page 41-46
• “Register a Custom Reference Design” on page 41-49
• “Define Custom Parameters and Callback Functions for Custom Reference Design”

on page 41-52
• “Customize Reference Design Dynamically Based on Reference Design Parameters”

on page 41-58
• “Define and Add IP Repository to Custom Reference Design” on page 41-63
• “FPGA Programming and Configuration” on page 41-66
• “Model Design for AXI4-Stream Video Interface Generation” on page 41-75
• “Model Design for AXI4 Master Interface Generation” on page 41-84
• “IP Core Generation Workflow for Standalone FPGA Devices” on page 41-95
• “IP Core Generation Workflow for Speedgoat I/O Modules” on page 41-98
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Hardware-Software Co-Design Workflow for SoC Platforms
The HDL Coder hardware-software co-design workflow helps automate the deployment of your
MATLAB and Simulink design to a Zynq-7000 platform or Intel SoC platform. You can explore the best
ways to partition and deploy your design by iterating through the following workflow.

1 MATLAB and Simulink Algorithm and System Design: You begin by implementing your design in
MATLAB or Simulink. When the design behavior meets your requirements, decide how to
partition your design: which parts you want to run in hardware, and which parts you want to run
in embedded software.
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The part of the design that you want to run in hardware must use MATLAB syntax or Simulink
blocks that are supported and configured for HDL code generation. See:

• “MATLAB Algorithm Design”
• “Model and Architecture Design”

2 HDL IP Core Generation: Enclose the hardware part of your design in an atomic Subsystem block
or MATLAB function, and use the HDL Workflow Advisor to define and generate an HDL IP core.

The following diagram shows a design that has been partitioned into a hardware part, in orange,
and software part, in blue. HDL IP core generation creates an IP core from the hardware part of
the model. The IP core includes hardware interface components such as AXI4 accessible
registers, AXI4 or AXI4-Lite interfaces, AXI4-Stream or AXI4-Stream Video interfaces, AXI4
Master interfaces, and external ports.
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3 Embedded System Tool Integration: As part of the HDL Workflow Advisor IP core generation
workflow, you insert your generated IP core into a reference design, and generate an FPGA
bitstream for the SoC hardware.

The reference design is a predefined embedded system integration project. It contains all
elements the Intel or Xilinx software needs to deploy your design to the SoC platform, except for
the custom IP core and embedded software that you generate.

The following diagram illustrates the relationship between the reference design, in green, and
the generated IP core, in orange.
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4 SW Interface Model Generation (requires a Simulink license and Embedded Coder license): In
the HDL Workflow Advisor, after you generate the IP core and insert it into the reference design,
you can optionally generate a software interface model. The software interface model is your
original model with AXI driver blocks replacing the hardware part.

If you have an Embedded Coder license, you can automatically generate the software interface
model, generate embedded code from it, and build and run the executable on the Linux kernel on
the ARM processor. The generated embedded software includes AXI driver code generated from
the AXI driver blocks that controls the HDL IP core.

If you do not have an Embedded Coder license or Simulink license, you can write the embedded
software and manually build it for the ARM processor.
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The following diagram shows the difference between the original model and the software
interface model.

5 SoC Platform and External Mode PIL: Using the HDL Workflow Advisor, you program your FPGA
bitstream to the SoC platform. You can then run the software interface model in external mode,
or processor-in-the-loop (PIL) mode, to test your deployed design.

If your deployed design does not meet your design requirements, you can repeat the workflow
with a modified model, or a different hardware-software partition.

See Also

Related Examples
• “Xilinx Zynq Platform”
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• “Intel SoC Devices”
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Model Design for AXI4 Slave Interface Generation
In this section...
“Considerations” on page 41-8
“Map Scalar Ports to AXI4 Slave Interface” on page 41-8
“Map Vector Ports to AXI4 Slave Interface” on page 41-9
“Read Back Value of AXI4 Slave Interfaces” on page 41-10
“Optimize AXI4 Slave Read Back Logic” on page 41-13

To perform lightweight data transfer or to access control registers, use AXI4 slave interfaces. The
AXI4 slave interfaces include the AXI4 and AXI4-Lite interfaces. With the HDL Coder software, you
don't have to implement AXI4 or AXI4-Lite protocol in your model. The software generates AXI4 or
AXI4-Lite interfaces in the HDL IP core.

When you model your design, specify the data ports that you want to map to the AXI4 slave
interfaces. HDL Coder then maps the data ports to memory-mapped AXI4 slave interfaces and
allocates address offsets for the ports.

Considerations
When you map your DUT ports to AXI4 or AXI4-Lite interfaces:

• You can map all scalar or vector ports in your design to either AXI4 or AXI4-Lite interfaces. You
cannot map some DUT ports to AXI4 interfaces and other DUT ports to AXI4-Lite interfaces for the
same design.

• You can use a single-rate design or a design with multiple sample rates without any restrictions
when mapping the DUT ports to AXI4 slave interfaces by using the Free Running
synchronization mode for Processor/FPGA Synchronization.

• You can use the Coprocessing-Blocking mode for Processor/FPGA Synchronization when
mapping to AXI4 or AXI-Lite interfaces. Other interface types such as AXI4-Stream and AXI4
Master do not support this mode. See also “Processor and FPGA Synchronization” on page 40-16.

Map Scalar Ports to AXI4 Slave Interface
When you use scalar data types at the DUT interface ports, you can map the interface ports directly
to AXI4 or AXI4-Lite interfaces. The code generator assigns a unique address to each data port that
you want to map to the AXI4 interface.

For an example that shows how to map scalar ports to AXI4-Lite interfaces, open the model
hdlcoder_led_blinking.

open_system('hdlcoder_led_blinking')
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In this model, the subsystem led_counter is the hardware subsystem. It models a counter that
blinks the LEDs on an FPGA board. Two input ports, Blink_frequency and Blink_direction, are
control ports that determine the LED blink frequency and direction. All the blocks outside of the
subsystem led_counter are for software implementation.

In Simulink, you can use the Slider Gain block or the Manual Switch block to adjust the input values
of the hardware subsystem. In the embedded software, this means that the ARM processor controls
the generated IP core by writing to the AXI interface accessible registers. The output port of the
hardware subsystem connects to the LED hardware. You can use the output port Read_back to read
data back to the processor.

When you run the IP Core Generation workflow, in the Set Target Interface task, you see that
the ports Blink_frequency, Blink_direction, and Read_back map to AXI4-Lite interfaces.

To learn more about this example, see:

• “Getting Started with Targeting Xilinx Zynq Platform”
• “Getting Started with Targeting Intel SoC Devices”

Map Vector Ports to AXI4 Slave Interface
When you use vector data types at the DUT interface ports, you can map the interface ports directly
to AXI4 or AXI4-Lite interfaces. The code generator assigns a unique address for each data port that
you want to map to the AXI4 interface.

When you map vector ports, HDL Coder uses additional strobe registers for each port to maintain the
synchronization with the IP core algorithm logic. For input ports, the strobe registers control the
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enable signals for a set of shadow registers, which makes the IP core algorithm logic see the updated
vector elements simultaneously. For output ports, the strobe registers make sure that the vector data
to be read is captured synchronously.

For an example that shows how to map vector ports to AXI4-Lite interfaces, open the model
hdlcoder_led_vector.

open_system('hdlcoder_led_vector')

In this model, the subsystem DUT implements the LED blinking algorithm and has vector output
ports. When you run the IP Core Generation workflow, in the Set Target Interface task, you see
that the input ports and output ports map to AXI4-Lite interfaces.

To learn more, see “IP Core Generation Workflow with a MicroBlaze processor: Xilinx Kintex-7
KC705”.

Read Back Value of AXI4 Slave Interfaces
When you run the IP Core Generation workflow, you can read back the value that is written to the
AXI4 slave registers by using the AXI4 slave interface. For example, you can read back the values that
are written to the AXI4 slave registers by using the devmem command in the Linux console of the
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ARM processor. If you have HDL Verifier installed, you can use the MATLAB as AXI Master IP to read
back the values.

To use this capability, in the Generate RTL Code and IP Core task of the IP Core Generation
workflow, select the Enable read back on AXI4 slave write registers check box, and then run this
task.

When you run this task, HDL Coder saves the read back setting that you enabled on the model. In the
HDL Block Properties of the DUT Subsystem, on the IP Core Parameter section of the Target
Specification tab, you see a parameter AXI4RegisterReadback set to on. If you export the HDL
Workflow Advisor run to a script, you see this setting saved on the model by using hdlset_param.

hdlset_param('hdlcoder_led_vector/DUT', 'AXI4RegisterReadback', 'on');

These examples show how you can read back values by using the devmem command in the Linux
console with a program such as PuTTy.

To read back values when mapping scalar ports to AXI4 interfaces, you first write values to the AXI4
registers, and then read back the values. You can see the memory address of the AXI4 registers in the
IP Core Generation report.
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To read back values when mapping vector ports to AXI4 interfaces, you first write to the AXI4
registers, then write the strobe register address with 0x1, and then read back the values. You can see
the memory address of the AXI4 registers and the strobe register in the IP Core Generation report.
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Optimize AXI4 Slave Read Back Logic
When your model contains several output registers and you want to read back data from multiple
AXI4 slave registers, the read back logic becomes a long mux chain that can reduce the synthesis
frequency. If you select the Enable readback on AXI4 slave write registers setting in the
Generate RTL Code and IP Core task, HDL Coder adds a mux for each AXI4 register in the Address
Decoder logic. As the number of AXI4 slave registers increases, the mux chain becomes longer, which
further reduces the synthesis frequency.

You can optimize the readback logic and achieve the target frequency that you want. When you run
the IP Core Generation workflow, in the Generate RTL Code and IP Core task, you see a
setting AX4 slave port to pipeline register ratio. The default value of this setting is auto. This
setting indicates how many AXI4 slave registers a pipeline register is inserted for. For example, an
AX4 slave port to pipeline register ratio of 20 means that one pipeline register is inserted for
every 20 AXI slave registers. The auto setting means that the code generator inserts a certain
number of pipelines for the AXI4 slave ports depending on the number of ports and the synthesis tool
that you specify. You can disable this setting or select a number between 5 and 50 for this ratio.

When you run this task, HDL Coder saves the value that you specified for the setting on the model. In
the HDL Block Properties of the DUT Subsystem, on the IP Core Parameter section of the Target
Specification tab, you see a parameter AX4SlavePortToPipelineRegisterRatio set to the value
that you specified. If you export the HDL Workflow Advisor run to a script, you see this setting saved
on the model by using hdlset_param.

hdlset_param('hdlcoder_led_vector/DUT', ... 
                    'AXI4SlavePortToPipelineRegisterRatio', '20');

See Also

More About
• “Hardware-Software Co-Design Workflow for SoC Platforms” on page 41-2
• “Custom IP Core Generation” on page 40-4
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Model Design for AXI4-Stream Interface Generation
In this section...
“Simplified Streaming Protocol” on page 41-14
“Map Scalar Ports To AXI4-Stream Interface” on page 41-15
“Map Vector Ports To AXI4-Stream Interface” on page 41-18
“Model Designs with Multiple Streaming Channels” on page 41-19
“Model Designs with Multiple Sample Rates” on page 41-19
“Restrictions” on page 41-19

With the HDL Coder software, you can implement a simplified, streaming protocol in your model. The
software generates AXI4-Stream interfaces in the IP core.

Simplified Streaming Protocol
To map the DUT ports to AXI4-Stream interfaces, use the simplified AXI4-Stream protocol. You do not
have to model the actual AXI4-Stream protocol and instead you can use the simplified protocol. When
you run the IP Core Generation workflow, the generated HDL code contains a wrapper logic that
translates between the simplified protocol and the actual AXI4-Stream protocol. The simplified
protocol requires you to use less protocol signals, eases the handshaking mechanism between valid
and ready signals, and supports bursts of arbitrary lengths.

Use the simplified AXI4-Stream protocol for both write and read transactions. When you want to
generate an AXI4-Stream interface in your IP core, in your DUT interface, implement the following
signals:

• Data
• Valid

Optionally, when you map scalar DUT ports to an AXI4-Stream interface, you can model the following
signals:

• Ready
• Other protocol signals, such as:

• TSTRB
• TKEEP
• TLAST
• TID
• TDEST
• TUSER

Data and Valid Signals

When the Data signal is valid, the Valid signal is asserted.

Note This diagram illustrates the Data and Valid signal relationship according to the simplified
streaming protocol. When you run the IP Core Generation workflow, HDL Coder adds a streaming
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interface module in the HDL IP core that translates the simplified protocol to the full AXI4-stream
protocol.

Map Scalar Ports To AXI4-Stream Interface
If you want to generate a hardware IP core, but do not need to model and simulate the interaction
between the software and hardware, use scalar data ports at your DUT interface. Map the data ports
to AXI4-Stream interfaces.

Data and Valid Signal Modeling Pattern

To model the Data and Valid signals in Simulink:

1 Enclose the algorithm that processes the Data signal by using an enabled subsystem.
2 Control the enable port of the enabled subsystem by using the Valid signal.

For example, you can directly connect the Valid signal to the enable port.

You can also use a controller in your DUT that generates an enable signal for the enabled subsystem.
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Ready Signal (Optional)

The AXI4-Stream interfaces in your DUT can optionally include a Ready signal. In a Slave interface,
you use the Ready signal to apply back pressure. In a Master interface, you use the Ready signal to
respond to back pressure.

By default, HDL Coder generates the Ready signal automatically. When you use a single streaming
channel, HDL Coder also generates the logic that handles back pressure. The back pressure logic ties
the Ready signal to the DUT Enable signal. When the input Master Ready signal goes low, the DUT is
disabled, and the output slave Ready signal is driven low. Therefore, when you use a single streaming
channel, the Ready signal is optional and you do not have to model this signal at the DUT port.

If you use multiple streaming channels, HDL Coder does not automatically generate the back
pressure logic. In this case, the Ready signal is generated but the master Ready signal at the input is
ignored and the slave Ready signal at the output is tied to high value. The absence of a back pressure
logic can result in samples being dropped. If you want your design to apply back pressure on the
Slave interface or respond to back pressure from the Master interface, you must model the Ready
signal for each additional interface and then map the port to the Ready signal for that interface.
When you do not model, the Set Target Interface task displays a warning that provides names of
interfaces that require a Ready port. If your design does not need to apply or respond to back
pressure, you can ignore this warning and you do not have to model the Ready signal.
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If you model the Ready signal in your AXI4-Stream interfaces, your Master interface ignores the Data
and Valid signals one clock cycle after the Ready signal is de-asserted. You can start sending Data and
Valid signals once the Ready signal is asserted. You can send one more Data and Valid signal after the
Ready signal is de-asserted.

If you do not model the Ready signal, HDL Coder generates the signal and the associated back
pressure logic.

Note This diagram illustrates the relationship between the Data, Valid, and Ready signals according
to the simplified streaming protocol. When you run the IP Core Generation workflow, HDL Coder
adds a streaming interface module in the HDL IP core that translates the simplified protocol to the
full AXI4-stream protocol.

For example, if you have a FIFO in your DUT to store a frame of data, to apply back pressure to the
upstream component, you can model the Ready signal based on the FIFO Full signal.

Note If you enable delay balancing, the coder can insert one or more delays on the Ready signal.
Disable delay balancing for the Ready signal path.
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Other Protocol Signals (optional)

You can optionally model other AXI4-Stream protocol signals. If you model only the required Data and
Valid signals, the coder generates the TREADY and TLAST AXI4-Stream protocol signals.

If you do not model the TLAST signal, the coder generates a programmable register in the IP core so
that you can specify your packet size. The details of the programmable packet size register are in
your IP core generation report.

Map Vector Ports To AXI4-Stream Interface
If you want to model and simulate the system interaction between the software and hardware, and
generate code for the software driver, use vector data ports at your DUT interface. Map the data
ports to AXI4-Stream interfaces.

Data and Valid Signal Modeling Requirements

When you map vector ports to AXI4-Stream interfaces, your model has these requirements:

• Connect each DUT input vector data port to a Serializer1D block.

The Serializer1D block must have a ValidOut port and the Ratio set to the vector bit width.
• Connect each DUT output vector data port to a Deserializer1D block.

The Deserializer1D block must have a ValidIn port and the Ratio set to the vector bit width.
• Connect each scalar port that maps to an AXI4-Lite interface to a Rate Transition block.

The Ratio in the Rate Transition block must match the Ratio in the Serializer1D and
Deserializer1D blocks.

• Each scalar port that maps to an external port must have the same sample time as the streaming
algorithm subsystem.

The streaming algorithm subsystem follows the same Data and Valid signal modeling pattern as for
mapping scalar ports to an AXI4-Stream interfaces. See “Data and Valid Signal Modeling Pattern” on
page 41-15.

Example

For an example that shows how to map vector ports to AXI4-Stream interfaces, open the
hdlcoder_sfir_fixed_vector model. In the hdlcoder_sfir_fixed_vector model,
symmetric_fir is the streaming algorithm subsystem.
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Model Designs with Multiple Streaming Channels
When you run the IP Core Generation workflow, you can map multiple scalar DUT ports to AXI4-
Stream Master and AXI4-Stream Slave channels. When you use vector ports, you can map the ports
to at most one AXI4-Stream Master channel and one AXI4-Stream Slave channel.

Note If you use multiple streaming channels, HDL Coder generates the Ready signal but does not
generate the back pressure logic. If you want your design to handle back pressure, model the Ready
signal in your design.

To learn more, see “Generate HDL IP Core with Multiple AXI4-Stream and AXI4 Master Interfaces”
on page 41-21.

Model Designs with Multiple Sample Rates
The HDL Coder software supports designs with multiple sample rates when you run the IP Core
Generation workflow. When you map the interface ports to AXI4-Stream Master or AXI4-Stream
Slave interfaces, to use multiple sample rates, ensure that the DUT ports that map to these AXI4
interfaces run at the fastest rate of the design after HDL code generation.

To learn more, see “Multirate IP Core Generation” on page 41-39.

Restrictions
When you map scalar or vector DUT ports to AXI4-Stream interfaces:
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• Xilinx Zynq-7000 or Intel Quartus Prime must be your target platform.
• Xilinx Vivado or Intel Quartus Prime must be your synthesis tool.
• Processor/FPGA synchronization must be Free running.

When you map vector DUT ports to AXI4-Stream interfaces, you cannot use protocol signals other
than Data and Valid. For example, Ready and TLAST are not supported.

See Also

More About
• “Hardware-Software Co-Design Workflow for SoC Platforms” on page 41-2
• “Generate Board-Independent HDL IP Core from Simulink Model” on page 40-12

See Also

Related Examples
• “Getting Started with AXI4-Stream Interface in Zynq Workflow”
• “Define Custom Board and Reference Design for Zynq Workflow”
• “Define Custom Board and Reference Design for Intel SoC Workflow”
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Generate HDL IP Core with Multiple AXI4-Stream and AXI4
Master Interfaces

When you run the generic IP Core Generation workflow for your Simulink model or target your own
custom reference design that you authored, you can generate an HDL IP core with multiple AXI4-
Stream interfaces, AXI4-Stream Video interfaces, or AXI4 Master interfaces. To learn about these
interfaces, see “Target Platform Interfaces” on page 40-4.

Why Use Multiple AXI4 Interfaces
You can use multiple streaming interfaces to facilitate high-speed data transfer in various
applications such as:

• Transferring data between A/D and D/A converters
• Software-defined radio algorithms that process multiple transceiver channels
• Vision algorithms that perform image annotation or object detection

Specify Multiple AXI4 Interfaces in Generic IP Core Generation
Workflow
To specify more than one AXI4-Stream, AXI4-Stream Video, or AXI4 Master channel:

1 In the Set Target Device and Synthesis Tool task, select IP Core Generation as the Target
workflow and Generic Xilinx Platform or Generic Altera Platform as the Target
platform. Run this task.

2 To add multiple target interfaces, in the Set Target Interface task, on the Target Platform
Interfaces section of the Target platform interface table, select Add more ....

3 You can then add more interfaces in the Add New Target Interfaces dialog box. Specify the type
of interface you want to add, the number of interfaces, and a custom name for each additional
interface.
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After you apply the settings, the interfaces you created appear in the Target platform interface
table. After you run this task, the additional interfaces specified are saved on the DUT subsystem
as the HDL block property AdditionalTargetInterfaces.

If you modify the additional interfaces that were already mapped to DUT ports such as deleting or
renaming an interface that was already mapped, the previous interface mapping information might
be lost. The ports then become unmapped to interfaces and the Target platform interfaces section
displays No interface specified. Therefore, if you make changes to the additional target
interfaces, verify that the DUT ports are mapped to the correct target interfaces.

Specify Multiple AXI4 Interfaces in Custom Reference Designs
When you create your own custom reference design, you can add multiple AXI4-Stream, AXI4-Stream
Video, and AXI4 Master interfaces. Depending on the interface type you want to add, specify
additional interfaces by using the addAXI4StreamInterface, addAXI4StreamVideoInterface,
or addAXI4MasterInterface methods of the hdlcoder.ReferenceDesign class.

To add more interfaces, in the plugin_rd file, call the interface method each time you want to add
more interfaces. This example shows how to add two AXI4-Stream interfaces.

function hRD = plugin_rd()
% Reference design definition

%   Copyright 2017-2019 The MathWorks, Inc.

% Construct reference design object
hRD = hdlcoder.ReferenceDesign('SynthesisTool', 'Xilinx Vivado');

hRD.ReferenceDesignName = 'Multiple Interface Reference Design';
hRD.BoardName = 'ZedBoard';
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% Tool information
hRD.SupportedToolVersion = {'2019.1'}; 

% ...
% ...

% Add AXI4-Stream interface 1
hRD.addAXI4StreamInterface (...
    'MasterChannelEnable',      true, ...
    'SlaveChannelEnable',       true, ...
    'MasterChannelConnection',  'axi_dma_s2mm/S_AXIS_S2MM', ...
    'SlaveChannelConnection',   'axi_dma_mm2s/M_AXIS_MM2S', ...
    'MasterChannelDataWidth',   32, ...
    'SlaveChannelDataWidth',    32, ...
    'InterfaceID',              'AXI4-Stream1');

% Add AXI4-Stream interface 2
hRD.addAXI4StreamInterface (...
    'MasterChannelEnable',      true, ...
    'SlaveChannelEnable',       true, ...
    'MasterChannelConnection',  'ADC/S_AXIS_S2MM', ...
    'SlaveChannelConnection',   'DAC/M_AXIS_MM2S', ...
    'MasterChannelDataWidth',   32, ...
    'SlaveChannelDataWidth',    32, ...
    'InterfaceID',              'AXI4-Stream2');

% ...
% ...

When you run the IP Core Generation workflow and target the custom reference design
Multiple Interface Reference Design, in the Set Target Interface task, you can map the
DUT ports to AXI4-Stream1 Master and Slave channels and AXI4-Stream2 Master and Slave
channels.
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Note When you target your own custom reference design and map the additional interfaces to DUT
ports in the Set Target Interfaces task, the additional interfaces are not saved on the model as the
AdditionalTargetInterfaces HDL block property. Instead, the additional interfaces are saved on the
custom reference design in the plugin_rd.m file.

You can also dynamically customize the reference design to specify the number of interfaces you want
to add and the interface properties.

1 In the plugin_rd file, create a reference design parameter for the number of additional
interfaces you want to add.

2 Create a callback function that has different choices for the number of interfaces you want to add
and then reference the function in the plugin_rd file by using the
CustomizeReferenceDesignFcn method of the hdlcoder.ReferenceDesign class.

To learn more, see “Customize Reference Design Dynamically Based on Reference Design
Parameters” on page 41-58.

Ready Signal Mapping for Multiple Streaming Interfaces
When you use a single streaming channel, HDL Coder automatically generates the Ready signal and
the associated back pressure logic.

If you use multiple streaming channels, HDL Coder does not automatically generate the back
pressure logic. In this case, the Ready signal is generated but the master Ready signal at the input is
ignored and the slave Ready signal at the output is tied to high value. The absence of a back pressure
logic can result in samples being dropped. If you want your design to apply back pressure on the
Slave interface or respond to back pressure from the Master interface, you must model the Ready
signal for each additional interface and then map the port to the Ready signal for that interface.
When you do not model, the Set Target Interface task displays a warning that provides names of
interfaces that require a Ready port. If your design does not need to apply or respond to back
pressure, you can ignore this warning and you do not have to model the Ready signal.

When using multiple AXI4-Stream interfaces, if you want your design to apply back pressure on the
Slave interface or respond to back pressure from the Master interface, you must model the Ready
signal for each additional interface and then map the port to the Ready signal for that interface. To
learn how the back pressure logic is generated for a single streaming channel and how to model the
Ready signal, see “Ready Signal (Optional)” on page 41-16.

Restrictions
• When you run the generic IP Core Generation workflow, you can specify the interface type and a

custom interface ID for each additional interface. Other interface properties such as the data
width cannot be customized and use default values. When you create your own custom reference
design, you can customize the interface name and interface properties.

• When mapping your DUT ports to multiple AXI4-Stream interface channels, you can only use
scalar ports. Vector ports can have at most one AXI4-Stream Master channel and one AXI4-Stream
Slave channel.

• Xilinx Zynq-7000 or Intel Quartus Prime must be your target platform.
• Processor/FPGA synchronization must be Free running.
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• Xilinx Vivado or Intel Quartus Prime must be your synthesis tool.

See Also

More About
• “Hardware-Software Co-Design Workflow for SoC Platforms” on page 41-2
• “Generate Board-Independent HDL IP Core from Simulink Model” on page 40-12

See Also

Related Examples
• “Define Custom Board and Reference Design for Zynq Workflow”
• “Define Custom Board and Reference Design for Intel SoC Workflow”
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Running Audio Filter with Multiple AXI4-Stream Channels on
ZedBoard

This example shows how to model an audio system with multiple AXI4-Stream channels and deploy it
on a ZedBoard™ by using an audio reference design.

Introduction

In this example, you model a programmable audio filter with spectrogram using multiple AXI4-Stream
channels and advanced AXI4-Stream signals Ready and TLAST. One AXI4-Stream channel transfers
data between the filter and the audio codec. The other AXI4-Stream channel interfaces with the
Processing System to program filter coefficients and transmit spectrogram data to the host computer
for analysis.

You can then run the IP Core Generation workflow to generate an HDL IP core and deploy the
algorithm on a ZedBoard by using an audio reference design.

System Architecture

This figure shows the high-level architecture of the system.

The Audio Codec IPs configure the audio codec and transfer audio data between the ZedBoard and
audio codec. The Audio Processing IP generated by HDL Coder™ performs filtering and spectrum
analysis. The DMA IPs transfer AXI4-Stream data between the Processing System and the FPGA. The
stream data transmitted from the Processing System through the MM2S DMA IP programs the filter
coefficients on the FPGA. The stream data received by the Processing System through the S2MM
DMA IP contains the spectrogram data computed on the FPGA. The Processing System also
configures the weighting curve for spectrum analysis using an AXI4-Lite interface.

Prerequisites

This example extends the audio filter on live input example to use multiple streaming channels. To
learn about the example that uses a single streaming channel, see “Running an audio filter on live
audio input using a Zynq board”.
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To run this example, you must have the following software and hardware installed and set up:

• HDL Coder Support Package for Xilinx® Zynq® Platform
• Embedded Coder® Support Package for Xilinx Zynq Platform
• Xilinx Vivado® Design Suite latest version, as mentioned in “HDL Language Support and

Supported Third-Party Tools and Hardware”
• ZedBoard

To setup the ZedBoard, refer to the Set up Zynq hardware and tools section in the “Getting Started
with Targeting Xilinx Zynq Platform” example. Connect an audio input from a mobile or an MP3
player to the LINE IN jack and either earphones or speakers to the HPH OUT jack on the ZedBoard
as shown below.

Model Audio Processing Algorithm

Open the model hdlcoder_audio_filter_multistream.

open_system('hdlcoder_audio_filter_multistream')
set_param('hdlcoder_audio_filter_multistream', 'SimulationCommand', 'Update')
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The model contains the DUT subsystem for audio processing, source and sink blocks for simulating
the audio, and plant models for DMAs that transfer stream data between the Processing System and
FPGA.

Rate Considerations

For audio applications running on the FPGA, the FPGA clock rate is several times faster than the
audio sample rate. The ratio of the FPGA clock rate to the audio data sample rate is the
Oversampling factor. In this example, the Oversampling factor is modeled by using Repeat and
Upsample blocks.

Modeling your design at the FPGA clock rate allows you to optimize resource usage on the target
hardware platform by leveraging idle clock cycles and reusing various components. The audio
application illustrated in this example uses an audio sample rate of 48kHz and an FPGA clock rate of
96MHz. The Oversampling factor in this case is 2000. Such a large value of Oversampling factor
slows down the Simulink simulation significantly.

To reduce the simulation time, instead of using the Oversampling factor setting, you can model
your design at the minimum Oversampling factor that is required by the design. The minimum
required Oversampling factor for the design can be determined by the length of the audio filter,
which is 1001. This value reduces the simulation time by half and provides sufficient idle cycles
between the data samples for the serial filter logic.

Audio Filter

Inside the DUT subsystem, the FIR filter processes data from the audio codec AXI4-Stream channel.
The filter coefficients are generated in MATLAB® and programmed by using the second AXI4-Stream
interface that interfaces with the Processing System. The filtered audio output is streamed back to
the audio codec.
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The audio filter is a fully serial implementation of an FIR filter. This filter structure is best suited for
audio applications that require large Oversampling factor because the filter uses a multiply
accumulate (MAC) operation for each channel. The filter also uses RAM blocks to implement the data
delay line and the coefficient source. This implementation saves area by avoiding the high slice logic
usage of high-order filters.

Spectrum Analyzer

The audio signal is fed into a spectrum analyzer after passing through the FIR filter. The spectrum
analyzer computes the FFT of the filtered signal, applies a weighting function, and converts the result
to dBm. You can program the type of weighting to be performed by using the AXI4-Lite interface as
either No-weighting, A-weighting, C-weighting, or K-weighting. The actual weighting functions are
implemented using lookup tables that have been generated by using Audio Toolbox™ function
weightingFilter.

Model AXI4-Stream Interfaces

The model contains two AXI4-Stream interfaces. One AXI4-Stream inteface communicates with the
audio codec. The other AXI4-Stream interface communicates with the Processing System through the
DMAs. The audio codec interface only requires the Data and Valid signals. The DMA interface, on
the other hand, additionally uses the Ready and TLAST signals of the AXI4-Stream protocol.

To learn more about the signals used in AXI4-Stream modeling, see “Model Design for AXI4-Stream
Interface Generation” on page 41-14.

Ready Signal

In an AXI4-Stream interface, you use the Ready signal to apply or respond to back pressure. The
model uses the Ready signal on the AXI4-Stream Master channel from the FPGA to the Processing
System to respond to back pressure from the DMA. When the downstream DMA cannot receive more
spectrogram samples, it de-asserts the input Ready signal on the AXI4-Stream Master channel. To
ensure that the spectogram samples are not dropped, the model buffers the data in a FIFO until the
Ready signal is asserted, indicating that the DMA is ready to receive samples again.

The AXI4-Stream Slave channel from the Processing System to the FPGA does not have to apply back
pressure, and hence its Ready signal is always asserted. The audio codec does not process back
pressure and does not use its Ready signal on either channel. To learn more about the Ready signal
in AXI4-Stream modeling, see “Ready Signal (Optional)” on page 41-16.

TLAST Signal

The TLAST signal is used to indicate the last sample of a frame. The model uses the TLAST signal on
the AXI4-Stream Slave channel as an indictor that it has received a full set of filter coefficients. On
the AXI4-Stream Master channel, the TLAST signal is used to indicate the end of a spectrum analyzer
frame. To learn more about the TLAST signal in AXI4-Stream modeling, see “Other Protocol Signals
(optional)” on page 41-18.

Customize the Model for ZedBoard

To implement this model on the ZedBoard, you must first have a reference design in Vivado that
receives audio input on the ZedBoard and transmits the processed audio data out of the ZedBoard.
For details on how to create a reference design which interfaces with the audio codec on the
ZedBoard, see “Authoring a Reference Design for Audio System on a Zynq Board”. This example
extends the reference design in that example by adding DMA IPs for communication with the
Processing System.
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In the reference design, left and right channel audio data are combined to form a single channel such
that the lower 24 bits form the left channel and upper 24 bits form the right channel. In the
Simulink® model shown above, CODEC_data_in is split into left and right channels. Filtering is done
on each channel individually. The channels are then concatenated to form a single channel for
CODEC_data_out.

Generate HDL IP Core with AXI4-Stream Interfaces

Next, you can start the HDL Workflow Advisor and use the Zynq hardware-software co-design
workflow to deploy this design on the Zynq hardware. For a more detailed step-by-step guide, you can
refer to the Getting Started with HW/SW Co-design Workflow for Xilinx Zynq Platform example.

1. Set up the Xilinx Vivado synthesis tool path using the following command in the MATLAB command
window. Use your own Vivado installation path when you run the command.

hdlsetuptoolpath('ToolName', 'Xilinx Vivado', ...
        'ToolPath', 'C:\Xilinx\Vivado\2019.1\bin\vivado.bat');

2. Add both the IP repository folder and the ZedBoard registration file to the MATLAB path using
following commands:

addpath(fullfile(matlabroot,'toolbox','hdlcoder','hdlcoderdemos','customboards','ipcore'));

addpath(fullfile(matlabroot,'toolbox','hdlcoder','hdlcoderdemos','customboards','ZedBoard'));

3. Open the HDL Workflow Advisor from the DUT subsystem,
hdlcoder_audio_filter_multistream/DUT or double-click the Launch HDL Workflow Advisor
box in the model.

The target interface settings are already saved for ZedBoard in this example model, so the settings in
tasks 1.1 to 1.3 are automatically loaded. To learn more about saving target interface settings in the
model, you can refer to the Save Target Hardware Settings in Model example.

4. Run the Set Target Device and Synthesis Tool task.

In this task, IP Core Generation is selected for Target workflow, and ZedBoard is selected for
Target platform.

41 Target SoC Platforms and Speedgoat Boards

41-30



5. Run the Set Target Reference Design task. Audio system with DMA Interface is selected
as the Reference Design.

6. Run the Set Target Interface task.

In this task, the ports of the DUT subsystem are mapped to the IP Core interfaces. The audio codec
ports are mapped to the Audio Interface and the DMA ports are mapped to the AXI DMA interface.
These are both AXI4-Stream interfaces. The AXI4-Stream interface communicates in master/slave
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mode, where the master device sends data to the slave device. Therefore, if a data port is an input
port, it is assigned to an AXI4-Stream Slave interface, and if a data port is output port, it is
assigned to an AXI4-Stream Master interface. The exception to this is the Ready signal. The
AXI4-Stream Master Ready signal is an input to the model, and the AXI4-Stream Slave Ready
signal is an output of the model. The spectrum analyzer control ports are mapped to AXI4-Lite.

Running this task issues a warning that auto-generation of the Ready signal is disabled, and that the
Audio Interface does not assign a Ready port. You can ignore the warning for this design, because
back pressure has already been accounted for. Namely, the design addressed back pressure on the
DMA interface by using a FIFO. On the audio codec interface, back pressure cannot be applied, so no
Ready signal logic is needed.

7. In the Set Target Frequency task, set the Target Frequency (MHz) to 96. Run this task.

This target frequency value makes the Oversampling factor an even integer relative to the audio
sample rate of 48kHz.
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8. Right-click the Generate RTL Code and IP Core task and select Run to Selected Task.

You can find the register address mapping and other documentation for the IP core in the generated
IP Core Report.

Integrate IP into AXI4-Stream Audio-Compatible Reference Design

Next, in the HDL Workflow Advisor, you run the Embedded System Integration tasks to deploy the
generated HDL IP core on Zynq® hardware.

1. Run the Create Project task.

This task inserts the generated IP core into the Audio System with AXI DMA Interface
reference design. As shown in the first diagram, this reference design contains the IPs to handle
streaming audio data in and out of ZedBoard, and for streaming data in and out of the Processing
System. The generated project is a complete ZedBoard design. It includes the algorithm part, which
is the generated DUT algorithm IP, and the platform part, which is the reference design.

2. Click the link in the Result pane to open the generated Vivado project. In the Vivado tool, click
Open Block Design to view the Zynq design diagram, which includes the generated HDL IP core,
other audio processing IPs and the Zynq processor.
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3. In the HDL Workflow Advisor, run the remaining tasks to generate the software interface model,
and build and download the FPGA bitstream. Choose Download programming method in the task
Program Target Device to download the FPGA bitstream onto the SD card on the Zynq board. Your
design is then automatically reloaded when you power cycle the Zynq board.

Generate ARM Executable to Tune Parameters on FPGA Fabric

In task Generate Software Interface Model, a software interface model is generated.
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In the generated model, AXI4-Lite driver blocks have been automatically added. However, AXI4-
Stream driver blocks cannot be automatically generated, because the driver blocks expect vector
inputs on the software side, but the DMA DUT ports are scalar ports. For details on how to update the
software interface model with the correct driver blocks, refer to “Getting Started with AXI4-Stream
Interface in Zynq Workflow”.

For this example, you use an updated software interface model. To open this model, run:

open_system('hdlcoder_audio_filter_multistream_sw');
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To tune the parameters:

1. Click the Monitor & Tune button on the Hardware tab of model toolstrip. Embedded Coder
builds the model, downloads the ARM® executable to the ZedBoard hardware, executes it, and
connects the model to the running executable. While the model is running, different parameters can
be tuned.

2. You can select the type of filter by using the Filter Type block parameter of the Filter Select block.
The filter coefficients are calculated in this block using the fir1 function from Signal Processing
Toolbox™. The coefficients are sent from the Processing System to the FPGA by using the AXI4-
Stream IIO Write block, which communicates through the MM2S DMA IP.
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3. The weighting curve used by the spectrum analyzer can be selected using the Curve block
parameter of the Weighting Curve Select block. The selection is sent to the from the Processing
System to the FPGA using the AXI4-Lite interface.

4. The spectrum analyzer output can be viewed in the Array Plot. Select a different filter type or
modify the weighting curve and observe how the spectrum data changes.
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The filtered audio output can be heard by plugging earphones or speakers to HPH OUT jack on the
ZedBoard.

See Also

More About
• “Hardware-Software Co-Design Workflow for SoC Platforms” on page 41-2
• “Custom IP Core Generation” on page 40-4
• “Generate HDL IP Core with Multiple AXI4-Stream and AXI4 Master Interfaces” on page 41-21

See Also
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Multirate IP Core Generation
This example shows HDL Coder™ supports designs with multiple sample rates when you run the IP
Core Generation workflow.

If you are only using AXI4 slave interfaces such as AXI4 or AXI4-Lite, and when you use Free
running for Processor/FPGA Synchronization, you can use multiple sample rates in your design
without restrictions.

When you map the interface ports to AXI4-Stream, AXI4-Stream Video, or AXI4 Master interfaces, to
use multiple sample rates, make sure that the DUT ports that map to the AXI4 interfaces run at the
fastest rate of the design after HDL code generation.

These examples illustrate how you can model your design with multiple sample rates when using
AXI4-Stream, AXI4-Stream Video, or AXI4-Master Master interfaces.

Run Part of Design at Slower Rate

You can run part of the design at a slower rate while making sure that the DUT ports that map to the
interface run at the fastest rate. This example illustrates mapping to AXI4-Stream Video interfaces
but you can map to AXI4-Stream or AXI4 Master interfaces by using this approach.

For an example, open the model hdlcoder_axi_video_multirate.

load_system('hdlcoder_axi_video_multirate')
set_param('hdlcoder_axi_video_multirate','SimulationCommand','update')
open_system('hdlcoder_axi_video_multirate')

In this model, the DUT ports corresponding to inputs and outputs of the Video_Algorithm run at
the fastest rate.

open_system('hdlcoder_axi_video_multirate/Multirate_DUT')
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These ports can therefore map to AXI4-Stream Video interfaces. Part of the design running outside
this algorithm corresponding to input slow and output slowOut running at a slower rate can map to
AXI4 or AXI4-Lite interfaces. This figure shows an example of the target platform interface mapping
for this model.

Note: To use the Pixel Control Bus Creator and Pixel Control Bus Selector blocks, you must
have Vision HDL Toolbox™ installed. If you do not have Vision HDL Toolbox, use Bus Creator
and Bus Selector blocks instead.

See also Model Design for AXI4-Stream Video Interface Generation.

Apply Optimizations to Part of Design Running at Slow Rate

With multirate support, you can apply optimizations such as resource sharing to a part of the design
running at a slower rate. Make sure that the optimizations do not introduce a faster rate in your

41 Target SoC Platforms and Speedgoat Boards

41-40



Simulink™ model. This example illustrates mapping to AXI4-Stream interfaces but you can map to
AXI4-Stream Video or AXI4 Master interfaces by using this approach.

For an example, open the model hdlcoder_axi_multirate_sharing

load_system('hdlcoder_axi_multirate_sharing')
set_param('hdlcoder_axi_multirate_sharing','SimulationCommand','update')
open_system('hdlcoder_axi_multirate_sharing/DUT')

In this model, the Subsystem contains a simple multiply-add algorithm running at a slower rate.

open_system('hdlcoder_axi_multirate_sharing/DUT/Subsystem')

Resource sharing can be applied to this part of the design. To see the parameters saved on this
Subsystem, run hdlsaveparams.

hdlsaveparams('hdlcoder_axi_multirate_sharing/DUT/Subsystem')

%% Set Model 'hdlcoder_axi_multirate_sharing' HDL parameters
hdlset_param('hdlcoder_axi_multirate_sharing', 'HDLSubsystem', 'hdlcoder_axi_multirate_sharing/DUT');
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hdlset_param('hdlcoder_axi_multirate_sharing', 'ReferenceDesign', 'Default system with AXI4-Stream interface');
hdlset_param('hdlcoder_axi_multirate_sharing', 'ResetType', 'Synchronous');
hdlset_param('hdlcoder_axi_multirate_sharing', 'SynthesisTool', 'Xilinx Vivado');
hdlset_param('hdlcoder_axi_multirate_sharing', 'SynthesisToolChipFamily', 'Zynq');
hdlset_param('hdlcoder_axi_multirate_sharing', 'SynthesisToolDeviceName', 'xc7z020');
hdlset_param('hdlcoder_axi_multirate_sharing', 'SynthesisToolPackageName', 'clg484');
hdlset_param('hdlcoder_axi_multirate_sharing', 'SynthesisToolSpeedValue', '-1');
hdlset_param('hdlcoder_axi_multirate_sharing', 'TargetDirectory', 'hdl_prj\hdlsrc');
hdlset_param('hdlcoder_axi_multirate_sharing', 'TargetFrequency', 50);
hdlset_param('hdlcoder_axi_multirate_sharing', 'TargetPlatform', 'ZedBoard');
hdlset_param('hdlcoder_axi_multirate_sharing', 'Workflow', 'IP Core Generation');

% Set SubSystem HDL parameters
hdlset_param('hdlcoder_axi_multirate_sharing/DUT/Subsystem', 'SharingFactor', 3);

You can map the DUT interface ports to AXI4-Stream Master or AXI4-Stream Slave interfaces. This
figure shows an example of the target platform interface mapping for this model.

See also Model Design for AXI4-Stream Interface Generation.

See Also

More About
• “Hardware-Software Co-Design Workflow for SoC Platforms” on page 41-2
• “Custom IP Core Generation” on page 40-4
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Board and Reference Design Registration System

In this section...
“Board, IP Core, and Reference Design Definitions” on page 41-43
“Board Registration Files” on page 41-43
“Reference Design Registration Files” on page 41-44
“Predefined Board and Reference Design Examples” on page 41-45

You can define custom boards and custom reference designs so that they are available as target
hardware options in the SoC workflow. Custom boards and custom reference designs use the same
system that HDL Coder uses for predefined board and reference design targets.

Board, IP Core, and Reference Design Definitions
A reference design is the embedded system design that your generated IP core integrates with. The
board is the SoC platform.

For a custom board or custom reference design, you can define different kinds of interfaces:

• AXI interface: an interface between your generated IP core and an AXI4 or AXI4-Lite interface.
• External IO interface: an interface between your generated IP core and an external interface.
• Internal IO interface: an interface between your generated IP core and another IP core in the

reference design.

After you integrate your reference design and IP core in an embedded system design project, you can
program the board with the embedded system design.

Board Registration Files
To define and register a board, you must have a board definition, a board plugin, and a board
registration file.
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Board Definition

A board definition is a file that defines the characteristics of a board. You can define more than one
custom board.

Board Plugin

A board plugin is a package folder that contains:

• The board definition.
• All reference design plugins that are associated with the board.

A board plugin has one board definition, but can have multiple reference designs.

Board Registration File

A board registration file is always named hdlcoder_board_customization.m, and contains a list
of board plugins. There can be multiple board registration files on your MATLAB path, but a board
plugin cannot be listed in more than one board registration file.

When the HDL Workflow Advisor opens, it searches the MATLAB path for files named
hdlcoder_board_customization.m, and uses the information to populate the target board
options. Interfaces you add and define for the board appear as options in the Target Platform
Interface dropdown list.

Reference Design Registration Files
To define and register a reference design, you must have a reference design definition, a reference
design plugin, and a reference design registration file.

Reference Design Definition

A reference design definition is a file that defines the characteristics of a reference design, including
its associated board and interfaces. You can define multiple custom reference designs per board.

Reference Design Plugin

A reference design plugin is a package folder that contains:

• The reference design definition.
• Files that are part of the embedded system design project, and are specific to your third-party

synthesis tool, including Tcl, project, and design files.

A reference design plugin has one reference design definition and is associated with one board.

Reference Design Registration File

A reference design registration file is always named hdlcoder_ref_design_customization.m,
and contains a list of reference design plugins for a specific board. There can be multiple reference
design registration files for a specific board on your MATLAB path, but a reference design plugin
cannot be listed in more than one reference design plugin registration file.

When the HDL Workflow Advisor opens, it searches the MATLAB path for files named
hdlcoder_ref_design_customization.m, and uses the information to populate the reference
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design options for each board. Interfaces you add and define for the reference design appear as
options in the Target Platform Interface dropdown list.

Predefined Board and Reference Design Examples
For examples of working board and reference design definitions, refer to the predefined Altera SoC
and Xilinx Zynq board plugins that include predefined reference design plugins:

• support_package_installation_folder/toolbox/hdlcoder/supportpackages/
zynq7000/+ZedBoard/

• support_package_installation_folder/toolbox/hdlcoder/supportpackages/
zynq7000/+ZynqZC702/

• support_package_installation_folder/toolbox/hdlcoder/supportpackages/
alterasoc/+AlteraCycloneV/

• support_package_installation_folder/toolbox/hdlcoder/supportpackages/
alterasoc/+ArrowSoCKit/

See Also
hdlcoder.Board | hdlcoder.ReferenceDesign

Related Examples
• “Register a Custom Board” on page 41-46
• “Register a Custom Reference Design” on page 41-49
• “Define Custom Board and Reference Design for Zynq Workflow”
• “Define Custom Board and Reference Design for Intel SoC Workflow”
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Register a Custom Board
To register a custom board, you must:

1 Define a board.
2 Create a board plugin.
3 Define a board registration function, or add the new board plugin to an existing board

registration function.

In this section...
“Define a Board” on page 41-46
“Create a Board Plugin” on page 41-47
“Define a Board Registration Function” on page 41-47

Define a Board
Before you begin, have the board documentation at hand so you can refer to the details of the board.

Requirements

A board definition must be:

• A MATLAB function that returns an hdlcoder.Board object.

The board definition function can have any name.
• In its board plugin folder.

How To Define A Board

1 Create a new file that defines a MATLAB function with any name.
2 In the MATLAB function, create an hdlcoder.Board object and specify its properties and

interfaces according the characteristics of your custom board.
3 Optionally, to check that the definition is complete, run the validateBoard method.

For example, the following code defines a board:

function hB = plugin_board()
% Board definition

% Construct board object
hB = hdlcoder.Board;

hB.BoardName    = 'Digilent Zynq ZyBo';

% FPGA device information
hB.FPGAVendor   = 'Xilinx';
hB.FPGAFamily   = 'Zynq';
hB.FPGADevice   = 'xc7z010';
hB.FPGAPackage  = 'clg400';
hB.FPGASpeed    = '-2';

% Tool information
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hB.SupportedTool = {'Xilinx Vivado'};

% FPGA JTAG chain position
hB.JTAGChainPosition = 2;

%% Add interfaces
% Standard "External Port" interface
hB.addExternalPortInterface( ...
    'IOPadConstraint', {'IOSTANDARD = LVCMOS33'});

Create a Board Plugin
Requirements

A board plugin:

• Must be a package folder that contains the board definition file.

A package folder has a + prefix before the folder name. For example, the board plugin can be a
folder named +ZedBoard.

• Must be on the MATLAB path.
• Can contain one or more reference design plugins.

How To Create a Board Plugin

1 Create a folder that has a name with a + prefix.
2 Save your board definition file to the folder.
3 Add the folder to your MATLAB path.

Define a Board Registration Function
Requirements

A board registration function:

• Must be named hdlcoder_board_customization.m.
• Returns a list of board plugins, specified as a cell array of character vectors.
• Must be on the MATLAB path.

How To Define a Board Registration Function

1 Create a file named hdlcoder_board_customization.m and save it anywhere on the MATLAB
path.

2 In hdlcoder_board_customization.m, define a function that returns a list of board plugins
as a cell array of character vectors.

For example, the following code defines a board registration function.

function r = hdlcoder_board_customization
% Board plugin registration files
% Format: % board_folder.board_definition_function
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r = {'ZyboRegistration.plugin_board'};

end

See Also
hdlcoder.Board | hdlcoder.ReferenceDesign

Related Examples
• “Register a Custom Reference Design” on page 41-49
• “Define Custom Board and Reference Design for Zynq Workflow”
• “Define Custom Board and Reference Design for Intel SoC Workflow”

More About
• “Board and Reference Design Registration System” on page 41-43
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Register a Custom Reference Design
In this section...
“Define a Reference Design” on page 41-49
“Create a Reference Design Plugin” on page 41-50
“Define a Reference Design Registration Function” on page 41-50

To register a custom reference design:

1 Define a reference design.
2 Create a reference design plugin.
3 Define a reference design registration function, or add the new reference design plugin to an

existing reference design registration function.

Define a Reference Design
A reference design definition must be a MATLAB function that returns an
hdlcoder.ReferenceDesign object. Create the reference design definition function in the
reference design plugin folder. You can use any name for the reference design definition function.

To create a reference design definition:

1 Create a new file that defines a MATLAB function with any name.
2 In the MATLAB function, create an hdlcoder.ReferenceDesign object and specify its

properties and interfaces according to the characteristics of your embedded system design.
3 If you want to check that the definition is complete, run the validateReferenceDesign

method.

This MATLAB function defines a custom reference design:

function hRD = plugin_rd()
% Reference design definition

% Construct reference design object
hRD = hdlcoder.ReferenceDesign('SynthesisTool', 'Xilinx Vivado');

hRD.ReferenceDesignName = 'Demo system (Vivado 2014.2)';
hRD.BoardName = 'Digilent Zynq ZyBo';

% Tool information
% It is recommended to use a tool version that is compatible with the supported tool
% version. If you choose a different tool version, it is possible that HDL Coder is
% unable to create the reference design project for IP core integration.
hRD.SupportedToolVersion = {'2015.4'};

%% Add custom design files
% add custom Vivado design
hRD.addCustomVivadoDesign( ...
    'CustomBlockDesignTcl', 'design_led.tcl');

hRD.CustomFiles = {'ZYBO_zynq_def.xml'};
%% Add interfaces
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% add clock interface
hRD.addClockInterface( ...
    'ClockConnection',   'clk_wiz_0/clk_out1', ...
    'ResetConnection',   'proc_sys_reset_0/peripheral_aresetn');

% add AXI4 and AXI4-Lite slave interfaces
hRD.addAXI4SlaveInterface( ...
    'InterfaceConnection', 'axi_interconnect_0/M00_AXI', ...
    'BaseAddress',         '0x40010000', ...
    'MasterAddressSpace',  'processing_system7_0/Data');

By default, HDL Coder generates an IP core with the default settings and integrates it into the
reference design project. To customize these default settings, use the properties in the
hdlcoder.ReferenceDesign object to define custom parameters and to register the function
handle of the custom callback functions. For more information, see “Define Custom Parameters and
Callback Functions for Custom Reference Design” on page 41-52.

Create a Reference Design Plugin
A reference design plugin is a package folder that you define on the MATLAB path. The folder
contains the board definition file and any custom callback functions.

To create a reference design plugin:

1 In the board plugin folder for the associated board, create a new folder that has a name with a +
prefix.

For example, the reference design plugin can be a folder named +vivado_base_ref_design.
2 In the new folder, save your reference design definition file and any custom callback functions

that you create.
3 In the new folder, save any files that are required by the embedded system design project, and

are specific to your third-party synthesis tool, including Tcl, project, and design files.
4 Add the folder to your MATLAB path.

Define a Reference Design Registration Function
A reference design registration function contains a list of reference design functions and the
associated board name. You must name the function hdlcoder_ref_design_customization.m.
When the HDL Workflow Advisor opens, it searches the MATLAB path for files named
hdlcoder_ref_design_customization.m, and uses the information to populate the reference
design options for each board.

To define a reference design registration function:

1 Create a file named hdlcoder_ref_design_customization.m and save it anywhere on the
MATLAB path.

2 In hdlcoder_board_customization.m, define a function that returns the associated board
name, specified as a character vector, and a list of reference design plugins, specified as a cell
array of character vectors.

For example, the following code defines a reference design registration function.

function [rd, boardName] = hdlcoder_ref_design_customization
% Reference design plugin registration file
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rd = {'ZyBoRegistration.Vivado2015_4.plugin_rd', ...
     };

boardName = 'Digilent Zynq ZyBo';

end

The reference design registration function returns the associated board name, specified as a
character vector, and a list of reference design plugins, specified as a cell array of character vectors.

See Also
hdlcoder.Board | hdlcoder.ReferenceDesign

Related Examples
• “Register a Custom Board” on page 41-46
• “Define Custom Parameters and Callback Functions for Custom Reference Design” on page 41-

52
• “Define Custom Board and Reference Design for Zynq Workflow”
• “Define Custom Board and Reference Design for Intel SoC Workflow”

More About
• “Board and Reference Design Registration System” on page 41-43

 Register a Custom Reference Design

41-51



Define Custom Parameters and Callback Functions for Custom
Reference Design

In this section...
“Define Custom Parameters and Register Callback Function Handle” on page 41-52
“Define Custom Callback Functions” on page 41-56

When you define your custom reference design, you can optionally use the properties in the
hdlcoder.ReferenceDesign object to define custom parameters and callback functions.

Define Custom Parameters and Register Callback Function Handle
This MATLAB code shows how to define custom parameters and register the function handle of the
custom callback functions in the reference design definition function.
function hRD = plugin_rd()
% Reference design definition

% Construct reference design object
hRD = hdlcoder.ReferenceDesign('SynthesisTool', 'Xilinx Vivado');
hRD.ReferenceDesignName = 'My Reference Design';
hRD.BoardName = 'ZedBoard';

% Tool information
hRD.SupportedToolVersion = {'2018.3'};

%% Add custom design files
% ...
% ...

%% Add optional custom parameters by using addParameter property.
% Specify custom 'DUT path' and 'Channel Mapping' parameters. 
% The parameters get populated in the 'Set Target Reference Design' 
% task of the HDL Workflow Advisor.
hRD.addParameter( ...
    'ParameterID',   'DutPath', ...
    'DisplayName',   'Dut Path', ...
    'DefaultValue',  'Rx', ...
    'ParameterType',  hdlcoder.ParameterType.Dropdown, ...
    'Choice',       {'Rx', 'Tx'});
hRD.addParameter( ...
    'ParameterID',   'ChannelMapping', ...
    'DisplayName',   'Channel Mapping', ...
    'DefaultValue',  '1');

%% Enable JTAG MATLAB as AXI Master IP Insertion. The IP
% insertion setting is visible in the 'Set Target Reference Design'
% task of the HDL Workflow Advisor. By default, the
% AddJTAGMATLABasAXIMasterParameter property is set to 'true'.
hRD.AddJTAGMATLABasAXIMasterParameter = 'true';
hRD.JTAGMATLABasAXIMasterDefaultValue = 'on';

%% Add custom callback functions. These are optional.
% With the callback functions, you can enable custom 
% validations, customize the project creation, software 
% interface model generation, and the bistream build.
% Register the function handle of these callback functions.

% Specify an optional callback for 'Set Target Reference Design' 
% task in Workflow Advisor. Use property name 
% 'PostTargetReferenceDesignFcn'.
hRD.PostTargetReferenceDesignFcn = ...
    @my_reference_design.callback_PostTargetReferenceDesign;
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% Specify an optional callback for 'Set Target Interface' task in Workflow Advisor.
% Use the property name 'PostTargetInterfaceFcn'.
hRD.PostTargetInterfaceFcn     = ... 
    @my_reference_design.callback_PostTargetInterface;

% Specify an optional callback for 'Create Project' task
% Use the property name 'PostCreateProjectFcn' for the ref design object.
hRD.PostCreateProjectFcn       = ... 
    @my_reference_design.callback_PostCreateProject;

% Specify an optional callback for 'Generate Software Interface Model' task
% Use the property name 'PostSWInterfaceFcn' for the ref design object.
hRD.PostSWInterfaceFcn         = ...
    @my_reference_design.callback_PostSWInterface;

% Specify an optional callback for 'Build FPGA Bitstream' task
% Use the property name 'PostBuildBitstreamFcn' for the ref design object.
hRD.PostBuildBitstreamFcn      = ...
    @my_reference_design.callback_PostBuildBitstream;

% Specify an optional callback for 'Program Target Device'
% task to use a custom programming method.
hRD.CallbackCustomProgrammingMethod = ...
    @my_reference_design.callback_CustomProgrammingMethod;

%% Add interfaces
% ...
% ...

Define Custom Parameters

With the addParameter method of the hdlcoder.ReferenceDesign class, you can define custom
parameters. In the preceding example code, the reference design defines two custom parameters,
DUT Path and Channel Mapping. To learn more about the addParameter method, see
addParameter.

Specify Insertion of JTAG MATLAB as AXI Master IP

By default, HDL Coder adds a parameter Insert JTAG MATLAB as AXI Master (HDL Verifier
Required) to all reference designs. When you set this parameter to on, the code generator
automatically inserts the JTAG MATLAB AXI Master IP into your reference design. By using the JTAG
MATLAB AXI Master IP, you can easily access the AXI registers in the generated DUT IP core on an
FPGA board from MATLAB through the JTAG connection. See also “Set Up for MATLAB AXI Master”
(HDL Verifier).

To use this capability, you must have the HDL Verifier hardware support packages installed and
downloaded. See “Download FPGA Board Support Package” (HDL Verifier).

The code generator adjusts the AXI4 Slave ID Width to accommodate the MATLAB as AXI Master IP
connection. After you generate the HDL IP core and create the reference design project, you can
open the Vivado block design to see the JTAG MATLAB AXI Master IP inserted in the reference
design.

In the previous example code, the reference design defines the
AddJTAGMATLABasAXIMasterParameter and JTAGMATLABasAXIMasterDefaultValue
properties of the hdlcoder.ReferenceDesign class. These properties control the default behavior
of the Insert JTAG MATLAB as AXI Master (HDL Verifier Required) setting in the Set Target
Reference Design task of the HDL Workflow Advisor. If you do not specify any of these properties in
the hdlcoder.ReferenceDesign class, the Insert JTAG MATLAB as AXI Master (HDL Verifier
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Required) parameter is displayed in the Set Target Reference Design task and the value is set to
off. This example code illustrates the default behavior.

%% Default behavior of Insert JTAG as AXI Master option

% This parameter controls visibility of the option in 
% 'Set Target Reference Design Task' of HDL Workflow Advisor
% By default, the parameter value is set to 'true',
% which means that the option is displayed in the UI. If
% you do not want the parameter to be displayed, set this
% value to 'false'.
hRD.AddJTAGMATLABasAXIMasterParameter = 'true';

% This parameter controls the value of the option in the
% the 'Set Target Reference Design Task' task. By default,
% the value is 'off', which means that the parameter is
% displayed in the task and the value is off. To enable
% automatic insertion of JTAG AXI Master IP in the reference
% design, set this value to 'on'. In that case, the 
% AddJTAGMATLABasAXIMasterParameter must be set to 'true'.
hRD.JTAGMATLABasAXIMasterDefaultValue = 'off';

For examples, see:

• Using JTAG MATLAB as AXI Master to control the HDL Coder IP Core
• “”

Run IP Core Generation Workflow

When you open the HDL Workflow Advisor, HDL Coder populates the Set Target Reference Design
task with the reference design name, tool version, custom parameters that you specified, and the
Insert JTAG MATLAB as AXI Master (HDL Verifier Required) option set to on.
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HDL Coder then passes these parameter values to the callback functions in the input structure.

If your synthesis tool is Xilinx Vivado, HDL Coder sets the reference design parameter values to
variables. The variables are then input to the block design Tcl file. This code snippet is an example
from the reference design project creation Tcl file.

update_ip_catalog
set DutPath {Rx}
set ChannelMapping {1}
source vivado_custom_block_design.tcl

The code shows how HDL Coder sets the reference design parameters before sourcing the custom
block design Tcl file.

Register Callback Function Handles

In the reference design definition, you can register the function handle to reference the custom
callback functions. You then can:

• Enable custom validations.
• Customize the reference design dynamically.
• Customize the reference design project creation settings.
• Change the generated software interface model.
• Customize the FPGA bitstream build process.
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• Specify custom FPGA programming method.

With the hdlcoder.ReferenceDesign class, you can define callback property names. The callback
properties have a naming convention. The callback functions can have any name. In the HDL
Workflow Advisor, you can define callback functions to customize these tasks.

Workflow
Advisor Task

Callback Property
Name

Functionality

Set Target
Reference Design

• CustomizeRefer
enceDesignFcn

• PostTargetRefe
renceDesignFcn

• CustomizeReferenceDesignFcn enables
customization of the reference design dynamically. By
using this callback function, you can customize the
block design Tcl file, reference design interfaces,
reference design interface properties, and IP
repositories in your reference design. See “Customize
Reference Design Dynamically Based on Reference
Design Parameters” on page 41-58.

• PostTargetReferenceDesignFcn enables custom
validations. For an example that shows how you can
validate that the Reset type is Synchronous, see
PostTargetReferenceDesignFcn.

Set Target
Interface

PostTargetInterfa
ceFcn

Enable custom validations. For an example that shows
how you can validate not choosing a certain interface for
a certain custom parameter setting, see
PostTargetInterfaceFcn.

Create Project PostCreateProject
Fcn

Specify custom settings when HDL Coder creates the
project. For an example, see PostCreateProjectFcn.

Generate
Software
Interface Model

PostSWInterfaceFc
n

Change the generated software interface model. For an
example, see PostSWInterfaceFcn.

Build FPGA
Bitstream

PostBuildBitstrea
mFcn

Specify custom settings when you build the FPGA
bitstream. For an example, see
PostBuildBitstreamFcn.

Program Target
Device

CallbackCustomPro
grammingMethod

Specify a custom FPGA programming method. For an
example, see CallbackCustomProgrammingMethod.

Define Custom Callback Functions
1 For each of the callback function that you want HDL Coder to execute after running a task,

create a file that defines a MATLAB function with any name.
2 Make sure that the callback function has the documented input and output arguments.
3 Verify that the functions are accessible from the MATLAB path.
4 Register the function handle of the callback functions in the reference design definition function.
5 Follow the naming conventions for the callback property names.

To learn more about these callback functions, see hdlcoder.ReferenceDesign.

See Also
hdlcoder.Board | hdlcoder.ReferenceDesign
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Related Examples
• “Register a Custom Board” on page 41-46
• “Register a Custom Reference Design” on page 41-49
• “Define Custom Board and Reference Design for Zynq Workflow”
• “Define Custom Board and Reference Design for Intel SoC Workflow”

More About
• “Board and Reference Design Registration System” on page 41-43
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Customize Reference Design Dynamically Based on Reference
Design Parameters

In this section...
“Why Customize the Reference Design” on page 41-58
“How Reference Design Customization Works” on page 41-58
“Customizable Reference Design Parameters” on page 41-59
“Example: Create Master Only or Slave Only or Both Slave and Master Reference Designs” on page
41-60

When you define your own custom reference design, you can dynamically customize the reference
design by using the CustomizeReferenceDesignFcn method of the
hdlcoder.ReferenceDesign class.

Why Customize the Reference Design
By customizing the reference design parameters, instead of maintaining separate reference designs
that have different interface choices, data widths, or I/O plugins, create one reference design that has
different interface choices or data widths as parameters. You can then use the
CustomizeReferenceDesignFcn method to reference the callback function that has different
choices for interfaces or data widths.

For example, instead of creating separate reference designs that have different data widths for the
interfaces, you can parameterize the data width and then create a reference design parameter. When
you run the IP Core Generation workflow, you can use the parameter to select the data width that
you want to use. Similarly, instead of using multiple reference designs, you can create one reference
design that has only AXI4-Stream Master or only AXI4-Stream Slave or both AXI4-Stream Master and
AXI4-Stream Slave interfaces.

How Reference Design Customization Works
To define the callback function:

1 In the plugin_rd file, define the reference design parameters you want to customize by using
the addParameter method.

2 Create a MATLAB file that defines the callback function. You can use any arbitrary name for the
callback function.

3 Save the callback function in the same folder as the plugin_rd.m file.
4 Register the function handle of the callback function in the reference design definition

plugin_rd file by using the CustomizeReferenceDesignFcn method.

To use the different reference design customizations:

1 Open the HDL Workflow Advisor. In the Set Target Device and Synthesis Tool task, select IP
Core Generation as the Target workflow and then select the target board for which you
created your own custom reference design as the Target platform.

2 In the Set Target Reference Design task, when you select the custom reference design that
you want to customize for the target board, HDL Coder populates the reference design
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parameters. Depending on the parameter choices such as the interface types you specify, the
callback function is evaluated. Run this task.

3 Select the Set Target Interface task. Depending on the parameter you selected in the previous
step, the target interface selection is populated in the Target platform interface table.

Customizable Reference Design Parameters
In the callback function, you can customize these reference design parameters. Do not specify these
parameters in the plugin_rd file.

• Block design Tcl file
% ...

% if ~isempty(ParamValue)
    hRD.addCustomVivadoDesign( ...
            'CustomBlockDesignTcl', 'system_top.tcl', ...
            'VivadoBoardPart',      'xilinx.com:zc706:part0:1.0'};

% ...

• Reference design interfaces and reference design interface properties

For example, you can parameterize the data width of the AXI4-Stream Master Channel. In this
case, use the addAXI4StreamInterface method in the callback function instead of the
plugin_rd file.

% ...

% Add AXI4-Stream interface by parameterizing data width
DataWidth = hRD.getParamValue(paramValue)
                 
if ~isempty(DataWidth)
   hRD.addAXI4StreamInterface( 
    'MasterChannelEnable',     'true', ...
    'SlaveChannelEnable',      'true', ...
    'MasterChannelConnection', 'ByPass_0.AXI4_Stream_Slave', ...
    'SlaveChannelConnection',  'ByPass_0.AXI4_Stream_Master', ...
    'MasterChannelDataWidth',   DataWidth, ...
    'SlaveChannelDataWidth',    DataWidth);
end

% ...

• IP repositories

In the callback function, you must specify the block design Tcl file when you add IP repositories.
% ...

%% Add IP Repository
hRD.addIPRepository(...
    'IPListFunction', 'mathworks.hdlcoder.vivado.hdlcoder_video_iplist',
         'NotExistMessage', 'IP repository not found');

%% Add custom design files
hRD.addCustomVivadoDesign( ...
    'CustomBlockDesignTcl', 'system_top.tcl', ...
    'VivadoBoardPart',      'em.avnet.com:zed:part0:1.0');

% ...

Note You cannot modify the reference design name, board name, and supported tool versions in the
callback function. These parameters are used in the Set Target Device and Synthesis Tool task
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before the callback function is evaluated when the target reference design is selected in the Set
Target Reference Design task.

Example: Create Master Only or Slave Only or Both Slave and Master
Reference Designs
Instead of using multiple reference designs, you can create one reference design that has only AXI4-
Stream Master or only AXI4-Stream Slave or both AXI4-Stream Master and AXI4-Stream Slave
interfaces. This example shows how you can customize the AXI4-Stream interface channels you want
to use when targeting your own reference design for the Xilinx Zynq ZC706 evaluation kit.

This code shows the reference design parameter and interface choices for the reference design
my_reference_design specified by using the addParameter method in the plugin_rd file. The
CustomizeReferenceDesignFcn method references a callback function that has the name
customcallback_axistreamchannel.
function hRD = plugin_rd()
% Reference design definition

%   Copyright 2017-2019 The MathWorks, Inc.

% Construct reference design object
hRD = hdlcoder.ReferenceDesign('SynthesisTool', 'Xilinx Vivado');

hRD.ReferenceDesignName = 'Vivado Custom Reference Design';
hRD.BoardName = 'Xilinx Zynq ZC706 evaluation kit';

% Tool information
hRD.SupportedToolVersion = {'2019.1'}; 

% ...
% ...

% Parameter For  calling AXI4 Master 
interface from Callback function
hRD.addParameter ...
('ParameterID'    ,  'stream_channel', ...
 'DisplayName'    ,  'Stream Channel', ...
 'DefaultValue'   ,  'Both Master and Slave',...
 'ParameterType'  ,   hdlcoder.ParameterType.Dropdown, ...
 'Choice'         ,   {'Both Master and Slave','Master Only','Slave Only'});

% Reference the callback function.
hRD.CustomizeReferenceDesignFcn = @my_reference_design.customcallback_axistreamchannel;

% ...
 

When you create the callback function, pass the infoStruct argument to the function. The
argument contains the reference design and board information in a structure format. This code
shows the callback function customcallback_axistreamchannel that has the AXI4-Stream
Master or Slave Channels or both channels specified by using the addAXI4StreamInterface
method.
% Control AXI Master or Slave channel selection by using callback function

function customcallback_axistreamchannel(infoStruct)
%% Reference design callback run at the end of the task Set Target Reference Design
%
% infoStruct: information in structure format
% infoStruct.ReferenceDesignObject: current reference design registration object
% infoStruct.BoardObject: current board registration object
% infoStruct.ParameterStruct: custom parameters of the current reference design, in struct format
% infoStruct.HDLModelDutPath: the block path to the HDL DUT subsystem
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% infoStruct.ReferenceDesignToolVersion: Reference design Tool Version set in 1.2 Task

paramStruct = infoStruct.ParameterStruct;

if ~isempty(paramStruct)
    paramIDCell = fieldnames(paramStruct);
    paramValue = '';
    for ii = 1:length(paramIDCell)
        paramID = paramIDCell(ii);
        if strcmp(paramID,'Both Master and Slave')
            paramValue = paramStruct.paramID;
            break;
        elseif strcmp(paramID,'Master Only')
            paramValue = paramStruct.paramID;
            break;
        elseif strcmp(paramID,'Slave Only')
            paramValue = paramStruct.paramID;
            break;
        end
    end
end
interface_type = str2double(paramValue);

if ~isempty(interface_type)

    if strcmp(interface_type, 'Both Master and Slave')

        % add custom vivado design
        hRD.addCustomVivadoDesign( ...
            'CustomBlockDesignTcl', 'system_top.tcl', ...
            'VivadoBoardPart',      'xilinx.com:zc706:part0:1.0');

        hRD.addAXI4StreamInterface( ...
            'MasterChannelEnable',      'true', ...
            'SlaveChannelEnable',       'true', ...
            'MasterChannelConnection',  'axi_dma_s2mm/S_AXIS_S2MM', ...
            'SlaveChannelConnection',   'axi_dma_mm2s/M_AXIS_MM2S', ...
            'MasterChannelDataWidth',   32, ...
            'SlaveChannelDataWidth',    32);

    elseif strcmp(interface_type, 'Master Only')

        % add custom vivado design
        hRD.addCustomVivadoDesign( ...
            'CustomBlockDesignTcl', 'system_top.tcl', ...
            'VivadoBoardPart',      'xilinx.com:zc706:part0:1.0');

        hRD.addAXI4StreamInterface( ...
            'MasterChannelEnable',      true, ...
            'MasterChannelConnection',  'axi_dma_s2mm/S_AXIS_S2MM', ...
            'MasterChannelDataWidth',   32);

    % ...

    

Save the callback function in the same folder as the plugin_rd file.
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When you run the IP Core Generation workflow with Xilinx Zynq ZC706 evaluation kit
as the Target platform, you see the parameter Stream Channel displayed in the Set Target
Reference Design task.

You can specify the reference design type you want to use and then run the workflow to specify the
target platform interfaces and then generate the HDL IP core and then integrate the IP core into the
reference design.

See Also
hdlcoder.Board | hdlcoder.ReferenceDesign

Related Examples
• “Register a Custom Board” on page 41-46
• “Register a Custom Reference Design” on page 41-49
• “Define Custom Board and Reference Design for Zynq Workflow”
• “Define Custom Board and Reference Design for Intel SoC Workflow”

More About
• “Board and Reference Design Registration System” on page 41-43
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Define and Add IP Repository to Custom Reference Design
In this section...
“Create an IP Repository Folder Structure” on page 41-63
“Define IP List Function” on page 41-64
“Add IP List Function to Reference Design Project” on page 41-65

When you create your custom reference design, you might require custom IP modules that do not
come with Altera Qsys or Xilinx Vivado. To use custom IP modules, create your own IP repository
folder that contains IP module subfolders. The IP Core Generation workflow then uses these
custom IP modules when creating the reference design project. You can create multiple IP
repositories and add all or some of the IP modules in each repository to your custom reference design
project. You can also reuse and share IP repositories across multiple reference designs.

Create an IP Repository Folder Structure
Create an IP repository folder anywhere on the MATLAB path. This figure shows a typical IP
repository folder structure.

When you create the folder structure, use the naming convention +(company)/+(product)/+
(tool). In this example, the folder structure is +(mathworks)/+(hdlcoder)/+(vivado). The
folder +vivado acts as the IP repository. This folder contains subfolders corresponding to IP modules
such as AXI4StoHDMI and HDMItoAXIS. The folder also contains a hdlcoder_video_iplist
MATLAB function. Using this function, specify the IP modules to add to the reference design.

The same repository folder can have multiple MATLAB functions. This figure shows two MATLAB
functions, hdlcoder_video1_iplist and hdlcoder_video2_list, in the +vivado folder. The
functions can share the same IP modules or point to different IP modules in the repository.
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Note If your synthesis tool is Xilinx Vivado, the IP modules in the repository folder can be in zip file
format.

Define IP List Function
Create a MATLAB function that specifies the IP modules to add to the reference design. Save this
function in the IP repository folder. For the function name, use the naming convention
hdlcoder_<specific_use>_iplist. This example uses hdlcoder_video_iplist as the
function name because it targets video applications. Using this function, specify whether you want to
add all or some of the IP modules in the repository to the reference design project. To add all IP
modules, use an empty cell array for ipList. This MATLAB code shows how to add all IP modules in
the repository to the reference design.

function [ ipList ] = hdlcoder_video_iplist(  )
% All IP modules in the repository folder.

ipList = {};

To add some of the IP modules that are in the folder, specify the IP modules as a cell array of
character vectors. This MATLAB code specifies the AXI4StoHDMI IP and the HDMItoAXIS IP as the
IP modules to add to your custom reference design.

function [ ipList ] = hdlcoder_video_iplist(  )
% AXI4StoHDMI and HDMItoAXIS IP in the repository folder.

ipList = {'AXI4StoHDMI','HDMItoAXIS'};
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Add IP List Function to Reference Design Project
Using the addIPRepository method of the hdlcoder.ReferenceDesign class, add the IP list
function to your custom reference design. This example reference design adds
hdlcoder_video_iplist to the custom reference design My Reference Design.

function hRD = plugin_rd()
% Reference design definition

% Construct reference design object
hRD = hdlcoder.ReferenceDesign('SynthesisTool', 'Xilinx Vivado');
hRD.ReferenceDesignName = 'My Reference Design';
hRD.BoardName = 'ZedBoard'

% Tool information
hRD.SupportedToolVersion = {'2016.2'};

%% Add custom design files
hRD.addCustomVivadoDesign( ...
    'CustomBlockDesignTcl', 'system_top.tcl', ...
    'VivadoBoardPart',      'em.avnet.com:zed:part0:1.0');

% Add IP Repository
hRD.addIPRepository(...
    'IPListFunction', 'mathworks.hdlcoder.vivado.hdlcoder_video_iplist',
         'NotExistMessage', 'IP repository not found');

% ...
% ...

To use the IP modules when the code generator creates the project, open the HDL Workflow Advisor,
and run the IP Core Generation workflow to the Create Project task. After running this task, you
can see the IP module subfolders in the repository copied over to the ipcore folder of the project.
The CustomBlockDesignTcl can then use these IP modules.

See Also
hdlcoder.Board | hdlcoder.ReferenceDesign

Related Examples
• “Define Custom Board and Reference Design for Zynq Workflow”
• “Define Custom Board and Reference Design for Intel SoC Workflow”

More About
• “Board and Reference Design Registration System” on page 41-43
• “Register a Custom Reference Design” on page 41-49
• “Customize Reference Design Dynamically Based on Reference Design Parameters” on page 41-

58
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FPGA Programming and Configuration
This example shows how to implement a Simulink® algorithm on a Speedgoat FPGA I/O board by
using HDL Workflow Advisor to:

1 Specify an FPGA board and its I/O interface.
2 Synthesize the Simulink algorithm for FPGA programming.
3 Generate a Simulink® Real-Time™ interface subsystem model.

The interface subsystem model contains blocks to program the FPGA and communicate with the
FPGA I/O board during real-time application execution. You add the generated subsystem to your
Simulink Real-Time domain model.

The entire workflow looks like this figure.

This example uses the Speedgoat IO331. You can use any FPGA I/O module supported by Simulink
Real-Time and HDL Coder that meets the speed, size, and pinout requirements of the model.

Requirements and Preconditions

HDL Coder™

Before you start, complete an FPGA subsystem plan.

For the IO331 board, HDL Workflow Advisor requires the Xilinx® ISE toolset. To install this toolset, in
the Command Window, type:

41 Target SoC Platforms and Speedgoat Boards

41-66



hdlsetuptoolpath('ToolName', 'Xilinx ISE', 'ToolPath', toolpath)

where toolpath is the full path to the synthesis tool executable.

For the toolset requirements of other boards, see Supported Third-Party Tools and Hardware (HDL
Coder).

Step 1. Simulink Domain Model

The Simulink FPGA domain model contains a subsystem (algorithm) to be programmed onto the
FPGA chip. Using this model, you can test your FPGA algorithm in a simulation environment before
you download the algorithm to an FPGA board.

1 Create a Simulink model that contains the algorithm that you want to load onto the FPGA, in this
case a loopback test.

2 Place the algorithm to be programmed on the FPGA inside a Subsystem block. The model can
include other blocks and subsystems for testing. However, one subsystem must contain the FPGA
algorithm.

3 Set or confirm the subsystem inport and outport names and data types. The HDL Coder HDL
Workflow Advisor uses these settings for routing and mapping algorithm signals to I/O connector
channels.

4 Save the model.

This model is your FPGA domain model. It represents the simulation sample rate of the clock on your
FPGA board. For example, the Speedgoat IO331 has an onboard 125 MHz clock. One second of
simulation equals 125e6 iterations of the model.

For an example of an FPGA domain model, see dslrtSGFPGAloopback_fpga. The ServoSystem
subsystem contains the FPGA algorithm.

 FPGA Programming and Configuration

41-67



Step 2. FPGA Target Configuration

This procedure uses the dslrtSGFPGAloopback_fpga example. You must have already created an
FPGA subsystem (algorithm) in an FPGA domain model and developed an FPGA subsystem plan.

1 Open the FPGA domain model dslrtSGFPGAloopback_fpga.
2 In the FPGA model, right-click the FPGA subsystem (ServoSystem). From the context menu,

select HDL Code > HDL Workflow Advisor. The HDL Workflow Advisor dialog box displays
several tasks for the subsystem. Address only your required subset of the tasks.

3 Expand the Set Target folder and select task 1.1 Set Target Device and Synthesis Tool.
4 Set Target Workflow to Simulink Real-Time FPGA I/O.
5 From the Target platform list, select the Speedgoat FPGA I/O board installed in your Speedgoat

target machine, in this case the Speedgoat IO331. Check that HDL Workflow advisor sets the
synthesis tool to the Xilinx® ISE Design Suite.

6 Click Run This Task.

Step 3. FPGA Target Interface Configuration

You must have already configured the FPGA target.
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1 In the Set Target folder, select task 1.2 Set Target Interface.
2 In the Processor/FPGA synchronization box, select Free running.
3 For signals hwIn and hwOut, in the Target Platform Interfaces column, select LVCMOS I/O

Channel [0:63]. In the Bit Range/Address/FPGA Pin column, enter the channel value for
each signal, or take the defaults.

4 For signals pciRead and pciWrite, in the Target Platform Interfaces column, select PCI
Interface. In the Bit Range/Address/FPGA Pin column, use the automatically generated
values. Do not enter PCI address values.

5 Click Run This Task.

Step 4. FPGA Target Frequency Configuration

You must have already configured the FPGA target interface.

1 In the Set Target folder, select task 1.3 Set Target Frequency (optional). The Set Target
Frequency pane contains fields showing the FPGA input clock frequency (fixed) and the FPGA
system clock frequency. The FPGA system clock frequency defaults to the FPGA input clock
frequency.
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2 To specify a different system clock frequency (for example, 50 MHz), type the new value in the
field FPGA system clock frequency (MHz). For the permitted range for the system clock rate,
see the Speedgoat board characteristics table. The system sometimes sets a value different from
the one you specified.

3 Click Run This Task.

Step 5. Simulink Real-Time Interface Subsystem Generation

This procedure generates an interface subsystem file for the dxpcSGFPGAloopback_fpga example.

Assign distinct names to blocks that contain different HDL code. The name of the interface subsystem
file is derived directly from the block name. If two blocks containing different HDL code have the
same name, the names collide and one of the blocks gets the wrong code.

You must have already configured the FPGA target interface and the required target frequency. If you
have specified vector inports or outports, you must have already selected the Scalarize vector ports
check box. This check box is on the Coding style tab of node Global Settings, under node HDL
Code Generation in the Configuration Parameters dialog box.

1 Expand the Download to Target folder, and right-click task 5.2 Generate Simulink Real-Time
Interface.

2 In this pane, click Run To Selected Task.
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This action:

• Runs the remaining tasks.
• Creates the FPGA bitstream file in the hdlsrc folder. The Simulink Real-Time interface subsystem

references this bitstream file during the build and download process.
• Generates a model named gm_dslrtSGFPGAloopback_fpga_slrt, which contains the Simulink

Real-Time interface subsystem.

Here is an example of the HDL Coder HDL Workflow Advisor after this action.

The generated interface subsystem looks like this figure.
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This generated model contains a masked subsystem with the same name as the subsystem in the
Simulink FPGA domain model. Although the appearance is similar, this subsystem does not contain
the Simulink algorithm. Instead, the algorithm is implemented in an FPGA bitstream. You reference
and load this algorithm into the FPGA from this subsystem.

Step 6. Simulink Real-Time Domain Model

Using the Simulink Real-Time software, transform a Simulink or Stateflow® domain model into a
Simulink Real-Time domain model and execute it on a Speedgoat target machine for real-time testing
applications. After creating a Speedgoat FPGA interface subsystem. You can then include the FPGA
board in your Simulink Real-Time domain model by inserting the interface subsystem.

1 Create a Simulink Real-Time domain model with the functionality that you want to simulate with
the FPGA algorithm. Leave the inports and outports of the FPGA subsystem disconnected.

2 Save the model.

The Simulink Real-Time domain model looks like this figure. See example model
dslrtSGFPGAloopback_slrt.
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Step 7. Simulink Real-Time Interface Subsystem Integration

In the Simulink Real-Time interface subsystem mask, set three parameters:

• Device index
• PCI slot
• Sample time

To integrate the interface subsystem:

1 In the Simulink editor, open gm_dslrtSGFPGAloopback_fpga_slrt.
2 Copy the Simulink Real-Time interface subsystem and paste it into the Simulink Real-Time

domain model.
3 Save or discard gm_dslrtSGFPGAloopback_fpga_slrt. You can recreate it as required using

the HDL Coder HDL Workflow Advisor.
4 In the domain model, connect signals to the inports and outports of the interface subsystem.
5 Set the block parameters according to the FPGA I/O boards in your Speedgoat target machine.

• If you have a single FPGA I/O board, leave the device index and PCI slot at the default values. You
can set the sample time or leave it at –1 for inheritance.

• If you have multiple FPGA I/O boards, give each board a unique device index.
• If you have two or more boards of the same type (for example, two Speedgoat IO331 boards),

specify the PCI slot ([bus, slot]) for each board. Get this information with the
SimulinkRealTime.target.getPCIInfo function.

6 Save the model.

The updated Simulink Real-Time domain model looks like this figure. See example model
dslrtSGFPGAloopback_slrt_wiss.
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Step 8. Real-Time Application Execution

To do this procedure, you must have already created a Simulink Real-Time domain model that
includes a Simulink Real-Time interface subsystem generated from the HDL Coder HDL Workflow
Advisor.

1 Configure the Speedgoat target machine and connect it to the development computer.
2 Build and download the Simulink Real-Time application. The real-time application loads onto the

Speedgoat target machine and the FPGA algorithm bitstream loads onto the FPGA.
3 If you are using I/O lines (channels), confirm that you have connected the lines to the external

hardware under test.

The start and stop of the Simulink Real-Time model controls the start and stop of the FPGA algorithm.
The FPGA algorithm executes at the clock frequency of the FPGA I/ O board, while the real-time
application executes in accordance with the model sample time.

See Also

Related Examples
• “Processor and FPGA Synchronization” on page 40-16
• “IP Core Generation Workflow for Speedgoat I/O Modules” on page 41-98
• “Hardware-Software Co-Design Workflow for SoC Platforms” on page 41-2
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Model Design for AXI4-Stream Video Interface Generation

In this section...
“Streaming Pixel Protocol” on page 41-75
“Protocol Signals and Timing Diagrams” on page 41-75
“Model Data and Control Bus Signals” on page 41-77
“Map DUT Ports to Multiple Channels” on page 41-81
“Model Designs with Multiple Sample Rates” on page 41-81
“Video Porch Insertion Logic” on page 41-81
“Default Video System Reference Design” on page 41-82
“Restrictions” on page 41-83

With the HDL Coder software, you can implement a simplified, streaming pixel protocol in your
model. The software generates an HDL IP core with AXI4-Stream Video interfaces.

Streaming Pixel Protocol
You can use the streaming pixel protocol for AXI4-Stream Video interface mapping. Video algorithms
process data serially and generate video data as a serial stream of pixel data and control signals. To
learn about the streaming pixel protocol, see “Streaming Pixel Interface” (Vision HDL Toolbox).

To generate an IP core with AXI4-Stream Video interfaces, in your DUT interface, implement these
signals:

• Pixel Data
• Pixel Control Bus

The Pixel Control Bus is a bus that has these signals:

• hStart
• hEnd
• vStart
• vEnd
• valid

The signals hStart and hEnd represent the start of an active line and the end of an active line
respectively. The signals vStart and vEnd represent the start of a frame and the end of a frame.

You can optionally model the backpressure signal, Ready, and map it to the AXI4-Stream Video
interface.

Protocol Signals and Timing Diagrams
This figure is a 2–by–3 pixel image. The active image area is the rectangle with a dashed line around
it and the inactive pixels that surround it. The pixels are labeled with their grayscale values.
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Pixel Data and Pixel Control Bus

This figure shows the timing diagram for the Pixel Data and Pixel Control Bus signals that you
model at the DUT interface.

The Pixel Data signal is the primary video signal that is transferred across the AXI4-Stream Video
interface. When the Pixel Data signal is valid, the valid signal is asserted.

The hStart signal becomes high at the start of the active lines. The hEnd signal becomes high at the
end of the active lines.

The vStart signal becomes high at the start of the active frame in the second line. The vEnd signal
becomes high at the end of the active frame in the third line.

Optional Ready Signal

This figure shows the timing diagram for the Pixel Data, the Pixel Control Bus, and the Ready
signal that you model at the DUT interface.
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When you map the DUT ports to an AXI4-Stream Video interface, you can optionally model the
backpressure signal, Ready, and map it to the AXI4-Stream Video interface.

In a Slave interface, with the Ready signal, you can apply back pressure. In a Master interface, with
the Ready signal, you can respond to back pressure.

If you model the Ready signal in your AXI4-Stream Video interfaces, your Master interface must
deassert its valid signal one cycle after the Ready signal is deasserted.

If you do not model the Ready signal, HDL Coder generates the associated backpressure logic.

Model Data and Control Bus Signals
You can model your video algorithm with Pixel Data and Pixel Control Bus signals at the DUT ports
and map the signals to AXI4-Stream Video interfaces. You can optionally model the backpressure
signal, Ready, and map it to the AXI4-Stream Video interface.
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This figure shows an example of a top-level Simulink model with a Video Source input.
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The Frame To Pixels and Pixels To Frame blocks perform the conversion between the video frames
and the Pixel Data and Pixel Control Bus at the DUT interface. To use these blocks, you must have
the Vision HDL Toolbox installed.

See also Frame To Pixels and Pixels To Frame in the Vision HDL Toolbox documentation.

Pixel Data and Pixel Control Bus Modeling

This figure shows how to model the Pixel Data and Pixel Control Bus signals inside the DUT
subsystem.

You can directly connect the valid signal from the Pixel Control Bus to the Enable port. If you do
not have the Vision HDL Toolbox software, replace the Pixel Control Bus Selector and Pixel Control
Bus Creator blocks with the Bus Selector and Bus Creator blocks respectively.

Ready Signal Modeling

The AXI4-Stream Video interfaces in your DUT can optionally include a Ready signal.

For example, you can have a FIFO in your DUT to store some video data before processing the
signals. Use a FIFO Subsystem that contains HDL FIFO blocks to store the Pixel Data and the Pixel
Control Bus signals. To apply the backpressure to the upstream component, model the Ready signal
based on the FIFO Full signal.

This figure shows how to model the Ready signal inside the DUT subsystem.
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The FIFO Subsystem block uses HDL FIFO blocks for the Pixel Data and for the Pixel Control Bus
signals.
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Disable delay balancing for the Ready signal path. If you enable delay balancing, the coder can insert
one or more delays on the Ready signal.

Map DUT Ports to Multiple Channels
When you run the IP Core Generation workflow, you can map multiple DUT ports to AXI4-Stream
Video Master and AXI4-Stream Video Slave channels. The DUT ports mapped to multiple interface
channels must use scalar data type. When you use vector ports, you can map the ports to at most one
AXI4-Stream Video Master channel and one AXI4-Stream Video Slave channel.

To learn more, see“Generate HDL IP Core with Multiple AXI4-Stream and AXI4 Master Interfaces” on
page 41-21.

Model Designs with Multiple Sample Rates
The HDL Coder software supports designs with multiple sample rates when you run the IP Core
Generation workflow. When you map the interface ports to AXI4-Stream Video Master or AXI4-Stream
Video Slave interfaces, to use multiple sample rates, ensure that the DUT ports that map to these
AXI4 interfaces run at the fastest rate of the design after HDL code generation.

To learn more, see “Multirate IP Core Generation” on page 41-39.

Video Porch Insertion Logic
Video capture systems scan video signals from left to right and from top to bottom. As these systems
scan, they generate inactive intervals between lines and frames of active video. This inactive interval
is called a video porch. The horizontal porch consists of inactive cycles between the end of one line
and the beginning of next line. The vertical porch consists of inactive cycles between the ending
active line of one frame and the starting active line of next frame.

This figure shows a video frame with the horizontal porch split into a front and a back porch.
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The AXI4-Stream Video interface does not require a video porch, but Vision HDL Toolbox algorithms
require a porch for processing video streams. If the incoming pixel stream does not have a sufficient
porch, HDL Coder inserts the required amount of porch to the pixel stream. By using the AXI4-Lite
registers in the generated IP core, you can customize these porch parameters for each video frame:

• Active pixels per line (Default: 1920)
• Active video lines: (Default: 1080)
• Horizontal porch length (Default: 280)
• Vertical porch length (Default: 45)

Default Video System Reference Design
You can integrate the generated HDL IP core with AXI4-Stream Video interfaces into the Default
video system reference design.

This figure is a block diagram of the Default video system reference design architecture.
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You can use this Default video system reference design architecture with these target platforms:

• Xilinx Zynq ZC702 evaluation kit
• Xilinx Zynq ZC706 evaluation kit
• ZedBoard

To use the Default video system reference design, you must install the Computer Vision
Toolbox™ Support Package for Xilinx Zynq-Based Hardware.

Restrictions
When you map the DUT ports to AXI4-Stream Video interfaces:

• The DUT port mapped to the Pixel Data signal must use a scalar data type.
• Xilinx Zynq-7000 must be your target platform.
• You must use Xilinx Vivado as your synthesis tool.
• Processor/FPGA synchronization must be Free running.

See Also

More About
• “Model Design for AXI4-Stream Interface Generation” on page 41-14
• “Streaming Pixel Interface” (Vision HDL Toolbox)

See Also

Related Examples
• “Getting Started with AXI4-Stream Video Interface in Zynq Workflow”
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Model Design for AXI4 Master Interface Generation
In this section...
“Simplified AXI4 Master Protocol - Write Channel” on page 41-84
“Simplified AXI4 Master Protocol - Read Channel” on page 41-86
“Base Address Register Calculation” on page 41-87
“Modeling for AXI4 Master Interfaces” on page 41-87
“Map Vector Ports to AXI4 Master Interfaces” on page 41-90
“Model Designs with Multiple Sample Rates” on page 41-92
“Reference Designs for IP Core Integration” on page 41-93
“Restrictions” on page 41-94

For designs that require accessing large data sets from an external memory, model your algorithm
with a simplified AXI4 Master protocol. When you run the IP Core Generation workflow, HDL
Codergenerates an IP core with AXI4 Master interfaces. The AXI4 Master interface can communicate
between your design and the external memory controller IP by using the AXI4 Master protocol. Use
the AXI4 Master interface when your:

• Design targets multi-frame video processing applications. You can store the image data in external
memory, such as a DDR3 memory on board, and then read or write the images to your design in a
burst fashion for high-speed processing.

• Algorithm must access memory data in a non-streaming arbitrary pattern.
• DUT IP core must control other IPs with the AXI4 slave interface in the system. This capability is

especially useful in standalone FPGA devices.

Simplified AXI4 Master Protocol - Write Channel
To map the DUT ports to AXI4 Master interfaces, use the simplified AXI4 Master protocol. You do not
have to model the actual AXI4 Master protocol and instead you can use the simplified protocol. When
you run the IP Core Generation workflow, the generated HDL code contains a wrapper logic that
translates between the simplified protocol and the actual AXI4 Master protocol. The simplified
protocol requires you to use less protocol signals, eases the handshaking mechanism between valid
and ready signals, and supports bursts of arbitrary lengths.

Use the simplified AXI4 Master write protocol for a write transaction and the simplified AXI4 Master
read protocol for a read transaction. This figure shows the timing diagram for the signals that you
model at the DUT input and output interfaces for an AXI4 Master write transaction.
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The DUT waits for wr_ready to become high to initiate a write request. When wr_ready becomes
high, the DUT can send out the write request. The write request consists of the Data and Write
Master to Slave bus signals. This bus consists of wr_len, wr_addr, and wr_valid. wr_addr
specifies the starting address that DUT wants to write to. The wr_len signal corresponds to the
number of data elements in this write transaction. Data can be sent as long as wr_valid is high.
When wr_ready becomes low, the DUT must stop sending data within one clock cycle, and the Data
signal becomes invalid. If the DUT continues to send data after one clock cycle, the data is ignored.

Output Signals

Model the Data and Write Master to Slave bus signals at the DUT output interface.

• Data: The data that you want to transfer, valid each cycle of the transaction.
• Write Master to Slave bus that consists of:

• wr_addr: Starting address of the write transaction that is sampled at the first cycle of the
transaction. The address is specified in bytes.

• wr_len: The number of data values that you want to transfer, sampled at the first cycle of the
transaction. The wr_len signal is specified in words. This means each unit of wr_len is a
complete data element. For example, when wr_len is 2, and the bit width of data is 128 bit,
two 128-bit data elements are written.

• wr_valid: When this control signal becomes high, it indicates that the Data signal sampled at
the output is valid.

Input Signals

Model the Write Slave to Master bus that consists of:

• wr_complete (optional signal): Control signal that when remains high for one clock cycle
indicates that the write transaction has completed. The next burst of data can be sent after
wr_complete asserts. The early assertion of wr_complete makes the average latency nearly 3
clock cycles between two bursts, which makes the write operation pipelined and improves the
write throughput.

• wr_ready: This signal corresponds to the back pressure from the slave IP core or external
memory. When this control signal goes high, it indicates that data can be sent. When wr_ready is
low, the DUT must stop sending data within one clock cycle. You can also use the wr_ready signal
to determine whether the DUT can send a second burst signal immediately after the first burst
signal has been sent. Multiple burst signals are supported, which means that the wr_ready signal
remains high to accept the second burst immediately after the last element of the first burst has
been accepted. Using wr_ready to determine when to start the next burst can reduce the average
latency between two bursts to less than 3 clock cycles.

• wr_bvalid (optional signal): Response signal from the slave IP core that you can use for
diagnosis purposes. The wr_bvalid signal becomes high after the AXI4 interconnect accepts
each burst transaction. If wr_len is greater than 256, the AXI4 Master write module splits the
large burst signal into 256-sized bursts. wr_bvalid becomes high for each 256-sized burst.

• wr_bresp (optional signal): Response signal from the slave IP core that you can use for diagnosis
purposes. Use this signal with the wr_bvalid signal.

The AXI4 Master protocol supports a maximum burst size of 256. When you have a large burst of size
greater than 256, the AXI Master interface in the generated HDL IP core divides the large burst into
multiple smaller bursts with size 256. Therefore, even for large bursts of data, you see an improved
write throughput.
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Simplified AXI4 Master Protocol - Read Channel
This figure shows the timing diagram for the signals that you model at the DUT input and output
interfaces for an AXI4 Master read transaction. These signals include the Data, Read Master to
Slave Bus, and Read Slave to Master Bus.

The DUT waits for rd_aready to become high to initiate a read request. When rd_aready is high,
the DUT can send out the read request. The read request consists of the rd_addr, rd_len, and
rd_avalid signals of the Read Master to Slave bus. The slave IP or the external memory
responds to the read request by sending the Data at each clock cycle. The rd_len signal
corresponds to the number of data values to read. The DUT can receive Data as long as rd_dvalid
is high.

Read Request

To model a read request, at the DUT output interface, model the Read Master to Slave bus that
consists of:

• rd_addr: Starting address for the read transaction that is sampled at the first cycle of the
transaction. The address is specified in bytes.

• rd_len: The number of data values that you want to read, sampled at the first cycle of the
transaction. The rd_len signal is specified in words. This means each unit of rd_len is a
complete data element. For example, when rd_len is 2, and the bit width of data is 128 bit, two
128-bit data elements are read.

• rd_avalid: Control signal that specifies whether the read request is valid.

At the DUT input interface, implement the rd_aready signal. This signal is part of the Read Slave
to Master bus and indicates when to accept read requests. You can monitor the rd_aready signal
to determine whether the DUT can send consecutive burst requests. When rd_aready becomes high,
it indicates that the DUT can send a read request in the next clock cycle.

Read Response

At the DUT input interface, model the Data and Read Slave to Master bus signals.

• Data: The data that is returned from the read request.
• Read Slave to Master bus that consists of:

• rd_dvalid: Control signal which indicates that the Data returned from the read request is
valid.
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• rd_rvalid (optional signal): response signal from the slave IP core that you can use for
diagnosis purposes.

• rd_rresp (optional signal): Response signal from the slave IP core that indicates the status of
the read transaction.

At the DUT output interface, you can optionally implement the rd_dready signal. This signal is part
of the Read Master to Slave bus and indicates when the DUT can start accepting data. By
default, if you do not map this signal to the AXI4 Master read interface, the generated HDL IP core
ties rd_dready to logic high.

Base Address Register Calculation
For IP cores that you generate, HDL Coder includes a base address register to support driver
authoring for both the AXI4 Master read and write channels. The base address register is added to
the address that is specified by the DUT ADDR port to form the AXI4 Master address. This capability
enables the driver to use an addressing mode that programs a fixed register address with the base
address of a buffer. The programmed address together with the DUT ADDR port is used to index the
buffer. By default, the registers take a value of zero, if you do not use them.

Modeling for AXI4 Master Interfaces
You can model your algorithm with Data and AXI4 Master protocol signals at the DUT ports and then
map the signals to AXI4 Master interfaces.
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To learn how to model your DUT algorithm for AXI4 Master interface mapping, open this Simulink®
model. The DUT Subsystem contains a simple algorithm that reads data from the DDR and writes the
data back to a different address in the DDR memory.
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Double-click the DUT Subsystem. The DDR_Access_Controller Subsystem models the AXI Master read
and write channels and has a Simple Dual Port RAM that calculates the wr_data signal. If you double-
click the DDR_Access_Controller Subsystem, you see two Edge Detection Subsystem blocks that
generate the two start pulses as input to each MATLAB Function block. One Edge Detection
Subsystem and DDR Read Controller MATLAB Function models the read transaction. The other Edge
Detection Subsystem and DDR Write Controller MATLAB Function models the write transaction. You
can modify this design to model only the write transaction or the read transaction by using one Edge
Detection Subsystem and the corresponding MATLAB Function block.

Read Channel

The DDR Read Controller is modeled as a state machine with four states: INIT, IDLE,
READ_BURST_START, and DATA_COUNT. The INIT state initializes the read signals and the RAM
input signals. When the start signal goes high, the state machine switches to the IDLE state, and then
waits for the rd_aready signal to become high. When rd_aready becomes high, the state machine
transitions to the READ_BURST_START state and the DUT starts reading data. The state machine
then unconditionally switches to the DATA_COUNT state and continues to read data till rd_avalid
goes low.

Write Channel

The DDR Write Controller is modeled similar to the Read channel as a state machine with four states :
IDLE, WRITE_BURST_START, DATA_COUNT, and ACK_WAIT. The DUT is in the IDLE state and then
switches to the WRITE_BURST_START state where it waits for the wr_ready signal. When wr_ready
becomes high, the state machine switches to the DATA_COUNT state and starts writing data. The
data is valid when wr_valid is high. The DUT continues to write data when wr_ready is high. As
wr_ready becomes low, the state machine switches to the ACK_WAIT state and then waits for the
ready signal to initiate the next write transaction.

To see the simplified AXI4 Master protocol in effect, simulate the model. If you have DSP System
Toolbox™ installed, you can view and analyze the results in the Logic Analyzer.
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You can use the IP Core Generation workflow to generate an HDL IP core with the AXI4 Master
interface. If you have HDL Verifier™ installed, and you use the Xilinx Zynq ZC706 board, then you
can integrate the IP core into the Default System with External DDR3 memory access reference
design.

Map Vector Ports to AXI4 Master Interfaces
To integrate your HDL IP core into larger reference designs, and to achieve higher throughput when
you use the AXI4 Master port to access external DDR memory, you may want to use larger bit widths
on the Data port. The AXI4 Master interface bus supports a maximum bit width of 1024 bits.

Simulink supports fixed-point data types that have word length of up to 128 bits. To model your DUT
ports with word lengths greater than 128 bits, use vector data types. If you use a vector port such
that the combined bit width of all the elements in the vector is greater than 1024 bits, the Set Target
Interface task displays an error.

For example, in the hdlcoder_axi_master model, to expand the bit width of the axim_rd_data
port to 512 bits, change the ddr_data parameter inside the DDR to fi(([40:-1:1]),0,128,0)
and then concatenate the 128-bit input four times to generate an output of 512 bits. You can use a
Vector Concatenate block to output a combined bit width of 512 bits. To simulate the model, replace
the Simple Dual Port RAM block inside the DUT subsystem with a Simple Dual port RAM System.
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You can then map these DUT Data ports to AXI4 Master Read or AXI Master Write ports in the
Target platform interface table, generate the HDL IP core, and integrate the IP core into your Vivado
or Qsys reference designs. In the generated HDL code for the DUT IP core, the Data ports are
mapped to 512-bit interfaces. Multiple FIFO blocks are generated corresponding to each element of
the vector input.

ENTITY DUT_ip IS
  PORT( IPCORE_CLK            :   IN    std_logic;  -- ufix1
        IPCORE_RESETN         :   IN    std_logic;  -- ufix1
        AXI4_Master_Rd_RDATA  :   IN    std_logic_vector(511 DOWNTO 0);  -- ufix256
        
        ...
        ...

        AXI4_Master_Wr_WDATA  :   OUT   std_logic_vector(511 DOWNTO 0);  -- ufix256
        
        ...

        );
END DUT_ip;

This figure illustrates the order in which the vector data is written to and read form.

In the HDL code for the DUT IP core, you can see how the AXI4_Master_Rd_RDATA and
AXI4_master_Wr_WDATA interfaces are mapped to the DUT ports and the order in which data is
written to the AXI4 Master interface and then read back.
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...

...
--------------------------------------------------------------------
AXI4 Master Read Sequence
--------------------------------------------------------------------
AXI4_Master_Rd_RDATA_0 <= AXI4_Master_Rd_RDATA_unsigned(127 DOWNTO 0);

AXI4_Master_Rd_RDATA_1 <= AXI4_Master_Rd_RDATA_unsigned_1(255 DOWNTO 128);

AXI4_Master_Rd_RDATA_2 <= AXI4_Master_Rd_RDATA_unsigned_7(383 DOWNTO 256);

AXI4_Master_Rd_RDATA_3 <= AXI4_Master_Rd_RDATA_unsigned_7(511 DOWNTO 384);

--------------------------------------------------------------------
AXI4 Master Write Sequence
--------------------------------------------------------------------
AXI4_Master_Wr_WDATA_tmp <= unsigned(AXI4_Master_Wr_WDATA_Vec_3) & 
                            unsigned(AXI4_Master_Wr_WDATA_Vec_2) &
                            unsigned(AXI4_Master_Wr_WDATA_Vec_1) &
                            unsigned(AXI4_Master_Wr_WDATA_Vec_0);

AXI4_Master_Wr_WDATA <= std_logic_vector(AXI4_Master_Wr_WDATA_tmp);

...

...

If you use a nonstandard bit width for the AXI4 Master Data port, the Data port is upgraded to a
standard bit width container that has a bigger size. Standard bit widths include 32, 64, 128, 256,
512, and 1024 bits. For example, if you use a vector that has four 35-bit elements, the resulting bit
width of 140 bits (35x4) is mapped to a 256-bit AXI4 Master interface. At the Write channel Data
port, bits 255 to 141 are padded with zeroes. At the Read channel Data port, bits 255 to 141 are
ignored.

Using nonstandard bit widths can have a performance impact because the entire bandwidth of the
AXI4 Master interface is not used. To avoid performance hits, use standard AXI bit widths.

Model Designs with Multiple Sample Rates
The HDL Coder software supports designs with multiple sample rates when you run the IP Core
Generation workflow. When you map the interface ports to AXI4 Master interfaces, to use multiple
sample rates, ensure that the DUT ports that map to these AXI4 interfaces run at the fastest rate of
the design after HDL code generation.

To learn more, see “Multirate IP Core Generation” on page 41-39.
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Reference Designs for IP Core Integration
You can integrate the generated HDL IP core with AXI4 Master interfaces into these HDL Coder
reference designs:

• Default System with External DDR3 Memory Access: When your target platform is
Xilinx Zynq ZC706 evaluation kit.

• Default System with External DDR4 Memory Access: When your target platform is
Altera Arria10 SoC development kit.

To use these reference designs, you must have HDL Verifier installed. This figure shows a high level
block diagram of the reference design architecture.

In this architecture, the HDL DUT IP block corresponds to the IP core that is generated from the IP
Core Generation workflow. Other blocks in the architecture represent the predefined reference
design, that consists of a MATLAB based JTAG AXI Master IP that is provided by HDL Verifier.
After you run the FPGA design on the board, using the JTAG AXI Master IP, you can use the input
data in MATLAB to initialize the onboard DDR3 external memory. The HDL DUT IP core reads the
input data from the external memory via the AXI4 Master interface. The IP core then performs the
algorithm computation and writes the result to DDR3 memory via the AXI4 Master interface. The
JTAG AXI Master IP can read the result from DDR3 memory and then verify the result in
MATLAB.
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Using the addAXI4MasterInterface method of the hdlcoder.ReferenceDesign class, you can
integrate the IP core with AXI4 Master Interface into your own custom reference design.

Restrictions
• Synthesis tool: Must be Xilinx Vivado or Altera QUARTUS II. Xilinx ISE is not

supported.
• Target workflow: Use the IP Core Generation workflow. To run the workflow, open the HDL
Workflow Advisor from your DUT algorithm in Simulink. MATLAB to HDL workflow is not
supported.

• Processor/FPGA synchronization: Must be Free running mode.

See Also

Related Examples
• “Performing Large Matrix Operation on FPGA using External Memory”

More About
• “Model Design for AXI4-Stream Interface Generation” on page 41-14
• “Streaming Pixel Interface” (Vision HDL Toolbox)
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IP Core Generation Workflow for Standalone FPGA Devices
In this section...
“Targeting FPGA Reference Designs with AXI4 Interface” on page 41-96
“Targeting FPGA Reference Designs Without AXI4 Interface” on page 41-97
“Board Support” on page 41-97

You can generate a reusable HDL IP core for any supported Xilinx or Altera FPGA device. The
workflow produces an IP core report that displays the target interface configuration and the coder
settings that you specify. See “Custom IP Core Generation” on page 40-4.

You can optionally build your own custom reference designs and integrate the generated IP core into
the reference design. The workflow does not require the Embedded Coder software, because you
need not generate the embedded code that is run on the processor. This means that the workflow
does not have a Generate Software Interface Model task.

The workflow for the FPGA boards has these features:

• Set Target Reference Design task. Populates the reference design, its tool version, and the
parameters that you specify.

• Set Target Interface task. Map your DUT ports to the interfaces on the target platform.
• Set Target Frequency task. Specifies the Target Frequency (MHz) to modify the clock module

in the reference design to produce a clock signal with that frequency.
• Generate RTL Code and IP Core task. Generates a reusable and sharable IP core. The IP core

packages the RTL code, a C header file, and the IP core definition files.
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• Create Project task. Creates a project for integrating the IP core into the predefined reference
designs.

You can generate an IP core with an optional AXI4 or an AXI4-Lite interface.

Targeting FPGA Reference Designs with AXI4 Interface
This figure shows how HDL Coder generates an IP core with an AXI4 interface and integrates the IP
core into the FPGA reference design. See “Board and Reference Design Registration System” on page
41-43.

Use the HDL Coder generated AXI4-Lite interface to connect the IP core with an AXI4 or AXI4-Lite
Master device such as:

• MicroBlaze processor.
• Nios II processor.
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• PCIe Endpoint that connects to an external processor.
• JTAG Master.

When you connect the HDL IP core to a processor such as the MicroBlaze, you must integrate the
handwritten C code to run on the processor. The generated IP core report displays the register
address mapping information. To find the register offsets in the IP core register space, use this
mapping information. To get the memory address of each register, add the register offset to the base
address that you specify in your reference design. You can also find the register offsets in the C
header file in the generated IP core folder.

Targeting FPGA Reference Designs Without AXI4 Interface
In the reference design definition function, you can create your own custom reference designs
without the AXI4 slave interface. See also addAXI4SlaveInterface.

When creating a custom reference design, to target a standalone FPGA board, use the
EmbeddedCoderSupportPackage method of the hdlcoder.ReferenceDesign class:

hRD.EmbeddedCoderSupportPackage = hdlcoder.EmbeddedCoderSupportPackage.None;

See EmbeddedCoderSupportPackage.

Board Support
HDL Coder supports these FPGA boards with the IP Core Generation workflow:

• Xilinx Kintex-7 KC705 development board
• Arrow DECA MAX 10 FPGA evaluation kit

Using these boards, you can integrate the generated IP core into the default system reference
design. By default, this reference design does not have an AXI4 slave interface. Optionally, you can
add the interface in the reference design definition function.

See Also

Related Examples
• “”
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IP Core Generation Workflow for Speedgoat I/O Modules
For the Speedgoat I/O modules that support Xilinx Vivado, HDL Coder uses the IP Core
Generation workflow infrastructure to generate a reusable HDL IP core. The workflow produces an
IP core report that displays the target interface configuration and the code generator settings that
you specify. You can integrate the IP core into a larger design by adding it in an embedded system
integration environment. See “Custom IP Core Generation” on page 40-4.

This figure shows how the software generates an IP core with an AXI interface and integrates the IP
core into the FPGA reference design.

HDL Coder supports the Speedgoat IO333–325K with the Simulink Real-Time FPGA I/O
workflow. This workflow uses the IP Core Generation workflow infrastructure and has these key
features:

• Support for Xilinx Vivado as the synthesis tool.
• Generates a reusable and sharable IP core. The IP core packages the RTL code, a C header file,

and the IP core definition files.
• Creates a project for integrating the IP core into the Speedgoat reference design.
• Generates an FPGA bitstream and downloads the bitstream to the target hardware.
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After building the FPGA bitstream, the workflow generates a Simulink Real-Time model. The model is
an interface subsystem model that contains the blocks to program the FPGA and communicate with
the board during real-time execution.
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To learn more about the workflow, see “FPGA Programming and Configuration” (Simulink Real-Time).

See Also

More About
• “FPGA Programming and Configuration” (Simulink Real-Time)
• “Custom IP Core Generation” on page 40-4

External Websites
• www.speedgoat.com/support
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